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Abstract

Background: The genetic factors leading to hypertension have been extensively studied, and
large numbers of research papers have been published on the subject. One of hypertension
researchers’ primary research tasks is to locate key hypertension-related genes in abstracts.
However, gathering such information with existing tools is not easy: (1) Searching for articles often
returns far too many hits to browse through. (2) The search results do not highlight the
hypertension-related genes discovered in the abstract. (3) Even though some text mining services
mark up gene names in the abstract, the key genes investigated in a paper are still not distinguished
from other genes. To facilitate the information gathering process for hypertension researchers, one
solution would be to extract the key hypertension-related genes in each abstract. Three major
tasks are involved in the construction of this system: (1) gene and hypertension named entity
recognition, (2) section categorization, and (3) gene-hypertension relation extraction.

Results: We first compare the retrieval performance achieved by individually adding template
features and position features to the baseline system. Then, the combination of both is examined.
We found that using position features can almost double the original AUC score (0.8140vs.0.4936)
of the baseline system. However, adding template features only results in marginal improvement
(0.0197). Including both improves AUC to 0.8184, indicating that these two sets of features are
complementary, and do not have overlapping effects. We then examine the performance in a
different domain—diabetes, and the result shows a satisfactory AUC of 0.83.

Page 1 of 11

(page number not for citation purposes)


mailto:thtsai@saturn.yzu.edu.tw
mailto:s951416@mail.yzu.edu.tw
mailto:hongjie@iis.sinica.edu.tw
mailto:sinyuhgs@iis.sinica.edu.tw
mailto:bow@iis.sinica.edu.tw
mailto:r95442023@ntu.edu.tw
mailto:pan@ibms.sinica.edu.tw
mailto:hsu@iis.sinica.edu.tw
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10(Suppl 15):S9

http://www.biomedcentral.com/1471-2105/10/S15/S9

Conclusion: Our approach successfully exploits template features to recognize true hyperten-
sion-related gene mentions and position features to distinguish key genes from other related genes.
Templates are automatically generated and checked by biologists to minimize labor costs. Our
approach integrates the advantages of machine learning models and pattern matching. To the best
of our knowledge, this the first systematic study of extracting hypertension-related genes and the
first attempt to create a hypertension-gene relation corpus based on the GAD database.
Furthermore, our paper proposes and tests novel features for extracting key hypertension genes,
such as relative position, section, and template features, which could also be applied to key-gene

extraction for other diseases.

Background

The genetic factors leading to hypertension have been
extensively studied, and large numbers of research
papers have been published on the subject. Today,
many hypertension researchers use PubMed to find and
sort through papers of their interest, one of their primary
research goals being to locate potentially hypertension-
related genes. However, gathering such information with
existing tools is not easy. For example, searching
PubMed for hypertension-related articles often returns
far too many hits to browse through. Second, the
PubMed search results do not highlight the hyperten-
sion-related genes discovered in the abstract. Although
there are text mining services that provide named entity
recognition and mark up the gene names in an abstract,
these systems do not distinguish the key genes that are
the focus of research in the paper from other related
genes that are merely mentioned.

To speed up and facilitate the information gathering
process for hypertension researchers, one solution would
be to list the key hypertension-related genes in each
abstract alongside the abstract. In this paper, we
construct a Hypertension key gene extraction system
(HypertenGene) that adds the above functionality to
PubMed via metasearch. Three key tasks need to be
performed for support this system to work: (1) section
categorization; (2) named entity (gene and hypertension
names) recognition; (3) gene-hypertension relation
extraction and ranking system.

Related work

Section categorization is an important task for key gene
extraction because the key hypertension-genes investi-
gated in a paper tend to be mentioned in the results and
conclusions sections. Other parts of the abstract, such as
the introduction or background, may contain mentions
of hypertension-related genes that nonetheless are not
actually experimented upon in the paper.

Several approaches have been proposed in recent years.
In 2003, Shimbo et al. [1] reported 91.9% accuracy using

a support vector machine (SVM) model to classify
sentences represented by bigrams and contextual infor-
mation. Two years later, Yamamoto et al. [2] developed
an SVM-based approach with various novel features,
including subject-verb, verb tense, relative sentence
location, and sentence score (i.e., the average TF-IDF
(term frequency-inverse document frequency) score of
words in a sentence) features. Their method achieved
F-measures of 87.2% and 89.8% for the results and
conclusion sections, respectively. Recently, Ruch et al. [3]
used a Bayesian classifier with word and position
features, which achieved an F-score of 85% in identifying
the conclusion section of abstracts.

The above approaches explore several effective features
for section categorization. However, they all share one
potential weakness: they use a binary classifier to
determine piece by piece which section each sentence
belongs to without directly considering the labels of the
sentence’s neighbors in the whole abstract. This means
that they sometimes misclassify non-contiguous sen-
tences from the beginning, middle and end of an abstract
into the same section. Though some types of post-
processing can help catch these types of errors, the
original model will still be flawed. The conditional
random fields model labels the whole abstract at one
time. That is, it assigns a tag sequence to a token
sequence globally, not locally, which tackles the
problems caused by token-by-token labeling. Several
published papers have demonstrated that the CRF model
generally achieves the best performance in the sequence
labeling task [4]. Therefore, we have adopted the CRF
model as the underlying machine learning model for the
section categorization task.

Relation Extraction (RE) is the task of finding associa-
tions between entities within a given piece of text—
sentence, paragraph, or entire document. The most
popular approaches for relation extraction are rule-
based [5], co-occurrence-based [6] and kernel-based
[7]- In the biomedical field, most of the work in RE
has been in identifying relations between proteins
[6,8-12] identified relations between proteins and
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sub-cellular locations, and [13] extracted relations
among cancer-related genes, drugs and cell-lines. Less
work has been done on extracting relations among genes
and diseases [14,15]; however, this area is now attracting
increasing attention.

Some gene-disease relation extraction systems focus on
the extraction of general gene-disease associations
[13,16,17]. Other systems focus on discovering genes
related to a specific disease only. For example, Tsujii
et al.’s [18] maximum-entropy-based classifier extracted
genes related to prostate cancer and gastric cancer. As a
rule, general purpose systems are more portable, while
disease-specific systems are able to exploit domain
knowledge more thoroughly and thus achieve higher
precision.

Granularity of relations is another aspect of relation
extraction being explored. Some studies have attempted
to extract and characterize the type of relation between
entities [11,14]. Tsujii et al. [15] classifies gene-disease
relations into two types: “etiology” and “clinical marker”.
Bundschus et al. [17] classified relations between genes
and diseases into five types describing a wide variety of
molecular conditions, ranging from genetic to transcrip-
tional and phosphorylation events.

Methods

In this section, we first introduce our system’s two main
components: named entity recognizers and section
categorizer. Then, we illustrate the approach used in
our main system: key hypertension gene extraction.

Named Entity Recognizer

Our system extracts two NE types: gene and hypertension
entities. Since gene named entities have many variations
(e.g. Interleukin-2 can be written as “IL-2", “il-2”, etc.),
both internal and external contextual features should be
exploited [19]. Machine learning-based approaches
employ such features; therefore, we developed our gene
NE recognizer based on our previous work-NERBio [20],
a machine-learning-based NER system. In NERBio, the
NER problem is formulated as a word-by-word sequence
labeling task, where the assigned tags delimit the
boundaries of any gene names. The underlying machine
learning (ML) model used by NERBio is the conditional
random fields model (CRF) [21], with a set of features
selected by a sequential forward search algorithm. Unlike
gene named entities, hypertension named entities do not
have so many variations. We compiled a hypertension
named entity dictionary by querying the MeSH term
database with “hypertension”. The database returned
names of all diseases related to hypertension such as
“high blood pressure”, “gestational hypertension”, and
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their synonyms. The maximum matching algorithm is
employed to identify hypertension named entities in
each given sentence. In addition, we also collect
abbreviations of hypertension named entities (H') by
matching the template H (H’) with all abstracts in the
gene association database (GAD), where H is any
hypertension named entity in our dictionary.

Section categorizer

The function of this component is to divide a given abstract
into section paragraphs. Figure 1 shows the flowchart of the
section categorizer. For a given abstract, if the pre-sectioned
check finds that the abstract contains obvious section
tags, such as “Objective”, and “Conclusion”, the abstract is
immediately divided into paragraphs. The pre-sectioned
check uses a list of tag keywords collected by Hirohata et al.
[22] to determine whether the abstract is pre-divided. The
list keeps increasing every time our biologists or users
submit new tags. If the check cannot find any obvious tags,
a ML model is employed to section the given abstract.

For the section categorization problem, we regard each
sentence in an abstract as a token. Each token is
associated with a boundary tag, that is the beginning

Abstract »| NE tagger

Y
NEs

Iisl_/

Pre-sectioned
check

Y

Feature
generator

i

HTML
generator

re-sectioned? o ——m»{ ML model

Yes——p»

Formatted
abstract with
NE information

Figure 1
Section categorizer flowchart.
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(B), inside (I) or outside (O) of a section, as well as a
category tag, ¢, that indicates the category of the section.
For example, in B-¢, I-c, B- and, I- denote the first token
and the subsequent token of a section in category c.
Therefore, the problem can be formulated as the
problem of assigning tags to each token. The underlying
ML model is CRF. We describe three features of our
model here. Other useful features for the section
categorization problem can be found in our previous
work [23].

The first is the ‘tense feature’. Weissberg and Buker [24]
suggested that an abstract has five important sections,
“Background information”, “Principal activity”, “Method-
logy”, “Results” and “Conclusion”, which are often written in
specific tenses. For example, the Results section is usually in
past tense. We use ten part-of-speech (POS) patterns
proposed in [23] to determine the tense of a given sentence.
The second feature is the ‘informative word feature’, which
determines the likelihood that certain words will appear in
certain sections—for example “investigate” in the Objectives
section, or “conclude” in the conclusion. The last feature is the
‘title NE feature’. Since an abstract’s title can be treated as a
summary of the abstract, and NEs in the title often appear in
the Results section, we can use co-occurrence frequency of
NEs in the title and in a given sentence to identify the Results
section.

Since there are no publicly available section categori-
zation corpora, we constructed a corpus using the
following procedure. Firstly, we compiled dozens of
likely section headings from [22] into a list. Secondly,
we searched PubMed using the keywords queries
“hypertension” and “hypertension and (gene or
DNA or RNA)” and compiled the approximately
thirteen thousand results into a corpus after filtering
out un-sectioned abstracts. Thirdly, we designed and
implemented a program to remove section tags from
the corpus abstracts. Finally, our in-lab biologists
manually checked section boundaries in the collected
abstracts.

To evaluate the performance of our section categorizer,
we applied three-fold cross-validation using this
corpus. Table 1 shows the evaluation results. As you
can see, the categorizer achieves a satisfactory F-score
of 98.82% with a precision of 98.77% and a recall of
98.87%.

Key hypertension related gene extraction

First, we briefly introduce the machine-learning model
and baseline features used in our system. Then we
explain our proposed features, which we discuss in the
Results and Discussion sections, in more detail.

http://www.biomedcentral.com/1471-2105/10/S15/S9

Table I: Section categorization performance

Section Type P (%) R (%) F (%)
Objective 98.50 99.37 98.93
Method 98.54 97.74 98.14
Results 98.69 99.22 98.96
Conclusion 99.76 98.76 99.25
ALL 98.77 98.87 98.82

Formulation

For convenience, when referring to hypertension-gene
pairs in the following explanations, we denote the
hypertension named entity as H, the gene named entity
as G, and the sentence containing the H-G pair as S. In
this paper, our goal is to extract H-G relations from
sentences in an abstract and rank them according to the
degree of hypertension relatedness. We formulate the
first subtask as a binary classification problem: deter-
mining if the target H-G pair is a key relation. All features
of a target H-G pair are extracted from S. We then rank
all extracted genes according their maximum H-G
probability in an abstract as calculated by the classifier.

Maximum Entropy Model

The maximum entropy (ME) model is a flexible
statistical framework that assigns an outcome to each
instance on the basis of the history of that instance,
which is made up of all the conditioning data that
enable one to assign probabilities to the space of all
outcomes. In H-G relation extraction, a history can be
viewed as all the information related to the target pair
that is derivable from the training corpus. ME computes
the probability, p(y|x), for any y from the space of all
possible outcomes, Y, and for every x from the space of
all possible histories, X.

The computation of p(y|x) in an ME model depends on a
set of binary features, which are useful for making
predictions about the outcome. For instance, a pair that
contains “associated with” between H and G is very
likely to be hypertension related. Formally, we can
represent this feature as follows:

1: if Inter-HG_n-grams_associated(x) = true

f(x,y) = and y = KeyRelation

0: otherwise

Here, “Inter-HG_n-grams_associated(x)” is a binary
function that returns a true value if the current sentence
in the history, x, contains “associated” between H and G.
KeyRelation corresponds to the class indicating that the
H-G pair is a key relation in an abstract. Given a set of
features and a training corpus, the ME estimation process
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produces a model in which every feature f; has a weight
o;. We compute the conditional probability as follows:

__1 filxy)
PR = 0 Ha

Z(x) = ZHalf"(x’y).
y i

The probability is calculated by multiplying the weights of
the active features (i.e. those with f; (xy) = 1); and ¢ is
estimated by a procedure called Generalized Iterative
Scaling (GIS) [25]. The ME estimation technique guaran-
tees that, for every feature f;, the expected value of ¢; will
equal the empirical expectation of ¢; in the training corpus.
We use Zhang's MaxEnt toolkit and the L-BFGS [26]
method of parameter estimation for our ME model.

Baseline features

Here, we describe the features used in our baseline
model, which have all been employed extensively in
previous studies [27-29].

Basic word features
There are two sets of word features used in our system,
each with a different feature label.

1. Inter-HG n-grams

These features include all word unigrams and
bigrams located between H and G. If none is present,
the feature is given a “NULL" value.

2. Surrounding Words

These features include the two words before the first
NE and the two after the second NE. If there are no
words before or after both NEs, a “NULL” value is set.
All words are treated as bag-of-words. That is, the
order of these words is not considered.

Chunk features

Our system includes three sets of chunk features, each
given a different feature label. We must first put all
sentences through a shallow parser to capture phrase
level information before chunk feature extraction.

1. Inter-HG chunk heads

Similar to surrounding word features, these chunk
heads are treated as bag-of-words.

2. Surrounding chunk heads

These features include the two chunk heads to the left
of the H-G pair and one chunk head to the right.

3. Inter-HG chunk types

http://www.biomedcentral.com/1471-2105/10/S15/S9

Parse tree path features

We also parse each sentence with a full-sentence syntactic
parser to generate its full parse tree. We can then use the
syntactic path through the parse tree from the first NE to
the second NE (not always H to G) as a feature.

For example, in Figure 2, the path from “ACE-2 gene”
to “hypertension” is represented by the string
NP1PPTNP1S|VP|PP|NP, where 1 and | represent upward
and downward movement in the tree, respectively.

Proposed features

Template features

Although a few Inter-HG words and surrounding words
tend to appear almost exclusively to true H-G relation
pairs (e.g. “associate” for Inter-HG words), this informa-
tion alone is not sufficient for argument-type classifica-
tion for two reasons: (1) the collocation of surrounding
words and Inter-HG words is a more precise indicator of
a true H-G relation then using Inter-HG words; and (2)
the window of surrounding words is limited to 2,
making some important surrounding words are missed,
but expanding the window size may introduce more
noise words. Templates composed of unlimited sur-
rounding words and Inter-HG words can be helpful for
identifying the argument type of a constituent.

Our template generation (TG) algorithm, which extracts
syntactic patterns for H-G pairs using Smith and
Waterman’s local alignment algorithm [30], starts by
pairing all sentences containing true relations accord-
ing to their similarity. Closely-matched pairs are then
aligned word-by-word and a pattern satisfying the
alignment result is created. Each slot in the template is

NP PP

PP
V\\ o~
T Ja
NP NP
NNS IN NN NN VBP VBN IN NN
Polymorphisms of ‘ACEZ gene are ‘associatedj with hypertension
Y Y
GENE RELATION HYPERTENSION
Figure 2

Illustration of path NPTPPTNP1S|VP |PP|NP.
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given by the corresponding constraint information expressed
in the form of a word (e.g. “associated”). If two aligned
sentences have nothing in common for a given slot, the
TG algorithm puts a wildcard in the position. Figure 3
shows a pair of aligned arguments from which the TG
algorithm generated the template “<gene> * is associated
with * <hypertension>“. In the first position both sentences
share a common NE type (gene); in the 2nd to 4th positions
they have the same phrase, “is associated with"; and in the
end position they share a common NE type, hypertension.
The complete TG algorithm is described with pseudo code in
Algorithm 1. The similarity function used to compare the
similarity of two tokens in Smith and Waterman’s algorithm
is defined as:

l,x=y

Sim(x,y) = max '
() {O, otherwise

where x and y are tokens in sentences s; and s,
respectively. The similarity of two sentences is calculated
by the Smith and Waterman algorithm on the basis of
this token-level similarity function.

Algorithm 1 Template generation

Input: A set of sentences A = {sy,...,5:},

Output: A set of templates T = {ty,...,t1.}.

1:T={};

2: for each sentence s; from s; to s,.; do

3: for each sentence s; from s; to s, do

4: if the similarity of s; and s; calculated by an
alignment is above the threshold

5: then generate a common template t for s; and s;;
7: T<Tut;

8: end;

Sentencel:
-.[HMOX-1] e, s
[hypertension]
Sentence2:

...[NOS3 gene]

associated with an increased incidence of]

hypertension n women.

is associated with [hypertension]

gene hypertension

Figure 3
Example of paired similar sentences containing H-G
pairs.
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9: end;
10: return T;

Based on template matching, we develop two feature
types.

1. Positive Match

If S matches any patterns and there is no negative
word in it, this feature is enabled.
2. Negative Match

Unlike the Positive Match feature, if S matches any
patterns but there is at least one negative word, such
as “not”, “fail”, “unable”, “inability”, “neither”,

“nor”, “failure”, and etc. in it, this feature is enabled.

Position Features
1. Relative position features

Because the focused H-G pair is usually located at the
end of the abstract, the relative position of a sentence
in an abstract provides useful information. Therefore,
we define the following equation to represent the
relative position of a sentence:

. .. 10+S's position in the abstract
relative_position(S) = -
the number of sentences in the abstract
Since ME can only handle discrete feature values, we
set ten binary features corresponding to the relative
position function’s possible values ranging between
1 and 10.

2. Section features

These features indicate in which section S is located.
S’s section is calculated by the above mentioned
section categorizer. There are four section features:
Objective, Methods, Results, Conclusion.

Results and discussion

Datasets

Currently, there are no publicly available annotated
corpora for training gene-hypertension relation extrac-
tion systems. To create one, we took sentences from the
gene association database (GAD) [31], which is curated
by the National Institute on Aging. The GAD data consist
of PubMed IDs and the diseases and related genes
mentioned in the articles. In comparison to PubMed,
which contains a variety of articles on everything from
clinical trials to literature surveys, the GAD focuses only
on experimental reports of gene-disease relations.
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Our data set consists of 939 sentences retrieved from
195 randomly selected abstracts of hypertension-related
papers listed in the GAD. Our goal is to extract etiological
relations among genes and diseases in those sentences.
Since the disease and gene names associated with each
article are not annotated in the retrieved abstracts, we must
first employ our hypertension named-entity recognizer and
gene named-entity recognizer introduced in the Methods
section to automatically annotate each occurrence of H-G
pairs in abstracts. When a sentence contains more than one
hypertension name and more than one gene name, the
system makes sufficient copies of the sentence to accom-
modate all possible H-G pairs. We call these copies H-G
pair instances. Each instance is a candidate for a relation
between a hypertension entity and a gene mention. After
machine annotation is complete, our in-lab biologists
verified the results with an inter-annotator agreement of
97.2%. Table 2 shows an example of an annotated
sentence.

Furthermore, to examine the performance of our proposed
approach in a different disease domain, we chose diabetes
and again used GAD to retrieve relevant abstracts. In total,
we retrieved 519 sentences from 50 randomly selected
abstracts, containing 369 diabetes-gene pairs (D-G pairs).
All retrieved abstracts’ MeSH terms were tagged with
“diabetes” in GAD. In addition to the positive dataset,
we compiled a negative dataset of abstracts irrelevant to
diabetes as follows: First, we searched PubMed using the
keywords query “diabetes” and filtered out the genes or
abstracts recorded in GAD. Our biologists then carefully
read the filtered results and randomly selected 50 which
were not related to diabetes. By combining the negative
dataset with the first set, we built a corpus with 451 D-G
pairs among 1057 sentences.

Experiment design

We conducted two experiments to evaluate the
proposed system. The first experiment is designed to
measure the effects of using proposed features on the
system’s performance. To test if the enhanced system
outperforms the baseline system significantly, we
compiled 30 unique training and set sets. To compile
each set, we randomly selected 90% of the abstracts in
our dataset as the training set and then used the
remaining 10% as the test set. We summed the

Table 2: Example of annotated sentence

Sentence KeyRelation?

In conclusion, <GENE> REN [0631A Yes
alleles</GENE> are significantly

associated with <DISEASE> EHT</DISEASE>

in the Emirati population.

http://www.biomedcentral.com/1471-2105/10/S15/S9

scores for these 30 sets and calculated the averages
to compare performance. The second experiment
examines the performance gap when the model trained
in the hypertension domain is used in the domain of
diabetes.

Finally, we report some preliminary results of H-G pair
extraction on real-world data.

Evaluation metrics

As for evaluating the hypertension candidate gene
extraction system, since it output a ranked list of hits,
the AUC of interpolated Precision/Recall (iP/R) curves
was chosen as the evaluation scheme. As additionally
discussed below, the AUC A of the interpolated P/R
function f,,, is defined as follows:

Where n is the total number of correct hits and p; is the
highest interpolated precision for the correct hit j at r;,
the recall at that hit. Interpolated precision p; is
calculated for each recall r by taking the highest precision
atrorany r’ >r.

In other words, for each j" ranked result, the current
ris calculated, and for each distinct r value, the highest p
(N.B., this is not the p;) at that r is retained. This results
in a jigsaw like curve from high P at low R to the lowest P
of the system at its highest R. The p at r then is
interpolated if there is a higher p at any higher r,
producing a step-like curve from the highest precision
measured at the first correct hit in the ordered result
down to the lowest precision at the highest recall when
traversing the result list by rank.

Results

Experiment I: the performance of the proposed features
We examine the detailed statistics of all the experiments
in Table 3. In the table, in addition to A{jC , we also list
the sample standard deviation of the AUC score (S Auc )
We apply a two-sample ¢ test to examine whether one
configuration is better than the other with statistical
significance. The null hypothesis, which states that there
is no difference between the two configurations, is given
by

Ho:pp = pp,
where pA is the true mean F-score of configuration A, ug
is the mean of configuration B, and the alternative

hypothesis is

Hypp > pp.
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Table 3: Performance improvement achieved by each feature set

http://www.biomedcentral.com/1471-2105/10/S15/S9

Config Baseline Features Template Features Positional Features A[]C SAUC AAUC t AUC>AUCg? (t >1.677)
Baseline + 0.4936 0.1261 N/A N/A N/A

B+T + + 0.5133 0.1057 0.0114 0.65 No

B+P + + 0.8140 0.087 0.3604 11.44 Yes

B+P+T  + + + 0.8184 0.084 0.3783 11.75 Yes

A two-sample t-test is applied since we assume that the
samples are independent. As the number of samples is
large and the standard deviations of the samples are
known, the following t-statistic is appropriate:

_ (xA-xB)
2 2
SA.SB
nA np

L

If the resulting ¢ score is equal to or less than 1.67 with a
degree of freedom of 29 and a statistical significance level of
95%, the null hypothesis is accepted; otherwise it is rejected.

Here, we first compare the retrieval performance achieved
by individually adding template features (B+T) and
position features (B+P) to the baseline system (B). We
then examine their combined performance (B+T+P). In
Table 3, we can see that both template and position
features improve the baseline’s retrieval performance.
Using position features can almost double the original
AUC score (0.3604), while template features only result in
a marginal improvement (0.0114). Including both
enhances retrieval performance to 0.8169, indicating
that they are complementary and not have overlapping
effects.

Experiment 2: the performance for extracting
diabetes-gene pairs

For comparison, we developed two naive relation
extraction methods: (1) treat all recognized genes in
the Results or Conclusion section as candidates; and (2)
if a gene co-occurs with “diabetes” terms in one sentence
of the Results or Colclusion section, treat it as a
candidate. In all cases, we rank the candidate genes
according to their frequencies.

As shown in Table 4, our best configuration of Exp. 1
significantly outperforms the four naive methods.
Furthermore, compared to the performance reported in
Experiment 1, the performance slightly increases by
1.16% in diabetes domain. The results show that our
method is useful and general enough to extract disease-
gene relation pairs in different disease domains.

Table 4: Diabetes-gene pair extraction performance

Config Precision Recall AUC
n 0.3652 0.7925 0.77
(2) 0.5679 0.8679 0.6866
B+P+T 0.6522 0.8491 0.8300

Experiment 3: the extraction results on real-world data
We have set up a system to process the real-world data
from PubMed. The system uses the query term,
“hypertension”, to retrieve abstracts from PubMed, and
then applies our relation extraction technique to extract
H-G pairs.

To measure the actual performance on real-world data,
our in-lab biologists checked the extracted genes with
PubMed IDs from 1602574 to 18504326 (published
from 2005, Feb to 2008, Jul), and carefully examined
the context surrounding the H-G pairs to determine
whether the candidates were hypertension-related
genes or not. Based on 100 samples, we achieved a
satisfactory AUC score of 0.8319. Table 5 lists the
preliminary results examined by our biologists. Note
that the genes listed in Table 5 are new candidates
extracted by our system which were not recorded in
GAD.

Discussion

In this section, we discuss possible reasons for how
our most effective feature set, section features work.
We then analyze key gene distribution over the four
sections of an abstract. Finally, we conduct an error
analysis.

Performance gained using section categorizer

After analyzing our experimental results, we found that
the section categorizer could effectively identify an
abstract’'s key H-G pairs. Take Figure 4 for example.
The sentence before “.....” belongs to the abstract’s
objective section, while the sentence after “......" is part
of its Results section. Originally, all H-G pairs in the
abstract were extracted, but after using the section
categorizer, only the key H-G pair (HT, GRK4gamma) is
retained.
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Table 5: List of examined genes extracted from real-world
data

PubMed ID EntrezGene ID
16380460 2200
16530037 1117
16540569 10371
1668521 | 7222
16690767 6523
16801480 116985
16915036 3481
17015768 51320
17182005 2952
17250807 3606
17351372 7222
17351372 7224
17921333 27302
17976639 7178
17986358 8490
18067551 50848
18075463 2185
18097620 6098
18156195 5594
18156195 3726
18156195 1385
18158339 2697
18360038 8601
18360038 9630
18398332 7293
18398344 8837

Analysis of key hypertension genes

We counted all the key hypertension genes appearing in
different abstract sections in our GAD corpus. Figure 5
illustrates the distribution. We can see that approxi-
mately 95% of all key genes are in the RESULTS or
CONCLUSION sections. For example, in the CONCLU-
SION section, there are a total of 193 key hypertension
genes versus only 24 non-key genes. This distribution
clearly supports implementation of our proposed section
features.

Error analysis
We summarized the errors into the following main

types.

(PMID: 15097232)

To perform association studies of polymorphisms of the potential
candidate essential hypertension (HT) genes GRK4, PTPIB and
HSD3BI.

Neither of the HSD3B1 or PTP1B variants were associated with HT.
Genetic variation in GRK4gamma was associated with HT in the
subjects studied.

Figure 4
Section categorization.

http://www.biomedcentral.com/1471-2105/10/S15/S9
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Figure 5
The distribution of key hypertension genes in
different sections.

1. Errors caused by incorrectly tagged NEs

NER errors reduce the precision of our system greatly
because non-gene entities were incorrectly included
in candidate H-G pairs, especially those NE types that
are frequently appear in hypertension articles. For
example, chemical compound NEs, such as TZDs
(thiazide diuretics) and single-nucleotide poly-
morphism (SNP) NEs, such as “VNTR” and “825T
allele” are two main NE types that are incorrectly
identified as gene names. We believe constructing NE
recognizers that can identify both types may
effectively diminish such false positives.

2. Errors caused by incorrectly categorized sections

The analysis of the distribution of key genes over
sections explains why the proposed position features
are effective for determining key hypertension genes.
Unfortunately, not all abstracts are written following
the normal Objective-Methods-Results-Conclusion
flow. Sections in such abstracts may be misclassified.
Our system may therefore be misled by these
incorrect section features. Take the H-G pair (ACE 1/
D, essential hypertension) in the article shown in
Figure 6 for example. We can see that this abstract are
not explicitly sectioned. In the feature generation
step, our section categorizer classifies S as part of the
Results section. In fact, S should be in the Methods
section. Although the uncertain meaning of the
surrounding word “whether” indicates that this H-G
pair is not a key H-G relation in this article, it is still
tagged as a key relation because of the strong
influence brought by its section feature. One possible
solution is to collect the patterns that describe
uncertain relations or relations in previous studies
and to exploit such information in key gene
extraction.
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(PMID: 15097232)

Although several studies of molecular genetics have investigated the relevance of the ACE gene to essential
hypertension, the relationship remains controversial. Some studies have recently implicated sex-specificity
of this candidate gene in hypertension genetics; that is, significant linkage and association were observed in
men but not in women in Caucasian populations. In particular, a male-specific association was seen
between the ACE insertion/deletion (I/D) polymorphism and hypertension. This could partially explain the
negative results for such an association in a number of previous studies in which the subjects were not
stratified according to sex. To determine whether the [ACE 1/D],,, polymorphism is related to [essential
hypertension]y, . ¢ension 10 Japanese subjects, we conducted a case-control study in 701 men (387
hypertensive and 314 normotensive subjects) and 542 women (324 hypertensive and 218 normotensive
subjects). The genotype distribution (or allele frequencies) and hypertension status were compared between
the case and control subjects with the chi2 test statistic. We found no significant association between I/D
genotype and hypertension when men and women were analyzed separately or together. The results did not
change appreciably when the case group of each sex was subdivided according to more stringent criteria.
The odds ratio for D-allele vs. I-allele was estimated to be 0.90 (95% CI; 0.73-1.12) in men and 0.90 (95%
CI; 0.70-1.16) in women. Taken together, our data do not support the existence of a sex-specific association

between the ACE 1I/D polymorphism and essential hypertension in the Japanese population.

Figure 6
An incorrectly sectioned abstract.

Conclusion

In this paper, we have proposed a supervised learning
approach for extracting key hypertension-related genes
using a maximum entropy model which achieves a
satisfactory AUC score of 81.84%. In addition to
traditional word, chunk, and parser features, we for-
mulated and tested template and position features. The
template features can distinguish true H-G pairs, while
position features improve the accuracy of key H-G pair
identification. Most importantly, we found that using
position features can almost double the original AUC
score. Although not nearly as effective as position
features, template features still result in a marginal
improvement.

Our system is the first to not only extract all genes related
to a specific disease in an abstract but also rank them
according to their relevance to the key findings of the
paper. We achieved this by successfully integrating
machine learning models and pattern matching. More-
over, our templates are automatically generated thus
significantly reducing manual effort.

To the best of our knowledge, this the first systematic
study of extracting hypertension-related genes and the
first attempt to create a hypertension-gene relation
corpus based on the GAD database. Furthermore, our
paper proposes and tests novel features for extracting key
hypertension genes, such as relative position, section,
and template features, which could also be applied to
key-gene extraction for other diseases.
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