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Abstract

Background: The cell cycle is a complex process that allows eukaryotic cells to replicate
chromosomal DNA and partition it into two daughter cells. A relevant regulatory step is in the Go/
G, phase, a point called the restriction (R) point where intracellular and extracellular signals are
monitored and integrated.

Subcellular localization of cell cycle proteins is increasingly recognized as a major factor that
regulates cell cycle transitions. Nevertheless, current mathematical models of the G,/S networks of
mammalian cells do not consider this aspect. Hence, there is a need for a computational model that
incorporates this regulatory aspect that has a relevant role in cancer, since altered localization of
key cell cycle players, notably of inhibitors of cyclin-dependent kinases, has been reported to occur
in neoplastic cells and to be linked to cancer aggressiveness.

Results: The network of the model components involved in the G| to S transition process was
identified through a literature and web-based data mining and the corresponding wiring diagram of
the G, to S transition drawn with Cell Designer notation. The model has been implemented in
Mathematica using Ordinary Differential Equations. Time-courses of level and of sub-cellular
localization of key cell cycle players in mouse fibroblasts re-entering the cell cycle after serum
starvation/re-feeding have been used to constrain network design and parameter determination.
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The model allows to recapitulate events from growth factor stimulation to the onset of S phase.
The R point estimated by simulation is consistent with the R point experimentally determined.

Conclusion: The major element of novelty of our model of the G, to S transition is the explicit
modeling of cytoplasmic/nuclear shuttling of cyclins, cyclin-dependent kinases, their inhibitor and
complexes. Sensitivity analysis of the network performance newly reveals that the biological effect
brought about by Cki overexpression is strictly dependent on whether the Cki is promoting
nuclear translocation of cyclin/Cdk containing complexes.

Background

During the life cycle of eukaryotic cells, DNA replication
is restricted to a specific time window, the S phase.
Several control mechanisms ensure that each chromo-
somal DNA sequence is replicated once, and only once,
in the period from one cell division to the next.
Following S phase, replicated chromosomes separate
during mitosis (M phase) and segregate in two nuclei
that are then endowed to two newborn cells at division.
Two gap phases, called G; and G,, separate cell birth
from S phase and S phase from M phase, respectively.

When depleted of growth factors, mammalian cells leave
G, to enter a reversible quiescent state, referred to as G
[1,2]. Upon growth factor refeeding, signal transduction
pathways are activated, ultimately leading to S phase
onset. A major control point in the G¢/G; to S transition
has been first identified by Pardee 3], who called it the
restriction (R) point. It is defined as the point of the cell
cycle in G, after which a cell can enter S phase after
removal of growth factors. It occurs at a specific time in
G, after re-addition of growth factors, before initiation
of S phase. Quiescent cells, before reaching the R point,
need continual feeding of nutrients, mitogens and
survival factors; in contrast, past the R point, they are
irrevocably committed to divide independently from the
continuous presence of growth factors in the medium
[4]. A control point responding to nutrient availability
but with otherwise similar properties, exists also in lower
eukaryotes, such as the budding yeast, where it has been
named Start [5].

The restriction point R operates stringently in normal
cells, but it is defective in cancer cells that accumulate
mutations resulting in constitutive mitogenic signaling
and defective responses to anti-mitogenic signals that
contribute to unscheduled proliferation [6,7]. Mutations
that affect the execution of the restriction point mainly
occur in two classes of genes: proto-oncogenes and
tumor suppressor genes [8]. In normal cells, the products
of proto-oncogenes act at different levels along the
signaling and regulatory pathways that stimulate cell
proliferation. Mutated versions of proto-oncogenes are
able to promote tumor growth. Of the more than 100

proto-oncogenes and tumor suppressor genes that have
been identified, most function in signal transduction to
mimic effects of persistent mitogenic stimulation,
thereby uncoupling cells from environmental cues [9].
Their signaling pathways converge on the cycle machin-
ery controlling the passage through the G; phase, by
inducing G; cyclins and overriding Cdk inhibitors,
preventing cell cycle exit, and ultimately perturbing
checkpoint controls [8,10,11]. In the wealth of known
oncogenes, many findings indicate that pathways con-
trolled by two tumor suppressor genes, Rb and p53, have
been found to be the most frequently disrupted in cancer
cells [9,12,13]. Indeed, inactivation of these two tumor
suppressor genes results in dysfunction of proteins that
normally inhibit cell cycle progression, resulting in either
continued proliferation or unscheduled re-entry into the
cell cycle, two properties characteristic of most cancer
cells [6]. Also the nucleo/cytoplasmic localization of key
cell cycle players is relevant: for instance, enhanced
cancer aggressiveness has been found to be linked to a
preferential cytoplasmic localization of the Cdk inhibitor
p27¥P! [14-18].

The aim of the present report has been to construct a
mathematical model of the molecular events that bring a
normal quiescent mammalian cell to overcome the
restriction point and to enter into S phase. The idea
that the logic of cell cycle control is substantially
conserved from yeast to mammalian cells is widely
accepted [19,20]. Besides, considering relevant the
nucleo/cytoplasmic localization of cell cycle players,
that is not taken into focus even in recent mathematical
models of the G; to S transition in mammalian cells
[20-25], we gave specific attention to this aspect in
modeling the dynamics of S phase entrance. By using as
a framework the model of the G; to S transition in
budding yeast developed in our laboratories [26], we
present here a computational network model of the
dynamics of entrance into S phase of quiescent, normal
mammalian cells that is based on extensive data-mining
(described in the appendix) and constrained by accom-
panying experimental data obtained on murine fibro-
blasts synchronized by serum starvation and stimulated
by serum addition to enter S phase. The model allows us

Page 2 of 15

(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 12):S16

to identify the molecular mechanism that underlies the R
point, yields specific predictions and gives new insights
on the role that the availability of inhibitors of cyclin-
dependent kinases (Cki) may have on the entrance into
S phase.

Results

Building a mathematical model of the G, to S transition
network for mammalian cells

The data-mining, conducted in order to construct the
network of the molecular events that characterize the
transition from quiescence into S phase, is described in
detail in the Appendix. The relevant players of the
network that we considered are: two cyclin/Cdk com-
plexes, i.e. cyclin D1/Cdk4,6 and cyclin E/Cdk2; one Cki
inhibitor; the transcription factor E2F and its inhibitor
Rb. The nucleo/cytoplasmic localization and the regula-
tory kinases/phosphatases of this pathway were also
taken into account. The following classes of events have
been considered: (1) production and degradation of
mRNAs and proteins; (2) formation of dimeric and
trimeric protein complexes; (3) nucleo/cytoplasmic
localization of the compounds, transport processes
being described like reactions, (e.g. converting Cdk4cyt
into Cdk4nuc); (4) cell growth in terms of volume
increase; and hence (5) concentration changes in the
nuclear and cytoplasmic compartments. The resulting
network was drawn using the notation of Cell designer
[27-29] (Figure 1) and the corresponding ODE-based
mathematical model was derived (Additional file 1). It
describes the dynamics of how different molecular
species interact with each other and how they shuttle
between cytoplasmic and nuclear compartments.

In essence, the time courses of the network can be
summarized as follows (see Appendix for details and
references). The first relevant events involve the interplay
between the growth-dependent cyclin D, and a generic
Cki whose properties more closely resemble those of
p27¥P!, that has been directly linked to cancer [30],
while the role of p21°"P* in cell cycle was not considered.
Cki is endowed to each newborn cell at the end of the
previous cycle and plays a dual role, being involved both
in inhibition of activity - and promotion of transloca-
tion - of cyclin D1/Cdk4,6 and of cyclin E/Cdk2
complexes. In keeping with the notion that Cki-deleted
cells are able to translocate Cdk-containing complexes in
the nucleus, both complexes are able to translocate in
the nucleus either in the Cki-bound or unbound-form.
As cyclin D1 builds-up following addition of growth
factors to quiescent cells, the cyclin D1/Cdk4,6 complex
moves to the nucleus, either alone or bound to Cki.
Upon phosphorylation of Rb by nuclear, Cak-phos-
phorylated cyclin D1/Cdk4,6, the E2F/Rb complex starts
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to dissociate and E2F-dependent productions of Cdc25A,
cyclin E and of more E2F free begins. For simplicity, we
assume that all newly-made Cdc25A and E2F will move
into the nucleus. Hence, nuclear production rates of
these proteins (and of all proteins that appear to be
made in the nucleus) sum-up transcription, mRNA
export to the cytoplasm, translation and nuclear translo-
cation of the mature protein. Only for cyclin E synthesis
and export refer to mRNA production, and a separate
translation step is modeled in the cytoplasm.

As cyclin E synthesis proceeds, the cyclin E/Cdk2
complex builds-up and goes to the nucleus, alone or
assisted by Cki. Nuclear cyclin E/Cdk2 is sequentially
phosphorylated by Weel and Cak. After activation by
Cdc25A, that removes the Weel-catalyzed inhibitory
phosphorylation, cyclin E/Cdk2 completes Rb phos-
phorylation. cyclin E/Cdk2 then is taken to phosphor-
ylate a generic activator of the onset of DNA replication
(S phase activator for short) that triggers initiation of
DNA replication.

An experimental analysis of the entrance into

S phase of quiescent mammalian cells

In order to have available an experimental set of data
useful to constrain the parameter estimation of the
mathematical model described in Figure 1 and in
Additional file 1, NIH3T3 murine fibroblasts, brought
to quiescence by a 24 hours serum deprivation and
stimulated by serum addition for another 14 hours, were
analyzed. In the cell population the overcoming of the R
point starts at 5 hours and is almost completed at 10
hours (Figure 2A, blue squares), while the entrance into
S phase starts at 8-9 hours and is completed at 14 hours
(Figure 2B, red squares), following the pattern described
in literature [30]. The heterogeneity with which cells
overcome the R point and enter into S phase is most
likely due to the limiting concentration of “competence”
factors, like PDGF [31,32], which are required to rescue
the cells from the quiescent state stimulating them to
grow and to activate the pathways needed to resume
proliferation [33]. Adding 10% serum, the concentration
of “competence” factors is limiting: therefore, the
interaction of growth factors with their cognate cellular
receptors follows a first order kinetics [34]. Enough
exposition to the competence factors contained in the
serum allows a cell to overcome the R point and to enter
into S phase a fixed time after execution of the R point.
In order to fit experimental data we must remember that
while each individual cell shows a switch-like response
for R point overcoming and entrance into S phase
(Figure 2A and 2B, dashed lines), cells in a population
interact with growth factors according to a first-order
kinetics. Assuming a half-life of 2 hrs (i.e. counting that
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Processes Regulating the G,/S transition in mammalian cells. Scheme of the G, to S transition of the mammalian cell
cycle drawn with Cell Designer. Two compartments are considered, cytoplasm and nucleus. The scheme follows the systems
biology graphical notation (SBGN); each component is associated with a red number and each reaction is associated with a
black number (Additional file I). In the gray box a set of reactions which are not explicitly considered for the model.

50% of cells have interacted at two hours, 75% at four  indicates that overcoming of the R point at the
hours and so on), satisfactory fitting (Figure 2A and 2B,  individual cell level takes place after 5 hrs in the
solid lines) can be obtained for experimental data  presence of the competence factors present in serum
(Figure 2A and 2B, colored squares). This analysis  and that 4 hrs later S phase starts.
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Temporal parameters of the G, to S transition in resting mammalian fibroblasts stimulated to proliferate by
serum. NIH3T3 cells, made quiescient by serum starvation, were stimulated with 10% serum. For restriction point
determination (panel A) cells were serum-starved again after different time periods and the fraction of BrdU-positive cells
determined 14 hours after serum stimulation. Values of BrdU-positive cells at the end of the 14 hours (total time) are plotted
as a function of the simulation time in the presence of serum. Fraction of BrdU-positive cells (B) was determined at different
time point after serum stimulation. Experimental points are shown by colored symbols. Restriction point overcoming (panel
A) or S phase state (panel B) are shown as on/off binary states by the dashed lines. Data for the population assuming a half-life
of growth factor/cell interaction of 2 hours are shown as solid black lines fitting experimental data.

Then, the content of several cell cycle proteins was
estimated (over equal amounts of cellular proteins) by
Western blot analysis (Figure 3A). It is clear that
quiescent cells (at time 0) are characterized by very low
levels of cyclin D and cyclin E, by sizable levels of Cdk4,
Cdk2 and Cki p27"'P'. At 4-6 hrs the level of cyclin D
substantially increases, while that of p27*"®! starts to
decrease. At 6-8 hrs cyclin E starts to be detectable, while
p27¥iP! disappears almost completely. The localization
analysis (Figure 3B) indicates that in quiescent cells the
great majority of p27¥"P! is localized into the nucleus,
while Cdk4 and Cdk2 are localized both in the nucleus
and in the cytoplasm.

Parameter estimation, computational analysis and
simulated dynamics of key players during the G,

to S transition

The model was constrained to fit the observed experi-
mental behavior of the G; to S transition (Figure 2) and
of relevant players considered in the network (Figure 3).
Rate constants and values at the beginning of the
simulations (reported in Additional file 2 and Addi-
tional file 3, respectively) were derived considering both
the experimental values described above and literature
data as described in the Appendix. Cells resume growth
with their characteristic exponential rate (duplication
time = 24 hours) as soon as growth factors are added.
Results of a 12 hours simulation of the G; to S transition
are reported in Figure 4. Levels of both Cdk4 (dark
green) and Cdk2 (light green) show little change over the

time frame considered in our simulations (Figure 4A),
consistently with experimental data (Figure 3). The rise
in cyclin D1 (dark blue) is a quite early event and is
followed a few hours later by a rise of cyclin E (light
blue). Has to be noted that since we are simulating the
G, to S transition and not a full cell cycle, time courses of
some variables become meaningless after entrance into S
phase. Simulation results for Cki (Figure 4B, black line)
show progressive time-dependent degradation. Similarly,
the level of p27X'P! appears to diminish smoothly within
the first part of the serum-stimulation experiment, then
it disappears almost completely as shown by both
Western blot and immunofluorescence (Figure 3A and
3B, respectively). The final output of the G; to S
simulation, i.e. the phosphorylated S phase activator
starts to be present at 8-9 hours (Figure 4, red line),
consistent with the timing experimentally determined. In
summary, considering both the final output of the
system (i.e. propensity to enter into S phase) and the
dynamics of selected key components, the dynamics of
the system are in agreement with experimental data
shown in Figures 2 and 3 and with literature data
discussed in more detail in the Appendix.

Simulated localization of cycle proteins and complexes

Immunofluorescent localization data shown in Figure 3B
indicate that cyclins, Cdks and Cki can be detected in the
nucleus. Indeed, in order to be able to phosphorylate
their targets, Cdk-containing complexes must efficiently
reach the nucleus, i.e. a sizable fraction of each complex
must be present within the nucleus. Figure 5 reports the
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Expression and localization of cell cycle proteins in
G, to S transition. (A) Time-courses of the expression of
proteins involved in the control of G, to S transition.
NIH3T3 cells, made quiescent by serum starvation, were
stimulated with 10% serum and collected at appropriate time
points and total cellular extracts were subjected to SDS-
PAGE followed by Western blotting with appropriate
antibodies. The Western blot is representative of at least
three independent experiments. (B) Localization of proteins
involved in the control of G| to S transition at time 0 and
10 hours. NIH3T3 cells, after synchronization by serum
starvation, were labeled with indicate antibodies (protein)
and analyzed by fluorescence microscope. Nuclei were
visualized by DAPI staining. The merged images are the
result of a merge between the two single images acquired.
At least 200 cells were scored for each sample and the
images are representative of three independent
experiments.

Merge

Cyc D

p27kipt

Cdk2

simulated fraction of nuclear cyclin D (panel A) and
cyclin D-containing binary and ternary complexes
(panels B and C, respectively) in the upper row, while
the bottom row displays the simulated fraction of
nuclear cyclin E (panel D) and cyclin E-containing
binary and ternary complexes (panels E and F, respec-
tively). Both cyclins and their complexes are efficiently
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Simulated time courses for the total concentrations
of G, to S transition key players. Global dynamics
describing the concentrations in time are reported for major
cell cycle players. The phosphorylated S phase activator (the
final output of the system whose level is proportional to
probability of starting S phase) is also shown.

transported to the nucleus, despite the fact that at time 0
cyclins are found only in the cytoplasm where they are
synthesized, indicating that the transport kinetics imple-
mented in the model are able to efficiently drive the
system.

The carrier-function of Cki: gene dosage effects

It has been reported that p27¥P! over-expression
correlates with cell cycle arrest [35,36] and, conversely,
that its degradation is a key pre-requisite for entry into S
phase [37]. At the same time, a role for Ckis in
promoting nuclear transport and/or assembly of cyclin/
Cdk complexes has also been shown [38,39]. Such a dual
role has been incorporated in our model since: (i) only
nuclear cyclin/Cdk complexes - but not cyclin/Cdk/Cki
complexes - are able to phosphorylate relevant sub-
strates and (ii) cyclin/Cdk/Cki ternary complexes enter
the nucleus 5-fold faster than corresponding cyclin/Cdk
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Nuclear localization of cyclins and their binary and
ternary complexes. The nucleo/cytoplasmic ratio for
cyclins and the relative binary and ternary complexes is
shown. Results are shown for cyclin D and cyclin E (panels A
and D, respectively), for cyclin D/Cdk4 and cyclin E/Cdk2
active complexes (panels B and E, respectively) and for the
ternary complexes, cyclin D/Cdk4/Cki and cyclin E/Cdk2/Cki
(panels C and F, respectively).

binary complexes (see Additional file 2). As noted above,
in our model the entrance into S phase is accounted for
as phosphorylation of the S phase activator, assuming
the S phase entrance to be proportional to the level
reached by the phosphorylated activator at the end of the
simulation, i.e. 12 hours after “serum stimulation”.
Accordingly, Figure 6 reports the effects of changing Cki
concentration on S phase entrance, when the rate
constants for nuclear transport of ternary cyclin/Cdk/
Cki complexes are the same (dark blue line), 5-fold
higher (the condition considered as standard in our
model, pink line) and 25-fold higher (green line) than
those of the binary cyclin/Cdk complexes. Cki concen-
tration is shown on a log scale, taking as 1 the Cki
concentration used in our reference set. If the Cki has no
transport-promoting effect, i.e. if cyclin/Cdk/Cki ternary
complexes enter the nucleus as fast as the corresponding
cyclin/Cdk binary complexes, increasing Cki concentra-
tion has a purely negative effect on the entrance into S
phase (dark blue line). The inhibitory effect is partially
overcome when cyclin/Cdk/Cki ternary complexes enter
the nucleus 5-fold (pink line) or 25-fold (green line)
faster than corresponding cyclin/Cdk binary complexes.
The S phase promoting effect is more evident at lower
Cki concentration and is completely lost at a relative
concentration of 10 or higher when S phase entrance is
completely shut-off, regardless of whether there is any
advantage for the transport of the ternary complexes over
the binary complexes or not.
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S phase entrance rate vs Cki relative concentration
depending on the translocation of binary and ternary
cyclin/Cdk complexes. The level of phosphorylated S
phase activator at the end of the simulation (taken as a
measure of the G, to S transition) is shown as a function of
relative Cki concentration at the beginning of the simulation.
Three cases are presented: rate constants for the cytoplasm-
to-nucleus translocation of binary and ternary cyclin/Cdk
complexes are equal (blue line); the rate constants
for the ternary complexes is 5-fold higher compared to the
binary complexes translocation constants (pink line,
corresponding to our standard simulation parameter set);
the rate constants for the ternary complexes is 25-fold
higher compared to the binary complexes translocation
constants (green line).

Comparison of simulated and experimental overcoming
of the restriction point

The R point was experimentally determined as follows.
Quiescent cells were exposed to serum for variable periods
of time and then transferred to serum-free medium. The
fraction of BrdU-positive cells was measured at the end of
the incubation period (14 hours) and is plotted in Figure 2A
in correspondence of the time spent in the presence of
serum. While cells exposed for only 2 hours were not able to
enter S phase, almost 40% of cells stimulated with serum for
6 hours were BrdU-positive, i.e. entered S phase when
assayed at 14 hours, after 8 hours of serum starvation.

The corresponding computational experiment involved
running the simulation with parameters and starting
conditions reported in Additional files 2 and 3 (“ON”
condition) for different times, stopping the run, and
re-starting it with cyclin D synthesis shut-off, cyclin D
degradation increased and Cki synthesis turned-on
("OFF” condition), to simulate growth factor removal.
Starting conditions of the second part of the simulation
for all variables corresponded to those reached when
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Simulated Restriction point dynamics. Simulated
accumulation of the phosphorylated S phase activator (taken
as a measure of the G, to S transition) upon growth factor
stimulation ("ON”’ condition for the whole length of the
simulation, red line), for a simulation run continuously in the
“OFF” condition (green line) and summary of simulations
run for R point determination (blue line). These simulations
have been run for an increasing number of hours in the
“ON” condition and for the time remaining to 12 hours in
the “OFF” condition. Values of the phosphorylated S phase
activator at the end of each 12 hours (total “ON” + “OFF”
time) run are plotted as a function of the simulation time in
the “ON” condition.

“ON”" condition simulation was first stopped. Ability to
enter S phase was estimated as described in the previous
paragraph. Values of the phosphorylated S phase
activator at the end of each 12 hours run (total “ON" +
“OFF” simulation time) are plotted as a function of the
simulation time in the “ON” condition.

Figure 7 compares accumulation of the phosphorylated S
phase activator (i) for a regular simulation ("ON”"
condition for the whole length of the simulation, red
line), (ii) for a simulation run continuously in the “OFF”
condition (green line) and (iii) for simulations run for R
point determination (blue line). Note that output of the
system is quite sharp, but is not describing the S phase
status of each individual cell (a yes/no function), but
rather the probability to enter into S phase that increases
as the phosphorylated activator builds-up. The half-
maximal value of the line describing the R point
estimation (blue line) is reached after 4-5 hours. This
value agrees with the corresponding experimental values
well as with the value determined by deconvolution
(Figure 2A) and is in the same range as the values
reported by other authors for NIH3T3 cells [30].
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Conclusion

The cell cycle is a complex process that allows eukaryotic
cells to replicate DNA and partition it into two daughter
cells. Its regulation is exceedingly complex and must take
into account - and integrate - intracellular and extra-
cellular signals. Multi-cellular organisms must also
coordinate cell cycle of their component cells in order
to keep harmonic and functional arrangement of tissues
and organs. Such a coordination mostly take place
within the Gy/G; phase at a point called the restriction
(R) point [40]. Alteration in the R point and ensuing
inability to coordinate entry into the cell cycle with
mitogenic and nutritional signals leads to unregulated
proliferation and ultimately to cancer [41].

Such a central physio-pathological role of cell cycle has
stimulated a wealth of computational studies aimed to
capture the logic of its functioning through mathematical
analysis of the specific molecular mechanism involved in
the process. Different mathematical models, specifically
focused on the G; to S transition in the mammalian cells,
have been reported [42-47] and each one uses a specific
approach and/or focuses on specific components to
simulate the cell cycle dynamics. These include models
published by: Kohn [47] whose core module is the E2F-
pRb complex; Aguda and co-workers [43] whose R point
model involves both D-type and E-type cyclins, and their
cognate kinases Cdk4 and Cdk2, the inhibitor p27*"*, and
the mitogenic signals in the R-point transition; Qu and
collaborators [44] in 2003, whose model considers multi-
ple phosphorylation sites for the components involved in
the regulation of the G; to S transition, which is a crucial
point in the cell cycle process and strengthens the
involvement of E2F1/pRB and Cdc25A in R point
execution; Swat and co-workers [45] whose model
considers only few components in the G;/S transition,
but they aim to identify the small feedback loops in the
regulation process of the R-point transition in terms of
bifurcation analysis; Haberichter and collaborators [46]
whose model is based on the presence of an unknown
“modifier” that activates Cdk2 in response to metabolic
signals; similar to the proposal of Tyson and Novak [20]
they assign an important role in the G; to S transition to A-
type cyclins, that are reported in literature to be required
more for the execution - rather than for the onset - of S
phase [48-52].

A generic model for the restriction point control of the
mammalian cell cycle was presented by Novak and
Tyson in 2006 [24]. Neither their model, nor subsequent
extensions [20] nor the other cell cycle models presented
so far explicitly consider nucleus/cytoplasm localization.

The major novelty of the mathematical model of entry of
quiescent mammalian fibroblasts into S phase upon
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stimulation by growth factors that we present here is the
explicit account of the nucleo/cytoplasmic localization
of cell cycle players that shuttle between the two
compartments as well as of cell growth. Consistently
with the notion that the core cell cycle machinery
appears to be conserved in all eukaryotes, from yeast to
human [19], our mathematic model is based on the
network of the G, to S transition in budding yeast [26]
that explicitly considers nucleus/cytoplasm localization.
Besides, the choice of parameters of our model has been
constrained by experimental data obtained on murine
fibroblasts synchronized by serum starvation and stimu-
lated by serum to enter S phase, while the several models
previously described [43-45,47] were based only on
theoretical considerations or experimental data taken
from literature.

It is worthwhile to underline similarities and differences
among the G; to S network of budding yeast [26] and
mammals (this paper). The yeast model incorporated
two Ckis, while only a single Cki is considered in the
present mammalian model. As outlined above, the
single Cki more closely resembles p27*!, whose role
in cell proliferation and cancer is well established,
purposefully neglecting p21“P! and inhibitors of the
Ink family [53]. Both models incorporate a dual
(inhibitory and stimulatory through promotion of
cyclin/Cdk translocation) role for a Cki, namely Sicl in
budding yeast and p27"! in mammals. Functional
equivalence between yeast and mammalian cyclin
complexes in our models is as follows: Cln3/Cdk1 to
cyclin D/Cdk4,6; Clb5,6/Cdkl1 to cyclin E/Cdk2, slightly
different from that proposed by other authors [20]. In
the mammalian model, no equivalent of the yeast
Cln1,2/Cdkl complex is present, given the fact that the
Cln/Cdk complexes play a major role in promoting
budding, that is a yeast-specific process. Functional
equivalence between yeast and mammalian cyclin/Cdk
complexes have been reported by other authors. In the
yeast model [26] and in the present one, a relevant role is
played by cyclin/Cdk phosphorylation of functionally
equivalent inhibitors (Whi5 in yeast and Rb in mamma-
lian cells) that originates a free transcription factor (SBF/
MBF in yeast, E2F in mammalian cells) that drives
transcription of genes required to enter S phase. While
the molecular logic is the same, some mechanistic details
differ, since a single kinase (Cln3/Cdk1) phosphorylates
Whi5 in yeast, while cyclin D/Cdk4,6 and cyclin E/Cdk2
sequentially phosphorylate the Rb inhibitor in mam-
mals.

Simulations of the model allows to recapitulate events
happening from growth factor stimulation (occurring at
time O of the simulation) and shows successive building-
up of cyclin D and cyclin E with a timing consistent with
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the experimental ones. Active complexes are found in the
nucleus at appropriate times and building-up of the
phosphorylated S phase activator is also consistent with
experimental data. Removal of the growth factor (that is
simulated by turning off cyclin D synthesis and increas-
ing cyclin D degradation and Cki synthesis) allows to
construct a restriction point curve that is similar to the
one experimentally determined. It should be noted here
that experimental curves are obtained on a cell popula-
tion, i.e. they represent the fraction of BrdU-positive
cells, while simulated curves not only refer to a single
cell, but they do not show the (discontinuous) onset of §
phase, but phosphorylation of a S phase activator whose
continuous accumulation will allow trigger (discontin-
uous) entry into S phase.

Cki inhibitors have been proposed to define thresholds
for cyclin/Cdk activity by setting levels that cyclin-Cdk
complexes must exceed to become active [54]. According
to this notion, cell cycle progression or arrest would
depend on relative concentration of inhibitors and
cyclins: a decrease in cyclin/Cdk components or an
increase in inhibitor levels would prevent the accumula-
tion of inhibitor-free cyclin/Cdk complexes, thus inhi-
biting cell cycle progression. The sensitivity analysis
reported in Figures 6 and 8 is consistent with this notion,
but also strongly underlines the biological relevance of
the shuttling role of the Cki indicating that our model is
going to test on a quantitative basis this assumption.
Figure 6 indicates that the effect brought about by Cki
overexpression is strictly dependent on whether or not
the Cki is promoting nuclear translocation of cyclin/Cdk
containing complexes. Figure 8 shows that Cki-related
constants (k;, ky;, ki, and k;g), that positively promote
formation of the cyclin D/Cdk4,6 complex, affect
negatively E2F-Rb (i.e. promote its dissociation that is
a prerequisite for S phase onset). Constants k; e ki, also
affect the time course of the production of the
phosphorylated S phase activator, i.e. the final output
of our system. Together, these results show that altera-
tions of the Cki dynamics (initial level, degradation, rate
of nuclear transport, ability to promote translocation of
cyclin-containing complexes) deeply affects the ability of
quiescent cells to respond to growth factors.

Further development of the model may include a more
sophisticated mathematical analysis of Rb phosphoryla-
tion. Our current model only implements two sequential
phosphorylations, while patterns of Rb phosphorylation
are quite complex (see Appendix for details and
references). Thanks to their ability to act as signaling
switches and counting mechanism [55,56], implementa-
tion of multisites protein phosphorylation of Rb may
contribute to render the G; to S transition steeper and
closely resembling an “on/off” switch [57]. The same
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effect would be obtained by direct implementation of
the molecular mechanism linking phosphorylation of
the S phase activator to S phase triggering that involves
its association with the Origin Recognition Complex
(ORC) at replication origins and subsequent recruitment
of other initiation factors, like the MCM proteins
[58-60].

Methods

Deterministic model for concentration changes

The dynamics are described by ordinary differential
equations (ODEs) using mass action kinetics. Cell
growth is characterized as exponential increase in
volume, and all concentration changes are dependent
on the volume changes of the respective compartment.
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Figure 8

Sensitivity analysis of the G| to S network. To test the
impact of the parameter values on the dynamic behavior

of the system, sensitivity analysis was performed by
calculating so-called time-dependent response coefficients
R = (9¢; (t)/c; (t))/(0p/p) that allow to trace the
time-dependent effect of a parameter change on a
concentration during the whole simulation period.

See Additional file | for a list of parameters.
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We explicitly consider two compartments, the nucleus
and the cytoplasm. See Barberis et al. [26] for a detail
description.

Estimation of parameter values and rate constants

The model comprises 98 rate constants, shown in
Additional file 2. Rate constants for cell growth (k;14) as
well as the ratio between the nuclear and the cytoplasmic
volumes, were experimentally measured in the NIH3T3
murine fibroblasts. Care was taken to keep biologically
similar rate constants within the same range, unless
available data suggested otherwise. So for instance, rate
constants for E2F-dependent productions (Cdc25A, cyclin
E, E2F itself) were very similar (2; 2 and 1 (pM'*h™),
respectively). The same criteria were applied to rate
constants for production, degradation, association and
dissociation (note that to reduce the number of parameters
several association or dissociation reaction were considered
irreversible). For the cytoplasmic/nuclear transport, the rate
of nudlear transport of ternary cyclin/Cdk/Cki complex was
set to be 5-fold that of the corresponding binary complexes
(see text for details). Choice of parameters was also
constrained by fitting to the experimental data.

Sensitivity analysis

Sensitivity analysis was performed to test the influence of
the parameter choice on the systems dynamics. To this
end, we calculated the time-dependent response coeffi-
cients [61] defined as

R = (dq (t)/q (1))/(9p/p). These coefficients indicate the
direction and amount of change of the time course for the
concentration c(t) upon an infinitesimal change of the
parameter (or initial concentration) p. Loosely spoken, one
can also interpret this as the percentage change of the
concentration over time upon a 1% change of the
parameter. During model development, the response
coefficients were used to indicate appropriate parameter
changes, since there are not enough data available to
estimate the parameters by a global approach.

Cell culture

Mouse embryonic fibroblast NIH3T3 cells (CRL-1658;
American Type Culture Collection)[59], were routinely
grown and maintained in culture as previously described
[62].

Cell synchronization
Cell synchronization was performed as previously
described [62].

In order to identify the restriction point in our cellular
model of murine fibroblasts NIH3T3, the cells were
synchronized as previously described, then stimulated
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with serum for variable times at which the cells were re-
starved and cultured until 15 hours post-release in the
presence of BrdU. The percentage of the cells able to
enter in S phase, following the re-starvation, was scored
by flow cytometry as described below. As control of entry
in S phase, we used the cells released in a complete
medium plus BrdU and analyzed at 15 hours post-
stimulation.

Flow cytometric analysis
The distribution of cells at specific cell cycle phases was
evaluated by flow cytometry as previously [62].

Immunofluorescence microscopy

Immunofluorescence microscopy analysis of protein
localization was performed using methods previously
described [63].

Immunoblot analysis
Western blot analysis for identification of protein expres-
sion was performed as previously described [62,64].

Appendix

Data mining to determine the wiring diagram of

the Gy/G, to S transition

The interaction pattern of the model components
involved in the G, to S transition process was performed
through a literature and web-based data-mining. This
process required an extensive literature searching using
electronic resources, such as PubMed from NCBI and,
furthermore, a wide web-based search was necessary in
order to identify the main protein-protein interaction
involved in the processes. This step implied the browsing
of many different bioinformatics databases, such as
protein-protein interactions resources (BIND [65], Mint
[66], IntAct [67]), cell cycle specific database (Cell Cycle
Database [68]) and pathway resources such as the Kegg
Pathway and Reactome data-bases [69,70]. When the
model components and their interaction have been
identified, a wiring diagram of the G, to S transition has
been drawn using CellDesigner [27-29], a structured
diagram editor for drawing gene-regulatory and bio-
chemical networks that are stored using the Systems
Biology Markup Language (SBML).

Function and regulation of cyclin D, Cdk4/6 and Ckis

Three cyclin D isoforms (D1, D2, and D3), with similar
functions during the G, phase of the cell cycle have been
described [71]. Cyclin D1 is a key sensor and integrator
of extracellular signals from early to mid-G; phase [72]
that acts primarily through its ability to turn on specific
Cdks required in the G, phase [73,74], cyclin D being
mainly found in complex with Cdk4,6 proteins
[71,74,75]. Growth factors and hormones, in a cell
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type specific manner, regulate the expression of cyclin
D1 [71,74-76]. Cyclin Ds levels are low in quiescent cells
and rise progressively during early G; phase in response
to stimulation by growth factors [77]. To simplify the
model implementation we assume the presence of a
generic “modifier” able to regulate cyclin D synthesis in
response to mitogenic stimulation. Cdk4,6 proteins,
whose level in quiescent cells is sizeable, are present in
non-limiting amount following growth factors stimula-
tion [72,74].

The cyclin D/Cdk4,6 complexes play key roles in
regulating G, to S phase transition through at least two
different mechanisms: phosphorylation of specific sub-
strates required for the G; to S transition [77] and
sequestration of p21“'P!/p27X"P! inhibitors from cyclin
E-Cdk2 complexes to avoid premature S phase activation
[77]. Kinase activity of cyclin D/Cdk4,6 complexes,
increases from mid-G; and reaching a maximum in
close proximity to the G; to S boundary [74,78], the
major substrate being Rb proteins in complex with the
transcription factor E2F [79,80].

Interaction of Ckis with cyclin D/Cdks in the execution of
the Go/G; to S progression with the Cdk inhibitors (Cki),
p21°P! and p27XP! [54] also promotes stabilization and
activity of cyclin D/Cdks complexes themselves. The levels
of the two Ckis are quite different in quiescent cells:
expression of p27¥iP! is high in quiescent cells, since the
synthesis and the stability of p27""P! is inhibited by
mitogenic signals [81], while the expression of p21“P! is
lower than p27%P! in quiescent cells and frequently
increases during G; phase progression in response to
mitogenic signals [82,83]. Hence both inhibitors, albeit at
low level, are present along the G,/G; to S transition. Data
obtained in MEF cells lacking p21“*' and/or p27*P!
genes, have clearly shown that both proteins promote
processes that positively regulate cell cycle progression,
such as cyclin D assembly with Cdk4, stability and nuclear
localization [38]. Finally, it has been shown that cyclin D/
Cdk activity is required for re-entry of resting cells into the
cell cycle and cannot be fully compensated by cyclin E/Cdk
activity in p21/p27-null MEFs.

Regulation of E2F transcription factor activity

The major role of the G; cyclin D/Cdk4,6 and cyclin E/
Cdk2 complexes in controlling G, to S phase progression
is the inactivation of Rb that loosens its inhibitory
interaction with transcription factor E2F. Several genes
encoding proteins that are essential for cell proliferation,
including genes encoding as the cyclins E and A, proteins
essential for DNA replication, such as DNA polymerase,
thymidine kinase, dihydrofolate reductase, and histone
H2A, as well as E2F itself, are controlled at least in part
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by E2F-responsive promoters. In quiescent cells (Gg
phase) Rb is unphosphorylated [84,85] while serum
promotes its phosphorylation. In the wiring diagram
that we have constructed and in keeping with literature
data, Rb phosphorylation occurs in two sequential steps:
the first step consists in the phosphorylation of Rb from
the active cyclin D1/Cdk4,6/Cki complex [80], which
leads to a so-called hypo-phosphorylated Rb, i.e. a Rb
form that has been shown in vivo to be phosphorylated
on 13 of 16 potential Cdk phosphorylation sites,
suggesting that it may consist of multiple phosphoiso-
forms [86]. Hypophosphorylation of Rb in early G,
stimulates the release of histone deacetylase 1 and the
recruitment of transcription factors of the SWI/SNF
family to the Rb-containing chromatin remodeling
complexes, thus allowing the expression of cyclin E.
The second step takes place in late G; and during the S
phase. It is catalyzed by cyclin E/Cdk2 complexes (and
later by cyclin A/Cdk2 complexes, not included in our
model) [87-89]. It originates the so-called hyper-phos-
phorylated Rb that looses even more affinity for - and
therefore fails to inhibit the transcriptional activation
activity of — E2F. When freed from Rb, E2F activates
transcription of genes encoding cyclin E and Cdk2,
thereby promoting synthesis of their encoded proteins.
Similarly, E2F promotes the synthesis of Cdc25A and
Cdc6, which have the role of activating the cyclin E/Cdk2
complex and promoting the onset of DNA replication
respectively [90-93] as well as of E2F itself [49].

Cyclin/Cdk complexes localization during

Gy/G, to S transition

An important determinant for the G; to S transition, is the
localization of the two cyclin/Cdks complexes. Because
neither cyclin D1 nor Cdk4 has a recognizable nuclear
localization sequence, the mechanisms governing cyclin
D1 nuclear import remain undefined. Some authors
suggested that nuclear export of cyclin D1 is a major
determinant of cyclin D1/Cdk4 localization [94]. Indeed
phosphorylation of cyclin D1 at a single threonine residue,
Thr-286, by GSK-3 facilitates the binding of cyclin D1 with
the nuclear exportin, CRM1, and thereby promotes cyclin
D1 nuclear export [94]. This process can be inhibited by
p21P!, that interacting with cyclin D1, abolishes cyclin
D1-CRM1 association inducing cyclin D1 nuclear accumu-
lation [94]. Unlike cyclin D1, both p21“P! and p27"P!
contain canonical nuclear localization signal motifs
[36,95] and can promote the nuclear accumulation of
cyclin D1/Cdk4 complexes in transient transfection experi-
ments [38,39,96]. However, although p21“"P! can facilitate
the nuclear accumulation of cyclin D1, the loss of both
p219P1 and p27""P! does not abolish cyclin D1 nuclear
import [38], thus, neither p21“'P* nor p27XP! are strictly
required for cyclin D1 nuclear import. The finding that
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both p21“"P! and p27""! are components of active cyclin/
Cdk complexes [39,97,98], that p21“"P' can promote the
assembly of cyclin D/Cdk4 complexes in vitro [39] and that
p21°P and p27"P! can be involved as nuclear import
factors for the cyclin D1/Cdk4 complex, has rendered more
intriguing their role in cell cycle.

The first event that our model indicates to occur in the
cytoplasm is the formation of the binary complex
between cyclin D1 and Cdk4,6 proteins, immediately
followed by the formation of a ternary complex with the
binding of Ckis to the binary complex. The ternary
complex goes into the nucleus driven by the Cki Nuclear
Localization Sequence (NLS). Here, the complex is
activated by the Cdk activating kinase Cak, which
phosphorylates Cdk4,6, and the active ternary complex
is now able to phosphorylate Rb in complex with E2F,
promoting partial release of E2F leading to transcrip-
tional activation of its cognate genes. A parallel event of
ternary complex formation into the nucleus is also
considered: that is the cyclin D1/Cdk4/6 complex enters
into the nucleus without Cki and binds to the inhibitors
into the nucleus.

The second important event occurring in the cytoplasm,
several hours later the formation of the cyclin D/Cdk4,6
complex, is the formation of the cyclin E/Cdk2 binary
complex. The binary cyclin E/Cdk2 complex is able to
translocate into the nucleus thanks to the NLS of cyclin E
[99]. However, as soon as this complex is formed, Cki
binding occurs forming a ternary complex. After nuclear
translocation, the ternary complex dissociates releasing
the Cki, and the cyclin E/Cdk2 binary complex is
sequentially phosphorylated by two kinases: Weel
(inhibitory) and Cak activating). Activation of the binary
complex is achieved through the action of the phospha-
tase Cdc25A that removes the Weel inhibitory phos-
phorylation. The active cyclin E/Cdk2 binary complex
promotes hyperphosphorylation of Rb, which is in
complex with E2F, in the way that E2F dissociates from
Rb promoting the DNA synthesis process.

Onset of DNA replication

DNA replication is a regulated process strictly coupled to
the progression of the cell cycle, the initiation of DNA
replication occurring at discrete chromosomal replica-
tion origins. Many proteins are involved in the initiation
of DNA replication. In our model, we consider that a
nuclear S phase activator is phosphorylated in a cell
cycle-dependent manner by the active cyclin E/Cdk2
binary complex. Phosphorylation of the S phase acti-
vator is the final event included in our network and
initiation of DNA replication taken to be proportional to
its build-up.
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