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Abstract

The associations existing among different biomarkers are important in clinical settings because they
contribute to the characterisation of specific pathways related to the natural history of the disease,
genetic and environmental determinants. Despite the availability of binary/linear (or at least
monotonic) correlation indices, the full exploitation of molecular information depends on the
knowledge of direct/indirect conditional independence (and eventually causal) relationships among
biomarkers, and with target variables in the population of interest. In other words, that depends on
inferences which are performed on the joint multivariate distribution of markers and target
variables. Graphical models, such as Bayesian Networks, are well suited to this purpose. Therefore,
we reconsidered a previously published case study on classical biomarkers in breast cancer, namely
estrogen receptor (ER), progesterone receptor (PR), a proliferative index (Ki67/MIB-1) and to
protein HER2/neu (NEU) and p53, to infer conditional independence relations existing in the joint
distribution by inferring (learning) the structure of graphs entailing those relations of independence.
We also examined the conditional distribution of a special molecular phenotype, called triple-
negative, in which ER, PR and NEU were absent. We confirmed that ER is a key marker and we
found that it was able to define subpopulations of patients characterized by different conditional
independence relations among biomarkers. We also found a preliminary evidence that, given a
triple-negative profile, the distribution of p53 protein is mostly supported in ‘zero’ and ‘high’ states
providing useful information in selecting patients that could benefit from an adjuvant anthracyclines/
alkylating agent-based chemotherapy.
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Background
Oncological patients with similar clinical features could
have heterogeneous dynamics of disease recurrence and
response to therapies. Such a behaviour is prevalently
associated to biological features [1]. For this reason,
molecular oncology is actually focused on the identifica-
tion of cancer phenotypes with homogeneous biological
profile that could explain the differential response of the
disease to the therapies and associable to specific
biomarkers. In such a perspective, according to the
pharmacogenomic paradigm, biomolecular cancer sta-
ging systems have been proposed as alternative to
classical systems [2]. However, the use of “omic”
techniques that have initially opened potential develop-
ments it has been followed by frustrations and doubts
about the real clinical usefulness of results [3]. Whereas
the majority of the oncologists is still far from the
application of the so-called “genomic signatures” to
support clinical decision, physicians interest is focusing
on the identification of subgroups of patients responsive
to the pharmacological treatments better exploiting the
interrelationships among different biomarkers that in a
statistical perspective, are observable variable (presence/
absence of a given protein, mRNA or protein level, cell
morphology traits) possibly associated to at least one
target (outcome) variable. Two typical questions involve
biomarkers: the current patients state, referred to disease
profiling or subtyping and the patients outcome (for
example, the five-year horizon since surgery), referred to
disease dynamics. As regard the disease profiling, a
shared interest by biomedical scientists is about the
associations existing among the different biomarkers
that characterize specific metabolic assets of the disease
according to its natural history, genetic and environ-
mental determinants. To study such associations, the use
of binary/linear (or at least monotonic) correlation
measures is a general choice as the application of
multivariate analysis techniques aimed to the clustering
of subjects and their biological features. However, such
conventional analysis tools could be limiting since
binary associations, although related, provide few
insights about features of the joint multivariate distribu-
tion. In fact, from an inferential point of view, the full
exploitation of a biological information is based on the
knowledge of all direct/indirect conditional indepen-
dence relations [4] among the biomarkers analyzed and
with the target variables in the population of interest.
Graphical models are aimed to face such a problem and
among them, Bayesian Networks (BNs) have interesting
properties that allow to address the above arose
questions in a full probabilistic setting. Indeed, among
the leading technologies, BNs are able to describe and
derive the conditional independence (CI) relations

existing in highly structured stochastic systems ([5],
and references therein). Besides simplifying communica-
tion among experts of different fields, BNs support causal
reasoning [6] and the development of efficient algorithms
for conditioning and marginalization through exact
(local) computation [6]. Although the increasing hype
surrounding BNs [7] partially comes from records of
success in processing biomedical [8] and molecular data
[9], Directed Acyclic Graphs (DAGs) are a valuable tool
for reasoning on the design of a study [10]. To better
understand the information provided by biomarkers, in
the present paper a probabilistic interpretation of DAGs
was applied in a case study previously published by
Ambrogi et al. [11], although the algorithms employed to
learn DAGs structure was tailored to learn causal BNs too.
Such an analysis was performed to further characterize CI
relations among five biomarkers: estrogen receptor (ER),
progesterone receptor (PR), a proliferative index
(PROLN) from the determination of the marker Ki67/
MIB-1, the receptor tyrosine kinase HER2/neu (NEU)
normally involved in the signal trasduction pathways
leading to cell growth/differentiation and the p53 (P53)
involved in cell cycle arrest and DNA repair or apoptosis.
In particular, the possible heterogeneity of CI relation-
ships for certain classes of patients was addressed by
learning the structure of MultiDAGs, a generalization of
DAGs developed to represent some context-specific
conditional independence relationships. Finally, to chal-
lenge the tool we examined a peculiar breast cancer
molecular phenotype, the so-called triple-negative group,
in which ER, PR and HER2 are absent. Since, in triple-
negative tumors p53 protein appears heterogeneously
expressed [13], suggesting that it may be associated with
specific subgroups, we investigated the distribution of
p53 conditioned to such a phenotype.

Results and discussion
Structural learning without AGE
The first structural learning task was performed on the
full set of 633 molecular profiles made by five
biomarkers. Several run of a greedy search (one edge
change and score) and of a simulated annealing
algorithms were performed with equivalent sample size
N equal to 9. The prior distribution on structures was
taken as uniform, so that p(z | ξ) ∝ 1 does not make any
structure more plausible a-priori. The inspection of top
scored networks always confirmed the results shown in
Figure 1. The selected structures are members of an
equivalence class defined by the same set of conditional
independence relations, a statement derived from the
application of the Directed Markov Factorization (DMF)
theorem. Variable ER separates all other pairs of
variables, therefore pairs of variables separated by ER
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are conditionally independent given ER. The BDe log-
score is equal to -3202.7056.

In Figure 1(e), one of the learned BNs is displayed using
belief bars representing marginal probability values at
each node after parameter learning based on the 633
instances of the case study.

From the learned structures we judged that pairs of
variables are typically correlated despite the fact that
conditioning on ER make them independent. This is a
reasonable but not trivial finding, because the usual
practice of inspecting the empirical distribution of pairs
of variables is not prone to reveal such CI relations. From
the DMF theorem applied to sets of nodes {P53}, {NEU,
PROLN, PR} and {ER}, it follows that, for example,
given ER no further information is provided by other
markers on p53.

Structural learning including AGE
It is well known that the metabolism of oestrogens and
of progesterone is related to patient’s AGE, even though
AGE might also affect other markers as regards their
conditional distribution. Therefore, the second structural
learning task was performed on the full set of 633
molecular profiles composed of five biomarkers includ-
ing variable AGE among nodes in V.

Several runs of greedy search and simulated annealing
algorithms were performed with equivalent sample size
equal to 9 and a uniform prior distribution for Z. The
inspection of top scored networks allowed to find the
equivalence class of structures and to inspect CI relation-
ships. The DBe log-score is equal to -3752.4043, while
the log-score of the same network with node AGE
disconnected from other nodes is -3757.7314.

In Figure 2 just one member of the equivalence class is
shown. It was chosen by exploiting the a-priori
information of molecular pathologists. All the other
members (not shown) of the equivalence class are
characterized by an arrow from ER to AGE. While such
edge orientation is probabilistically sound it is counter-
intuitive on causal ground because AGE is likely to cause
changes in the distribution of five markers and not vice-
versa probably due to physiological variation in the
biologic behaviour associated with aging (see the
discussion).

Structural learning of a multiDAG: AGE
The role played by age on estrogen receptors is well
documented in the literature, therefore it is very interest-
ing to investigate about the presence of heterogeneous CI
relations within groups of patients belonging to different
age classes. In other words, CI relationships among
markers could be different within the three age classes.

Therefore, we performed an exhaustive search by scoring
structures under the BDe metric for each age class
separately. The equivalent sample size N was always
equal to 9. Within the class of low AGE the equivalence
class of structures is similar to (a, b, d, e) in Figure 1 after
removing edge from-to PROLN because it is not
connected to any other node. Within the class of
medium AGE the equivalence class of structures is
equal to DAGs in Figure 1. Within the AGE class high
we obtained the equivalence class of structures shown in
Figure 3.

Then, we compared the best DAG against the multiDAG
for the distinguished variable AGE by means of the Bayes
factor (BF). The log-BF is greater than 31 therefore the best
DAG is better supported by data than multiDAG AGE.

Figure 1
Learned structures without AGE. Equivalence class of
DAGS obtained by search with the BDe score (5 nodes).
DAG (e) is also the subDAG obtained from DAG in Figure 2
(a) by deleting AGE. Belief bars represent estimated marginal
probabiliti values at each node. A more compact
representation would be obtained by removing edge
orientation from all arrows, although this would hide the
different causal information carried by the above DAGs even
if equivalent as regards CI relationships.
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Structural learning of a multiDAG: ER
Variable ER have been found to play a key-role in
making all the other pairs of variables conditional
independent. Moreover, from a theoretical point of
view, the absence of estrogen receptors could modify the
pattern of association among other biomarkers.

An exhaustive search in the space of MultiDAGs for the
distinguished variable ER have been performed by
scoring structures under the BDe metric for each ER
class separately. The equivalent sample size N was always
equal to 9. Results are shown in Figure 4 in which one
member of the equivalence class of DAGs is shown for
each value of the distinguished variable ER. Given ER, CI
holds in general among biomarkers but with some
exceptions. PR is not independent on AGE for ER Null,
PROLN is not independent of PR given ER Null.
Moreover, for ER Medium, PR is not independent on

NEU and PROLN is not independent on p53. Finally, for
ER High, NEU is not independent on PR.

We compared the best DAG against the multiDAG for
the distinguished variable ER by calculating the Bayes
factor (BF). The log-BF is greater than 6.4 therefore the
multiDAG-ER model is substantially favoured as expla-
nation of observed data.

Triple-negative profiles
Triple-negative cancers are defined as those tumors
having an ER, PR and HER2/neu-negative status.
Although they account for 10 – 17% of all breast
carcinomas, triple-negative cancers represent a relevant
clinical issue because of the high incidence in younger
patients and the higher aggressiveness than tumors
pertaining to other molecular subgroups [12,13]. This
aggressiveness is best illustrated by the fact that the peak
risk of recurrence is between the first and third years of

Figure 2
Learning with AGE. Marginal distributions for the selected structure including AGE (six nodes), after parameter learning (a)
and conditioning on ER = Null (b).

Figure 3
MultiDAG with AGE = High. Equivalence class of
structures within patients with AGE equal to High. Node
labels are shown only in DAG (a).

Figure 4
MultiDAG for the distinguished variable ER. DAGs
belonging to equivalence class of structures for each value of
the distinguished variable ER.
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follow up and the majority of deaths occur in the first
five years following therapy [16]. From a biological
point of view, salient features of triple-negative breast
cancers include overexpression of EGFR and c KIT, high
proliferative rates, frequent genomic alterations, pheno-
typic similarity to BRCA1-associated cancers and fre-
quent mutations of Tp53 [14,15]. In particular, p53
appears heterogeneously expressed, suggesting that it
may be associated with specific subgroups. Since TP53
gene mutations are predictive of response to taxanes, p53
expression represents a useful biological marker to select,
among the triple-negative tumors, those more likely to
benefit from taxane versus anthracyclines/alkylating
agent-based chemotherapy [16,17]. Therefore, we exam-
ined the p53 marginal distribution conditioned on the
subset of triple-negative cancers included in the case
series analyzed by Ambrogi et al. [11].

Bayesian parameter learning for a given structure z is
performed by calculating the posterior distribution of
θ(z) given the database of cases D . The expected value of
θ(z) is a point estimate of networks parameters, as such it
may be used to perform inferential tasks like margin-
alization and conditioning. It is of some interest to show
belief bars representing marginal distributions at each
node calculated from the point estimates of ˆ( )q z :

p x z p x x x zv
z

v v v
z

v V
i i K

j

( | , , , ) ( ,..., , ..., | , , , )( ) ( )
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q x q xD D=
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where V\vi is the set difference made by all nodes but vi.
Moreover, here the interest is also focused to the
conditional distribution of p53 given ER = Null, p(xP53
| xER = 0, ˆ( )q z , z, D , ξ), which is obtained by using an
exact algorithm for evidence propagation.

The multiDAG with ER as distinguished variable is the
best structure to be exploited while obtaining the above
mentioned point estimates. In the our case study, given
ER = Null, the best DAG and the best MultiDAG-ER
provide essentially the same point estimate of the
distributions for P53, up to some rounding, so that in
Figure 2(a) the marginal distribution of p53 is shown
after parameter learning. The marginal distribution of
p53 is for about one half on the null value (0.46) and
about one quarter on the two other values each. The
distribution of p53 changes by conditioning on a triplo-
negative state, namely to ER = Null. Similar considera-
tions motivate the use of Figure 2(b) to inspect the
conditional probability table (CPT) of node P53 after
conditioning to ER = Null. The probability of a null value
for P53 decreases to 0.35 and the probability of a
medium value is lowered to 0.10, while 0.54 is the

probability of a P53 value equal to high. The estimate of
the marginal distribution puts a relevant fraction of the
mass, 90%, on the two extreme states, Null or High.
Heterogeneous patients dynamics might depend on such
pretty much substantial difference which is worth to be
further characterized.

A point estimate of ˆ( )q z typically neglects the uncer-
tainty left after learning. We address this issue for the
P53 node, due to the relevance for clinical decision
making, by exploring the distribution of the quantity
indicating the probability of event {P53 = Null} under
different models, Figure 5. The more disperse curve on
the left (dashed line) refers to the prior belief for such
event before learning structure and parameters when
marginal independence is assumed among biomarkers,
thus P53 is disconnected. The peaked curve on the right
(dotted line) represents the posterior distribution of
{P53 = Null} for a DAG without connections from to
P53, thus P53 is disconnected. Finally, the continuous
line in the middle is the final marginal distribution
obtained after structural and parameter learning given a
triplo-negative profile under a multiDAG ER model. The
comparison reveals that the initial (prior) distribution is
quite disperse while posterior distributions based on two
different DAGs substantially differ. The Bayes factor is
strongly in favour of the learned multiDAG structure

Figure 5
Probability Distribution of P53. Probability of event
P53 = Null under three different circumstances: prior
information with P53 disconnected (dashed line), posterior
information with P53 disconnected (dotted line), posterior
information given ER = Null in structure multiDAG-ER
(continuous line).
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therefore we can also estimate the bias induced by a
poorly supported model, like a marginal independence
model as the difference between point estimates under
the two mentioned models.

Comparison of learned structures against expert belief
Structural learning of BNs has been performed under a
constant prior distribution on the space of structures. We
used prior information elicited from molecular biolo-
gists about the presence of marginal association on pair
of variables to evaluate the performances of the learning
algorithm.

Stating the degree in a verbal way, the following
associations were considered AGE-ER (strong), AGE-PR
(weak), AGE-NEU (weak), ER-p53 (strong), PR-p53
(strong), ER-PR (strong), NEU-p53, NEU-PROLN
(weak). By applying the separation theorem for directed
graphs [6] on DAG shown in Figure 2 with an empty
separating set, we checked out that all the stated
marginal associations hold true in the learned structure.
More formal and computational heavy approaches for
structural learning are needed to exploit prior informa-
tion about association in a quantitative way, for example
by using an informed scoring function [18].

Conclusion
Although the research trend in molecular phenotyping of
cancer is aimed to the identification of biologic profiles
related to the response to therapies, statistical
approaches adopted so far in papers published on
clinical journals, mainly resort to a conventional
bivariate assessment of Pearson correlation coefficients
among different single biomarkers. The examination of
correlation matrices looking to pairs of variables, is
performed implicitly assuming a joint Gaussian distribu-
tion and the appropriateness of linear associations.
Moreover conditional associations are often neglected.
The use of more advanced multivariate techniques for
clustering and projection, has only partially supplied the
need of dealing, in a more extended way, the bulk of
information provided by multiple markers determina-
tions such those arising from high-throughput genomic/
proteomic assays. Such techniques are mainly set up on
bivariate distances based on pairs of canonical variables,
thus preventing a deeper view of high order associations
among biomarkers. The use of graphical models for the
study of conditional independence structures in joint
multivariate distributions could represent an appropriate
solution for the above issues. However, such techniques
are still far from a wide diffusion, even within the
biostatistical community. Within the graphical model
class, Bayesian Networks (BNs) show interesting proper-
ties for the study of conditional independence (CI)

relationships, addressing the above questions in a full
probabilistic setting. Having their major relevance in the
study of causal relationships, BNs can be also extended
to account for latent unmeasured variables. In addition,
the chance of heterogeneity in CI relationships for
certain classes of patients can be also addressed by
learning the structure of MultiDAGs. In the example
considered in the present work, five conventional
biomarkers and patients age were related by learning
probabilistic networks. Although the central role of ER in
breast cancer biology is well established, particularly as
prognosticator of response to an endocrine therapy, less
evident is the result of conditional independence among
other markers given ER. The comparison between the
best multiDAG structure and the top scored DAG
revealed that inferences on p53, given a triple-negative
profile, was substantially stable, and that the shift of
probability mass towards extreme p53 values (low and
high) unchanged. Such a novel information, initially
explored with clustering and visualisation [11] and now
confirmed by BN analysis could be relevant in the
treatment of triple-negative patients who now appear
split according to p53 values. This finding is not trivial
because, if so far, the clinical class of triple-negative
cancers has been assimilated to basal-like tumors (one of
the five main phenotypes identified by gene expression
analysis), present evidence support the emerging opi-
nion that triple-negative and basal like breast cancers are
not synonymous as the triple negative group, in addition
to basal-like tumors, encompasses also normal breast
like cancers [14]. Taking into consideration that normal
breast-like tumors do not respond to neoadjuvant
chemotherapy as well as basal-like cancers do [23], the
identification by p53 of the subset of patients that could
benefit from an adjuvant anthracyclines/alkylating
agent-based chemotherapy is great clinical relevance.

In this work we supported a probabilistic semantic for
BNs, but structural learning using the BDe score is also
suited to learn causal relationships. In a causal frame-
work the learned structures should be considered as
tentative hypotheses to be further investigated in
controlled experiments, possibly under randomization.
While a (validated) causal network is essential to predict
the effect of intervention, like a drug therapy, the quality
of inferences strongly depend on the causal sufficiency of
the considered variable, that is the lack of unmeasured
(hidden) variables affecting two or more observed
markers. Recent research has addressed the issue of
estimating causal effects in presence of hidden variables
but in those settings the structure is assumed known.
Therefore, we plan to extend our analysis by investigat-
ing the presence of relevant hidden variables. Structural
learning of CI relationships was performed after includ-
ing variable AGE, known to be associated with estrogen
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plasma concentration and corresponding estrogen recep-
tor levels. Within the equivalence classes of learned
structures we preferred DAGs carrying the oriented edge
AGE-to-ER, even if a deeper casual explanation might
recognize that variable AGE per-se is deprived of a
biological meaning, although related to the biological
process of cancer development.

The prior distribution p(z | ξ) formally appearing in
equation (3) was omitted during the maximization of
the score because a uniform distribution on all the set of
DAGs on the six variables was chosen. Some prior beliefs
on the presence of marginal associations were used only
to check the quality of learned structures. Nevertheless,
further work should address the issue of formally
eliciting expert beliefs both about associations and
causal relationships [19]. Suitable heuristics might
reduce the burden due to elicitation by focusing on
preminent features characterizing expert’s prior belief
[18]. Issues still open are related to the need of
discretisation of the variables considered in the BN
model. Since such an operation should be based on
sensible cut-off values often unavailable, every result and
possible conclusions should be taken at exploratory
level.

Methods
In this section we present the case study due to Ambrogi
et al. [11], then a short introduction to Bayesian
Networks is provided. The Bayesian Dirichlet equivalent
score is defined as the objective function to be optimized
by search algorithms for structural learning. This section
ends with the definition of MultiDAGs, a generalization
of DAGs developed to represent some context-specific
conditional independence relationships.

Original data were processed into transformed variables
using R [20], which has been also used in some
prototyping of calculations and displays. Much of the
computation has been performed in Java http://java.sun.

com using the Eclipse platform http://www.eclipse.org.
Our own Java code complements two commercial BN
engines, and it was developed especially to extend their
functionalities and to check critical steps performed by
mean of software libraries.

A case study on bioprofiles
We consider a subset made by 633 archival tissue
samples originating 5 validated markers from patients
who underwent surgery for primary infiltrating breast
cancer between 1983 and 1992 at the University of
Ferrara, Italy [11]. We also considered the variable AGE
for its well known role in estrogen expression. The
original study aimed to identify tumor profiles of clinical
relevance based on immunohistochemical molecular
markers measured within a single hospital.

The biomarkers here considered are: estrogen receptors
(ER), progesterone receptors (PR), a proliferation index
(PROLN = Ki-67/MIB1), and two proteins (HER2-NEU)
and (p53). In the present study we also considered the
variable AGE due to the important relationship between
patient age, which reflects woman menopausal status,
and estrogen status.

The original variables were all transformed to discrete
ternary variables following the suggestions of experts in
the measurement process (Table 1). The empirical
marginal distributions of absolute frequencies are
shown in Table 1. The dataset does not contain missing
values.

Bayesian networks
A directed graph GDIR is a pair (V, E), with V = {v1, v2,...,
vK} a finite set of nodes which label the elements of
random vector X Xv vK1

, ..., and E a subset of the
Cartesian product V × V. If (vi, vj) Œ E then (vj, vi) ∉ E
and the ordered pair (vi, vj) corresponds to the oriented
edge vi Æ vj. Only oriented edges are allowed in GDIR .

Table 1: Aggregation of original data

(a) Original classes (b) Absolute frequencies in aggregated classes

1 2 3 4 5 6 1 2 3

PR 1 2 2 2 3 3 182 220 231
ER 1 2 2 2 3 3 116 247 270
NEU 1 2 2 2 3 3 328 203 102
PROLN 1 2 2 3 3 129 268 236
P53 1 2 3 3 293 175 165

AGE < 50 [50, 60] > 60 50 198 385

(a) Aggregation of original classes performed before analyzing data. The original discrete values are reported in the first row while integer
numbers referring to final classe are shown in the body of the table. (b) Empirical marginal distributions of absolute frequencies after
transformation of original data.
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Let ( vi1 , vj), ( vi2 , vj),... be all the elements of E in which
vj follow another node (oriented edges into vj), then the
set of parents of node vj is pa(vj) = { vi1 , vi2 ,...}. If
(vi, v j1 ), (vi, v j2 ),... are all the elements in which vi
precedes another node then the set of children of node vi
is ch v v v vi j j jq

( ) { , ,..., }=
1 2 . Two nodes are connected if

an edge joins them. A path (v0,..., vk) is a sequence of
nodes in which pairs vi, vi +1 are connected by an edge. A
directed path is a path in which each edge is oriented
from vi to vi +1. Set an(vi) collects the ancestors of node vi,
that is nodes originating directed paths reaching node vi.
All nodes of a directed path originated in vi are
descendants of vi, and they are elements of set de(vi). A
cycle in a directed graph is a directed path where the first
and last node are equal, v0 = vk. A directed graph G
without cycles is a Directed Acyclic Graph (DAG).

A Bayesian network (G , P ) is a pair made by a DAG
whose nodes vi Œ V refers to a random variables hereafter
discrete with range X vi and by a distribution Markov
with respect to G . A probability distribution P for
random variables indexed in V is said to be Markov with
respect to G if the joint distribution factorizes according
to the DAG parents-to-children structure:

p x x x p x xv v v v pa v

v V
k i i

i

( , ,..., ) ( | )( )1 2
=

∈
∏ (2)

where xpa vi( ) is a realization of the random vector made
by variables whose labels belong to parents set pa(vi).
The distribution associated to a node Xv j is conditional
to the set of random variables labeled by parent nodes,
pa(vj).

The lack of an arrow from vi to vj means irrelevance of vi
in predicting vj, that is conditional independence.
Further conditional independence relations may be
derived using the directed global Markov criterion on
moralized DAG [6]. The moral graph Gm of DAG G is
equal to the starting DAG but without edges orientation
in which further (undirected) edges are added to join
pairs of nodes sharing the same child without being
originally connected. Two nodes vi and vj are separated i
Gm by a set of nodes S ⊂ V\vi, vj if all the path from vi
and vj contain at least one node belonging to S in the
moral graph Gm . The extensions of separation of two
subsets of nodes is straightforward. The Directed Markov
Factorization (DMF) theorem states that given three
disjoint subsets A, B, S of V random vectors XA and XB are
conditionally independent given XS if S separates A from
B in the moral subgraph made by A ∪ B ∪ S and their
ancestral sets.

The structure of a Bayesian network is sometimes
unknown and we define a variable Z on a subset cZ of

positive integers so that Z is one-to-one with the set of all
DAGs defined on a given collection of nodes V.

The expert’s degree of belief about the structure of a BN
is represented by a conditional probability mass function
p(z | ξ) given the considered domain context ξ.

In the simplest observational design, a database
D = { , ,..., }d d dnd1 2 of nd conditionally independent
realizations from the distribution P are taken without
missing values. Structural learning of a BN by means of a
Bayesian score amounts to process the database D to
infer the conditional independence relations existing in
the joint distribution of the random vector. A Bayesian
score is a function obtained by integrating out para-
meters of conditional distributions appearing in (2):

p z p z p z p z d( , | ) ( | , , ) ( | , ) ( | )D Dx q x q x x q= ⋅ ⋅ ⋅∫ (3)

where q q q( )
, ( )

( )
, ( )

( )( ,..., )z
v pa v
z

v pa v
z
K k

=
1 1

is the vector of
parameters for structure z, that is parameters q v pa vi i, ( )

for all vi Œ V are conditional probability tables (CPTs)
espliciting factors p(D |θ, z, ξ). The notation θi, j = (θi, j,
1,...,θi, j, s,...) refers to the column j of the CPT for node vi
and by using s as a row index it follows that ∑s θi, j, s = 1.

Under the assumptions discussed in [21] and here
retained, standard Bayesian updating formulas with
conjugate families provide a closed-form expression for
(3). The likelihood function p(D |θ, z, ξ) is a product of
multinomial probability mass functions and conjugate
prior distributions for θzs is defined by the product of
Dirichlet probability density functions:

p z
i j

i j ssj

q

v V

i j s

s

ri

i

i j s( | , )
( , )

( , , ) , ,
( ), ,q x

a

a
q a=

∏
=∈

−

=
∏∏ Γ

Γ
1

1

1

ii

∏ (4)

where θi, j, s is the probability value of Xi taking value in
row s given parents state in column j, and where (ai, j,1,...,
ai, j, s,..., a i j ri, , ), are parameters of a Dirichlet distribu-
tion at node vi given parents state j, with ai, j = ∑s ai, j, s

and ri the number of states of Xi.

The choice of parameters (ai, j,1,...,ai, j, s,...,a i j ri, , ) for all i,
j is performed to define a likelihood equivalent metric,
called Bayesian Dirichlet equivalent (BDe) metric [21],
that assigns the same score to structures entailing the
same CI relationships. Given a variable Xvi and its
vector of parents Xpa vi( ) , we define the number of states
ri of Xi and qi of Xpa vi( ) . A value of ai, j, s =

N
q j ri⋅ for each

s defines a likelihood equivalent metric by keeping the
equivalent sample size N fixed to a preferred value, here
equal to 9 in all our computations. In other words a
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virtual sample of nine observations is equally allocated
to each CPT, say for a 3 times 3 table one observation is
allocated to each cell in the table.

The closed-form integration of network parameters
leads to:

BDe z p z
i j

i j Ni j

i j s Ni j s

i j
( ) ( | , )

( , )

( , , )

( , , , , )

( ,
= =

+
⋅

+
D x

a

a

a

a

Γ
Γ

Γ
Γ ,, )ss

r

j

q

i

K ii

===
∏∏∏

111

(5)

with a ai j i j ss

ri
, , ,= =∑ 1

, and where N Ni j i j ss

ri
, , ,= =∑ 1

are

sums of sufficient statistics Ni, j, s, that is counts of cases
in which the ith variable takes the sthstate while its parent
configuration is in the jth state.

Note that the marginal distribution p(D |ξ) = ∑z p(D |z,
ξ)·p(z|ξ) becomes quickly intractable for an increasing
number of nodes, and in this case the posterior
distribution p(z|D , ξ) is not available in closed form.
Model selection may be performed by scoring structures
and maximizing p(D , z|ξ) with respect to z, both to
select the best structure and to identify a restricted
collection of structures on which approximated compu-
tation of posterior probabilities may be focused [21].

MultiDAGs
A DAG captures a quite strong form of conditional
independence relation because it must hold for each
value taken by the conditioning variables. A weaker
conditional independence relation is obtained by allow-
ing the independence among variables to hold only for a
subset of all possible states taken by conditioning
variables. The new relation is sometimes called context-
specific conditional independence relation.

A multi-DAG, also called Bayesian multinet [22,23], with
distinguished random variable Xc, c Œ V, is a set of
component DAG models for XV\c, each encoding a joint
distribution that may differ for each value xc taken by the
distinguished variable. The extended factorization takes
the following form:

p x x x p x xc v v c v pa v c

v keV c
i i

i

( , , , ...) ( | )( , )

\
1 2

= ∏p (6)

with πc the marginal probability of Xc = xc and pa(vi, c)
the set of parents of node vi in the DAG component
defined by xc.

Structural learning of multiDAGs is performed under the
BDe score by iterating the search algorithm over groups

of observations carrying the same value xc of the
distinguished variable.
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