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Abstract

Background: The design of mutants in protein functional regions, such as the ligand binding sites,
is a powerful approach to recognize the determinants of specific protein activities in cellular
pathways. For an exhaustive analysis of selected positions of protein structure large scale
mutagenesis techniques are often employed, with laborious and time consuming experimental set-
up. ‘In silico’ mutagenesis and screening simulation represents a valid alternative to laboratory
methods to drive the ‘in vivo’ testing toward more focused objectives.

Results: We present here a high performance computational procedure for large-scale mutant
modelling and subsequent evaluation of the effect on ligand binding affinity. The mutagenesis
was performed with a ‘saturation’ approach, where all 20 natural amino acids were tested in
positions involved in ligand binding sites. Each modelled mutant was subjected to molecular
docking simulation and stability evaluation. The simulated protein-ligand complexes were
screened for their impairment of binding ability based on change of calculated Ki compared to
the wild-type.

An example of application to the Endothelial Protein C Receptor residues involved in lipid binding is
reported.

Conclusion: The computational pipeline presented in this work is a useful tool for the design of
structurally stable mutants with altered affinity for ligand binding, considerably reducing the
number of mutants to be experimentally tested. The saturation mutagenesis procedure does not
require previous knowledge of functional role of the residues involved and allows extensive
exploration of all possible substitutions and their pairwise combinations. Mutants are screened by
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docking simulation and stability evaluation followed by a rationally driven selection of those
presenting the required characteristics. The method can be employed in molecular recognition
studies and as a preliminary approach to select models for experimental testing.

Background
Structure-based site-directed mutagenesis is a widely used
approach to elucidate and modify specific aspects of
protein function and to investigate the properties of
protein-ligand interactions. Prediction of mutants with
desirable properties is often obtained by rational design of
a few specific position in the region of interest. This
approach requires an in-depth knowledge of physicochem-
ical, structural and functional properties of the protein,
which may not be exhaustively provided by X-ray crystal-
lography data. A different strategy is to apply the so-called
scanning mutagenesis based on the systematic replacement
of all residues involved in a specific function. Several
examples of alanine scanning mutagenesis experiments [1]
are reported in literature that illustrate its relevance for the
study of molecular determinants of ligand binding [2] and
protein function [3]. Even more informative is the use of
the saturation mutagenesis, where all 20 natural amino
acids are tested in place of the wild type residue, in or near
the functional site. ‘In vitro’ scanning saturation mutagen-
esis has been applied to several case studies and has
proved to be useful to modulate protein properties such as
substrate enzyme specificity [4] or to identify key residues
for catalytic mechanisms [5].

A particular aspect that is amenable to investigation with
random mutagenesis is the study of protein-ligand
interaction. Several examples are reported in literature
that show how this approach has contributed to the
clarification of ligand interaction in G protein coupled
receptors [6,7], in nuclear receptors [8,9] and in EphA3/
ephrin-A5 [10], to cite a few examples.

However, the large number of mutants that are obtained
from the systematic replacement of all the residues of a
functional site makes the experimental procedure laborious
and time consuming. This is especially true when dealing
with large functional sites, because it requires the
implementation of specific high-throughput methods for
mutant screening or selection [11]. ‘In silico’ simulation of
mutagenesis and screening may represent a possible way
around this problem. By exploiting the capabilities of high
performance computers, it is possible to design and test a
large numbers of variants with altered properties in order
to restrict the number of models that are worth testing
experimentally. Computational protein design methods
have been employed in protein engineering to increase
enzymes efficiency [12] or antibiotic resistance: for
example Hayes et al. [13] applied a protein optimization

strategy to increase the resistance of bacteria toward the
antibiotic cefotaxime by optimizing TEM-1 b-lactamase.
Moreover, computational design tools have been devel-
oped and have proved to be successful in the design of
proteins with enhanced stability and specificity, and in
engineering novel protein functions [14].

We present here a high performance semi-automated
computational procedure suited to the study of key
residues of protein-ligand interactions, which is able to
dissect the contribution of different residues to ligand
binding. The procedure performs a saturation mutagenesis
of all residues involved in ligand binding, and the
subsequent evaluation of the effect of amino acid
substitutions on ligand affinity by docking simulation
and on protein structure stability. An example of applica-
tion to Endothelial Protein C Receptor is reported.

Methods
Pipeline implementation
A semi automated pipeline was designed to manage
mutant modelling, docking simulations and data analy-
sis procedures by integrating public software through a
number of in-house developed Perl scripts.

Mutant modelling
’In silico’ side chain replacement and modelling were
carried out with the routine ‘mutate_model’ of MOD-
ELLER 9v3 [15]. ‘Mutate_model’ introduces a single
point mutation in a user-specified residue and optimizes
the mutant side chain conformation by conjugated
gradient and by molecular dynamics simulation.

Docking
AutoDock4.0 [16,17] was used for docking simulation
handling both ligand and mutated side chain as flexible.
AutoDockTools (ADT) (http://autodock.scripps.edu/
resources/adt) facility supported the protein and ligand
set up for docking. The automatic procedure, based on a
Perl script, employs the following ADT routines:

– ‘prepare_receptor4’ to add polar hydrogens, assign
Kollman charges and convert the protein PDB file in
pdbqt (the input file for AutoDock4);

– ‘prepare_flexdocking’ and ‘prepare_flexreceptor’ are
applied to protein and ligand to obtain the input files for
flexible docking simulation;
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– ‘prepare_gpf’ and ‘prepare_dpf’ generate the para-
meters file for AutoGrid (gpf) and for AutoDock (dpf),
respectively.

Docking simulations were performed with Lamarkian
Genetic Algorithm which is reported as the most efficient
and reliable method of AutoDock [16].

Stability evaluation
The ‘stability’ routine of FoldX algorithm [18] was
applied to evaluate the total energy of wild type structure
and mutated models by the estimation of the interac-
tions that contribute to the protein stability.

Computational resource
Docking simulations were performed on a shared Linux
cluster of 280Opteron AMDcores 275 at 2,2GHz, provided
by the Eurotech Group (Amaro, UD, Italy), dedicated to
bioinformatics applications. The system is composed of
10 chassis of 6 diskless blades, each equipped with an
Infiniband 4× network card and 8 GB of RAM. The cluster
nodes are accessed through the OpenPBS queuing system.

Case study
Protein structure and preparation
The crystal structure of the Endothelial protein C receptor
(PDB: 1LQV), in a complex with phosphatidylethanola-
mine (PTY), and the Gla domain of protein C solved by
X-ray crystallography at 1.6 Å [19] was retrieved from the
Protein Data Bank [20]. Chain A with the corresponding
ligand (PTY) molecule was used for this study. The Gla
domain, crystallization water, Ca ions, N-acetyl-D-glucosa-
mine (NAG) and 2-(acelytamino)-2-deoxi-A-D-glucopyra-
nose (NDG) were removed from PDB file. Polar hydrogens
were added at 7.4 pH, using InsightII (Accelrys, San Diego).

Docking simulation
The ADT graphics interface was employed for manual
preparation of the ligand to assign the flexibility, add
polar hydrogens and load Gasteiger charges. 22 rotatable
bonds were assigned to the PTY ligand.

A grid box of dimensions 76 Å × 60 Å × 92 Å was
constructed around the binding site, based on the co-
crystallized ligand. Ligand flexible docking simulations
were performed with 100 runs and 2500000 energy
evaluations per run, while the other parameters were set
to the default.

Results
Pipeline description
The complete scheme of the computational procedure used
in this work is depicted in Figure 1. A preliminary step is
performed using LIGPLOT [21] to identify the residues

involved in ligand interactions. The pipeline has a modular
structure to improve its adaptability to different datasets.
The backbone of the pipeline is a MySQL database where
the results of each computational step are stored (blue
arrows in Figure 1). The pipeline is structured in two main
stages devoted to the modelling and analysis of single and
double mutants respectively (blue and violet boxes).

The first stage begins by single mutant modelling starting
from the receptor atomic coordinates and the list of
residues identified in the preliminary step. This first step
makes use of the MODELLER routine ‘mutate_model’ that
performs the side chain substitution and refinement. A Perl
script is used to iterate the substitution of each residue with
all the amino acids to achieve the saturation mutagenesis.
For each mutant, a PDB file is obtained and stored in the
database.

In the following step, the pipeline prepares the input files
for AutoGrid and AutoDock4.0 according to user specified
parameters: PDB files are converted to PDBQT format,
adding polar hydrogens and assigning Kollman charges.
Substituted residues are set for flexible docking. The ligand
is manually prepared as illustrated in the Methods section
and given as input to the pipeline. In the next step,

Figure 1
Schematic diagram of the pipeline. Blue panel
represents the first stage of the pipeline devoted to single
mutants design. Violet panel is the second stage devoted to
double mutants. Steps within the panels are automatically
executed. “Protein” and “Ligand” are the pipeline input files
and contain the corresponding atomic coordinates. “Selected
single and double mutants” are the pipeline outputs. Steps
involving public software are in green boxes. Ki (inhibition
constant) and ΔΔG (free energy difference) filters are in
purple circles. Black arrows connect different steps of the
pipeline, while blue arrows identify the intermediate outputs
collected in the database.
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AutoDock simulations are submitted to be run in parallel
on the Linux cluster. Docking results are parsed to extract,
for each simulation, the most representative conformation.
This corresponds to the best energy conformation included
in an AutoDock cluster of at least 5 elements and showing
a binding energy within one Kcal/mol compared to the first
ranked solution. This criterion is arbitrarily set in order to
obtain a solution from a well represented group of
conformations with the best scored results. However,
when these conditions are not satisfied (i.e. no populated
clusters are present in the top score), the first ranked
solution is accepted. For each selected conformation, the
corresponding values of binding energy, cluster popula-
tion, inhibition constant (Ki), root mean square deviation
(RMSD) and atomic coordinates are stored in the database.
In order to select mutants with a modified affinity for the
ligand compared to the wild type, the output data are
filtered taking the wild type Ki value as threshold.

Structural stability of selected mutants is evaluated using
the FoldX program that computes, for each conforma-
tion, an estimated free energy values. The free energy
difference between the mutant and the wild type (ΔΔG =
ΔGmutants - ΔGwild type) is automatically calculated and
stored in the database.

Pair combinations of single substitutions are analyzed in
the second stage of the pipeline (violet box in Figure 1) to
investigate the occurrence of synergistic effects in double
mutants. Residues chosen for double mutants modelling
are obtained from the results of Ki filtering in first stage
screening. A Perl script manages the residues combination,
removing the redundant pairs. The following pipeline
steps, simulations, data analysis, filtering and storage, are
performed as in the first stage.

The database is designed to collect and organize all the
output data which remain available for further study.
Specific queries can be applied in order to compare binding
capabilities and stability of all the mutants, as illustrated in
the example below.

Case study
We used the described strategy to study the ligand binding
of the Endothelial Protein C Receptor (EPCR). EPCR is a
transmembrane glycoprotein homologous to the major
histocompatibility complex (MHC) class 1/CD1 family
[22]. EPCR plays a well-characterized role in the coagula-
tion cascade being the receptor of the anticoagulant factor
Protein C (PC) and participating to its activation mechan-
ism. Being involved in protein C pathway, EPCR also takes
part in the regulation of inflammation and apoptosis in
endothelial cells [23]. Similarly to CD1 molecules, it binds
a phospholipid ligand in a deep hydrophobic groove

composed of an eight-stranded b-sheet floor and three
almost parallel a-helices that lie above the floor and form a
crevice where the lipid is located (Figure 2) [19]. The
specific role of the lipid for the protein structure and
function has not yet been clarified. Amino acid variants
located in the lipid binding region of EPCR may provide
useful information about the role of this interaction in
protein function. However, mutations that impair or
suppress the lipid binding have not been reported so far.
In this work we predicted mutants that have reduced
binding affinity for the ligand, while maintaining structural
stability.

The structure of human EPCR, co-crystallized with PTY,
exhibits a wide pattern of interactions that extend the
length of binding groove. PTY makes contacts with 27
residues: four are located on a-helix H1, two on H2 and
nine on H3, one on the loop between H1 and b-strand 5,
and eleven residues on the strands of b-sheet floor
(Figure 2). The binding is mostly dominated by hydro-
phobic interactions with the hydrocarbon chain of the
ligand; a single H-bond is established between the polar
group of phospholipid and ARG 156.

Employing the pipeline described above, we have carried
out an ‘in silico’ saturation mutagenesis of the EPCR

Figure 2
Cartoon representation of the 3D structure of EPCR-
PTY complex. PTY ligand and EPCR residues involved in
interaction, target of saturation mutagenesis, are shown in
sticks. Carbon atoms are in green for the ligand, in orange for
residues located on a-helices H1, H2 and H3, in cyan for
residues of the eight-stranded b-sheet floor and in yellow for
the loop residue. In red, the H-bond between Arg156 and
the polar group of PTY. Figure is drawn with Pymol (DeLano
Scientific, San Carlos, CA, USA).
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residues involved in lipid binding. Each modelled
mutant was subjected to molecular docking simulation
and stability evaluation. The protein-ligand complexes
obtained by docking simulations were screened by their
inhibition constant (Ki) values in order to estimate the
impairment of ligand binding ability induced by the
mutation. The overall procedure and a summary of
the results are depicted in Figure 3. The 27 interacting
residues, identified using LIGPLOT, were saturated with
the 19 remaining amino acids, producing 513 mutant
models. Then, wild type and mutants were analysed by
docking simulations. The wild type re-docking correctly
reproduced the X-ray ligand conformation with a RMSD
of 1.2 Å, a binding energy of -12.46 Kcal/mol and a Ki
value of 1 nM. Positions and substitutions critical for
binding affinity were identified with a Ki-based filter.
Referring to the wild type Ki value, we used a threshold
of 1 μM (i.e. 3 order of magnitude higher than wild type)

to discriminate between mutants with probable impaired
binding ability. The pipeline selected 43 mutants with Ki
value higher than the threshold, substituted in 16 out of
the 27 starting positions. Pair combinations of the
43 substitutions were generated and 797 double mutants
were modelled. They were analyzed by the same docking
protocol of the single mutants and filtered with a Ki
threshold of 10 μM. This value was set an order of
magnitude higher than for single mutants, with the
purpose of selecting those combinations with a binding
ability worse than the single ones. With this filtering
criterion, 212 double mutants were rescued. The large
reduction in the number of double mutants (from 797 to
212), suggested that most residue combinations did not
cooperate to increase the Ki value compared to the single
substitutions.

The structural stability of single and double variants
that passed the corresponding Ki thresholds was
evaluated using the FoldX tool, directly integrated in
the pipeline. Mutants ensuing a ΔΔG value higher than
2 kcal/mol were considered structurally unstable and
removed from the selection [24]. After the screening, the
pipeline retrieved 12 single and 17 double mutants with
a ΔΔG < 2 Kcal/mol. Binding energy and Ki values
intervals are reported in Figure 3. The stability filter was
passed only by mutants with a Ki value within 10 and
100 μM for single and double, respectively. This value
was an order of magnitude higher than the respective
Ki thresholds. Mutants with high Ki values, although
potential candidates for binding affinity studies,
were rejected by the ΔΔG filter and thus considered
unstable.

At the end of this analysis, 6 key positions for the
ligand binding in EPCR were identified (Figure 4):
position 69 and 72 are localized in the H1 a-helix,
positions 156, 164 and 168 are localized in H3 a-helix
and one, the position 31 on the eight-stranded b-sheet
floor. The most represented substitutions of these key
positions involved hydrophobic residues, such as
W, in positions 31, 69 and 156, and L, in positions
31 and 164.

Pair combinations in double mutants were evaluated in
terms of synergistic effect where the Ki value of double
mutant was larger than the sum of the corresponding
single ones. To estimate the synergistic effect, we applied
the following equation:

Ki Ki Ki Kid = − ++1 2 1 2( ) (1)

where Ki1 and Ki2 represent the Ki value of the first and
the second single mutant, and Ki1+2 the Ki value of
double mutant. Kid is the difference between the effect of

Figure 3
Summary of results for the case study. Eb (binding
energy) and Ki (inhibition constant) values obtained by
docking simulation of the wild type EPCR with PTY are
reported. For each step of the analysis (blue and violet
boxes), the number of mutants and the corresponding Eb
and Ki ranges are represented. Ki and ΔΔG (free energy
difference) filters used for mutant screening are also
indicated. The analysis starts with the mutagenesis of
27 residues that yields a total of 1310 (513 single and
797 double) mutants. At the end of the screening, the
number is reduced to 12 single and 17 double mutants.
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the double mutation (Ki1+2) and the sum of the two
corresponding single mutations (Ki1+Ki2). Results are
shown in Figure 5. We found that 8 of the 17 double
mutants displayed a partial additive effect as the Ki value
was included between the more damaging mutation and
the sum of the two corresponding single mutants (Ki1 <
Ki1+2 < Ki1+Ki2) (on the left of the black vertical line, in
Figure 5) [25]. The remaining 9 double mutants had Ki
values higher than the sum of the two corresponding
single mutants (Ki1+2> Ki1+Ki2), to which we assigned a
synergistic effect compared to the single mutation
(on the right of the black vertical line, in Figure 5). We
observed that the highest Ki values were associated with
double mutants resulting from replacement of A31 with
either I or L and F164 with a small polar/apolar side
chain. Between them, the highest synergistic effect was
shown by A31I/F164S mutant (Kid = 49), while the
largest effect in terms of binding energy (-5.58 Kcal/mol)
and Ki (82 μM) value was associated to A31I/F164N
mutant.

In conclusion, using the described approach, we have
selected a limited number of single and double mutants
of EPCR for which we predict a reduced binding ability
for the PTY ligand and a structural stability comparable

to the wild type. The set of 12 selected single mutants
and the 9 double mutants presenting synergistic proper-
ties can be proposed as rationally constructed candi-
dates for experimental testing in cellular models.

Pipeline performance
Due to the computational load needed to accomplish all
the simulations, a parallel infrastructure was employed
(see Methods). In this test case, the simulation of the
single and double mutant took on average 12 and 15
hours, respectively. The whole challenge consisted of 513
docking experiments for the single mutants plus the wild
type simulation and 797 for the double mutants.
Depending on the resource availability, it was possible
to employ 80 CPUs on average. Therefore, in a period of
about ten days we collected all the results covering about
2 years of computer activity.

Conclusion
We present a high performance semi-automated computa-
tional pipeline that integrates modelling and docking
simulation algorithms for large scale mutant design.
Additional analysis tools such as structure stability evalua-
tion are also included. The pipeline is organized into two
main blocks for dealing with single and double mutants
that are interconnected so that selected results of first
analysis are used for the second part of the study. The
procedure is presently devoted to protein-ligand interac-
tion studies, but can be adapted to investigations of
protein-protein interaction. The mutagenesis method is
based on a saturation approach and does not require
previous knowledge of functional or structural role of
involved residues: it can therefore be applied to explore
new binding features. The implementation of the pipeline
on a parallel computer infrastructure permits a greatly
reduced computational time and makes it possible to test a
very large number of mutants. For example, in the reported
text case we have modelled and tested 1310 variants of
EPCR with the purpose of identifying single or coupled
amino acid mutations that significantly impair the binding
of the lipid ligand. The whole procedure reduced the
number of selected models to 21, which corresponds to
about 2% of the initial dataset. Selected variants provide
information about the probable functional and structural
effect of the mutated residues and can be proposed as
subjects for experimental tests. In addition, the large
amount of data stored in the database after each step of
computational analysis can be further retrieved for more
detailed examination and study. This pipeline can be
useful for protein-ligand binding studies to identify key
residues for the ligand interaction, to evaluate the effect of
the substitutions on different ligands and to design
selective mutants.

Figure 4
Key positions replaced in mutants with impaired
ligand binding. Wild type EPCR residues are represented
as colored spots corresponding to the Ca position. L69 (in
green) was found substituted only in single mutants. Residues
substituted in both single and double mutants are in yellow,
while those observed in double mutants only are in red. PTY
ligand is represented in sticks. Figure is drawn with Pymol
(DeLano Scientific, San Carlos, CA, USA).
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