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Abstract
Background: Bayesian networks are powerful instruments to learn genetic models from
association studies data. They are able to derive the existing correlation between genetic markers
and phenotypic traits and, at the same time, to find the relationships between the markers
themselves. However, learning Bayesian networks is often non-trivial due to the high number of
variables to be taken into account in the model with respect to the instances of the dataset.
Therefore, it becomes very interesting to use an abstraction of the variable space that suitably
reduces its dimensionality without losing information. In this paper we present a new strategy to
achieve this goal by mapping the SNPs related to the same gene to one meta-variable. In order to
assign states to the meta-variables we employ an approach based on classification trees.

Results: We applied our approach to data coming from a genome-wide scan on 288 individuals
affected by arterial hypertension and 271 nonagenarians without history of hypertension. After pre-
processing, we focused on a subset of 24 SNPs. We compared the performance of the proposed
approach with the Bayesian network learned with SNPs as variables and with the network learned
with haplotypes as meta-variables. The results were obtained by running a hold-out experiment five
times. The mean accuracy of the new method was 64.28%, while the mean accuracy of the SNPs
network was 58.99% and the mean accuracy of the haplotype network was 54.57%.

Conclusion: The new approach presented in this paper is able to derive a gene-based predictive
model based on SNPs data. Such model is more parsimonious than the one based on single SNPs,
while preserving the capability of highlighting predictive SNPs configurations. The prediction
performance of this approach was consistently superior to the SNP-based and the haplotype-based
one in all the test sets of the evaluation procedure. The method can be then considered as an
alternative way to analyze the data coming from association studies.
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Background
Genetic association studies are a powerful method to
assess correlations between genetic variants and traits dif-
ferences occurring in a population. When a significant
correlation arises with respect to a pathological trait, these
studies may lead to the identification of candidate disease
susceptibility genes, offering the promise of novel targets
for therapeutic treatments. Nowadays, high-throughput
genotype technologies allow a genome wide approach to
these studies, taking into account hundreds of thousands
of different markers [1,2]. Standard statistics is usually
applied to this data to extract univariate models and find
significant markers with univariate tests. However,
together with deriving the existing correlation between
genetic markers and phenotypic traits it is also extremely
interesting to find the relations between the markers
themselves. Both aims can be effectively achieved by using
Bayesian networks (BNs) [3]. BNs represent probabilistic
relationships between random variables by means of a
directed acyclic graph and a set of conditional probability
distributions. Nodes in the graph correspond to variables
and directed arcs represent dependencies between them. A
conditional probability distribution is associated with
each node and quantifies the dependency of the node on
its parents, i.e. the nodes that have an arc directly pointing
to it.

BNs have already been successfully applied in association
studies, for example to study overt stroke in sickle cell
anaemia [4] and to identify the relationships between
SNP variations in the human APOE gene and plasma
apolipoprotein E levels [5].

When performing an association study, the data typically
consist of measurements for a set of genetic markers
(SNPs) and evidence for a certain number of phenotypic

traits (such as disease status, age, sex...). Each genetic
marker is modelled as a random variable taking on one of
three possible states: 'AA', which corresponds to
homozygous for the minor allele, 'Aa', heterozygous, and
'aa', homozygous for the major allele. Each phenotypic
trait is also represented by a random variable, such as
'affected' and 'unaffected' for the disease status. An exam-
ple of BN modelling the relationships between 4 SNPs
and a phenotypic trait is given in Figure 1. This network
not only models the relationships between the phenotype
and SNPs, but it also represents conditional independ-
ence assumptions between variables. Referring to the Fig-
ure, we can for example say that the phenotype is
conditionally independent of SNP3 and SNP4 given SNP2:
this means that, if the value for SNP2 is known, the phe-
notypic status does not depend on the values of SNP3 and
SNP4. Thus, the BN can highlight potential key markers in
phenotype prediction.

Both the graphical structure of a BN and the parameters of
the conditional probability distributions can be learned
from the available data. However, learning these networks
is often non-trivial due to the high number of variables to
be taken into account in the model, with respect to the
instances of the dataset. Therefore, it becomes very inter-
esting to use an abstraction of the variable space that suit-
ably reduces its dimensionality without losing
information. Thanks to this abstraction, a more parsimo-
nious model might be built, whose graphical connections
are also more easily interpretable. As the final aim of
genetic dissection studies is to identify how genes affect
the phenotype, we decided to consider the set of SNPs
mapping to the same gene as a new meta-variable. In
order to assign states to the meta-variables we employed
an approach based on classification trees. By learning a
classification tree for the SNPs mapping to each gene, it is

Example of Bayesian network representing the dependencies between a Phenotype and 4 SNPsFigure 1
Example of Bayesian network representing the dependencies between a Phenotype and 4 SNPs. On the left, the 
directed acyclic graph of the BN; on the right the conditional probabilities tables associated with each node.

SNP2 SNP4

SNP3

SNP1

Phenotype Phenotype AA Aa aa
Affected 0.7 0.2 0.1

Unaffected 0.3 0.6 0.1

SNP1
Phenotype BB Bb bb
Affected 0.6 0.1 0.3

Unaffected 0.2 0.5 0.3

SNP2

SNP2 SNP4 CC Cc cc
BB DD 0.3 0.6 0.1
BB Dd 0.4 0.1 0.5
BB dd 0.6 0.3 0.1
Bb DD 0.5 0.3 0.2
… … … … …

SNP3
DD Dd dd
0.25 0.3 0.45

SNP4

Affected Unaffected
0.63 0.37

Phenotype
Page 2 of 9
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 2):S7 http://www.biomedcentral.com/1471-2105/10/S2/S7
possible to identify the most relevant combination of SNP
values to predict the phenotypic status. Once the meta-
variables have been identified, a BN is built using them
and the phenotype as nodes.

We applied our method to genotypic data measured in a
group of patients affected by arterial hypertension and in
a group of nonagenarians without history of hyperten-
sion. The ability of the BN inferred on the meta-variables
to correctly predict the phenotype (hypertension) is quan-
titatively assessed and compared with that achievable
with a BN built using single SNPs.

Methods
Our goal is to build a model to estimate the probability of
a phenotypic trait given the genotype of an individual,
represented as a suitable collection of SNPs. When learn-
ing this model from data, we also want to extract the rela-
tionships between SNPs and highlight the potential role
of the genes associated to the SNPs. To this end, it is pos-
sible to resort to classification algorithms, in which the
phenotype is the class and the SNPs (and potentially other
interesting variables, such as sex and age) are the predic-
tive attributes.

Our strategy is made of two main steps: i) generation of
meta-variables corresponding to each gene by using an
approach based on classification trees, ii) learning of a BN

in which the nodes are the meta-variables and the pheno-
type.

Classification trees (CTs) are one of the most largely used
classification tools [6]. Given a database of n cases, each
containing the values for v attributes and a class c, a CT
learned from this database graphically represents a set of
rules that allow the classification of each case on the basis
of its attribute values (Figure 2). A test on the value of an
attribute is associated with every non-leaf node of the tree
and a branch descends from this node for every possible
value taken by the attribute; leaf nodes are instead associ-
ated with a class value. Therefore the path going from the
root node to a leaf node can be mapped into a classifica-
tion rule of the kind "if attribute_A = a1 and attribute_B =
b2 and attribute_C = c1 then class = ci".

Bayesian networks [7] are a formalism for the representa-
tion and use of probabilistic knowledge widely employed
in various fields, such as Artificial Intelligence, Statistics,
and more recently Bioinformatics. As mentioned in the
Background Section, a BN consists of two main compo-
nents, a directed acyclic graph and a set of probability dis-
tributions. While the graph qualitatively describes
dependence relationships between variables, a condi-
tional probability distribution is associated with each
node Xi and quantifies the probabilistic dependence of the

node on its parents pa(Xi). A very interesting property of

Classification tree for meta-variable state assignmentFigure 2
Classification tree for meta-variable state assignment. Example of classification tree used to infer the possible states of 
the meta-variable associated with gene C, represented by two SNPs, C1 and C2. OR = "Odds Ratio".
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BNs is the fact that the joint probability distribution of all
variables can be expressed as the product of these condi-
tional distributions (chain rule):

. Once a BN is learned it

is possible to use it to perform probabilistic inference, i.e.
to calculate the posterior probabilities of unobserved var-
iables on the basis of evidence on the values of other var-
iables in the network [8]. A BN can thus be employed for
classification purposes, allowing the prediction of the
most probable value for a class node once the values of
some attributes are known.

In the following of this section we describe how we
employ CTs to generate meta-variables and how we learn
BNs on the generated variables.

Meta-variables generation
There are different available algorithms to learn a classifi-
cation tree from a dataset. Partitioning algorithms recur-
sively split the tree by choosing the "most informative"
attribute, i.e. the attribute that better separates instances
with respect to their class value. These algorithms usually
implement some "pruning" strategies, i.e. they remove
leaves corresponding to negligible improvements in the
classification performance. Pruning helps avoiding over-
fitting and thus helps improving the tree's ability to clas-
sify new instances not used to generate the tree.

CTs allow us to find rules to assign state values to meta-
variables. Our procedure is performed with the following
steps:

1. Select the set of SNPs Si mapping to the i-th gene
(see "Data collection and pre-processing" section for
SNPs annotation details).

2. Learn a classification tree using the phenotype to be
forecast as class and the set Si as attributes. To this aim,
we employed the C4.5 algorithm [9].

3. Prune the tree according to the following rules:

a. Apply minimal error pruning with m-estimate
[10] and equal prior probability for each class. In
the following all the results have been obtained
with m = 8.

b. Remove leaves containing a number of instances
lower than 1% of the total number of individuals
(in our case, 5 instances).

c. Check the total number of meta-variable states
that remain after pruning steps a and b: if there are

more than 5 states, cut the subtree with the lowest
number of instances.

4. Create a discrete variable Gi with states correspond-
ing to the leaves of the final pruned tree.

As an example, suppose having a gene C represented by
two SNPs (C1 and C2), each taking three possible values
("AA" and "BB" stand for homozygous for the minor
allele, "Aa" and "Bb" stand for heterozygous, "aa" and
"bb" for homozygous for the major allele). Suppose also
that the classification tree corresponding to gene C is
shown in Figure 2.

Looking at the leaf nodes we can derive three rules to
assign state values to the meta-variable for gene C, each
one dependent on combinations of the two SNPs values:
if "C1 = AA and C2 = BB" then State1; if "(C1 = Aa or C1 =
aa) and C2 = BB" then State2; if "C2 = Bb or C2 = bb" then
State3.

The classification trees were learned using the software
Orange [11].

BN learning
Learning BNs can be approached as a model selection
problem, in which different network models are com-
pared on the basis of their posterior probability with
respect to the available data. Thanks to the decomposabil-
ity of the joint probability of all variables, the network
with highest posterior can be learned by learning local
models, i.e. the parent sets of each variable, and then join-
ing the inferred models. However, the number of possible
models to be explored grows exponentially with respect to
the number of candidate parents. For this reason, an
exhaustive search is unfeasible and a heuristic strategy
must be employed. An effective one is the greedy search
strategy known as K2 algorithm [12]. This algorithm
requires the specification of an ordering of the analyzed
variables, so that the parents of each variable are searched
only among those variables that precede it in the ordering.
We decided to use the gain ratio of variables (i.e. the infor-
mation gain divided by the variable's entropy [6]) to
establish the ordering to be given as input to the K2 algo-
rithm. In this way, variables with higher gain ratio were
tested as parents of those with lower ratios. Moreover, we
focused on networks in which the genotypes are depend-
ent on the phenotype, in accordance with Sebastiani et al.
[4].

In order to infer BNs from data we employed the software
Bayesware Discoverer [13], which implements the K2
algorithm for the search.

P X X P X pa Xn i i
i

( ,..., ) ( | ( ))1 = ∏
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Results and discussion
We applied our approach to data coming from a genome-
wide scan on 288 individuals affected by arterial hyper-
tension (AH) and 271 nonagenarians without history of
AH. Arterial hypertension is considered a polygenic dis-
ease, resulting from the combination of a number of
genetic risk factors, whose expression depends on their
interaction with environmental factors such as high die-
tary intake of sodium, alcohol, obesity and stress [14].

The number of alleles and polygenes contributing to the
phenotype of elevated arterial blood pressure (BP) is still
unknown; however, experiments in inbred rats suggest
that about ten or more genes might contribute to the con-
trol of BP [15]. Moreover, although the number of genes
influencing BP is not known, it is expected that many alle-
les at different loci may contribute to the ultimate disease
trait. In agreement with these observations, linkage and
association analyses have shown that BP is not due to a
single genetic variant [15]. Our multivariate method thus
appears particularly suitable to analyze this kind of data.
In the following we describe in more details data collec-
tion, pre-processing and obtained results.

Data collection and pre-processing
288 patients with high BP and aged 35–55 years were
recruited; the control population was represented by 271
nonagenarians, without history of AH and selected during
the course of the last few years. After approval of the ethi-
cal committee and under informed consent collected fol-
lowing the Italian law, blood was drawn from every
patient participating in the study. DNA was extracted and
anamnestic, clinical and laboratory data were collected.
All samples were assayed with the Illumina
HumanHap300Duo bead chips (Illumina, San Diego, CA,
USA) containing 318,237 Phase I HapMap tagging SNPs.
Data were acquired with Illumina Bead Studio Software
(Illumina); afterwards, standard preliminary analysis was
performed with gPLINK [16] as follows: i) genotyping/
missing rate statistics were calculated; ii) the minor allele
frequency (MAF) was calculated; iii) Hardy Weinberg
Equilibrium (HWE) was evaluated; iv) SNPs with HWE
values in the control population deviating from the equi-
librium (p-value < 0.001) were removed. In order to iden-
tify and remove outliers, we performed a
multidimensional scaling plot (MDS plot) and a neigh-
bors plot, based on the genome-wide identity-by-state
(IBS) information.

After data pre-processing, we performed both allelic and
genotypic association tests to compare frequencies distri-
bution between cases and controls and identify the most
significant SNPs. Allelic association tests yielded 93 highly
significant SNPs (p < 10-4, corrected for permutation

tests). P-values given by genotypic association tests con-
firmed the same results as the allelic association tests.

SNP annotation was performed using Genephony, an
online tool for genomic dataset annotation [17]: a SNP is
annotated to a gene if it is located in a 10 Kb region
around the coding sequence. Selecting only those genes
represented by at least two SNPs, we focused on a subset
of 24 SNPs mapping to 9 different genes. Thus the final
dataset to be analyzed consisted of 559 individuals (288
cases and 271 controls) and the 24 selected SNPs. Since
such results still have to be biologically validated, in the
following we will denote genes by letters and SNPs by
numbers, so that for example "D3" represents SNP
number 3 of gene D.

Bayesian networks for arterial hypertension prediction
We first learned a Bayesian network using single SNPs as
variables and employing the whole dataset. In this net-
work SNPs within each gene appear tightly connected
(Figure 3). This is probably due to the fact that SNPs map-
ping to the same gene present highly correlated configura-
tions and thus the BN learning algorithm correctly infers
a direct dependence between them. This result supports
the hypothesis that considering the SNPs mapping to the
same gene as a unique meta-variable is an appropriate
way to make an abstraction of the network structure with-
out losing information. Hypertension is connected to 3

SNP-based BN learned using the whole datasetFigure 3
SNP-based BN learned using the whole dataset. Baye-
sian network learned on the whole dataset using single SNPs 
as variables.
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genes, and, among the SNPs within each gene, it is always
directly connected to the SNP with the largest gain ratio.

We then associated each gene to a meta-variable, whose
states were derived by building a classification tree accord-
ing to the procedure outlined in the Methods section. In
the network built using the meta-variables (Figure 4) the
phenotype is directly connected to the same genes as in
the network learned with all SNPs. Moreover the indirect
path gene A – hypertension – gene C – gene G, identifiable
in the single-SNP network, is conserved in the meta-varia-
ble BN. Therefore, the use of meta-variables appears able
to summarize the relationships between genes and phe-
notype with little loss of information.

Predictive ability of the networks
Bayesian networks allow the prediction of the most likely
value for any node given the values of any group of other
nodes. In our case, we are interested in assessing the abil-
ity of the learned BN models to predict the phenotype sta-
tus given a certain configuration of SNPs or meta-
variables.

The single-SNP network (Figure 3) and the meta-variable
network (Figure 4) built on the whole dataset have a pre-
dictive accuracy (training accuracy) equal to 62.79% and
to 64.22%, respectively. We compared these values with
respect to the majority classifier performance, which had
a classification accuracy of 51.52%. A normalized meas-
ure of how much those accuracies differ from the majority
classifier is given by the k-statistic, which is 0.1541 for the
SNP network and 0.2632 for the meta-variable one. Thus,

the ability to predict the true phenotypic status of the
meta-variable network appears to be slightly superior.
However, as training accuracy is affected by overfitting, it
is much more interesting to evaluate the capability of the
models to correctly predict the unknown phenotype of a
new sample of data (generalization accuracy). In order to
obtain an estimate of the generalization accuracy, we
repeated 5 times a random sampling hold-out scheme in
which 75% of the dataset (419 individuals) was employed
as training set and the remaining 25% as test set (140 indi-
viduals). The sampling was performed with stratification,
so that both the training and the test set have the same dis-
tribution of phenotypic classes as the entire dataset. Thus,
the validation scheme we performed 5 times can be sum-
marized as:

• Split the dataset into 75% training and 25% test

• On the training set:

� Learn the meta-variables according to the strategy pre-
sented in the Methods section;

� Learn a BN using the gain ratio of meta-variables as
ordering for the K2 algorithm.

• On the test set:

� Map the SNPs of the test set into meta-variables and
assign the states using the rules derived on the training set;

� Compute the accuracy of phenotype prediction given all
the meta-variables.

The mean accuracy on the 5 test sets was equal to 64.28%
(Table 1). As a benchmark for our method, we used the
BN with SNPs as variables, learned and evaluated on the
corresponding test set. The mean accuracy of the SNPs
BNs was 58.99%. Moreover, as reported in Table 1, the
accuracy of the meta-variable network was always higher
than the accuracy of the SNP network on the same test set,
suggesting that our method is able to achieve a better clas-
sification performance. The k-statistic computed on each
test set is also higher for the meta-variable networks. To
confirm these results, we computed the 95%-confidence
intervals (CI) of the mean accuracy for the meta-variable
networks and for the single-SNP BNs (Table 1). Although
the two CIs partially overlap, the mean accuracy of the
meta-variable network is higher than the upper bound of
the CI for the SNP-network. In order to evaluate the differ-
ence between the two sets of accuracies values, we applied
the Wilcoxon signed rank test as suggested by J. Demsar
[18], obtaining a significant result (p < 0.05). This rein-
forces the evidence that the performance of the meta-var-
iable BNs is superior to the single-SNP ones.

Meta-variable BN learned using the whole datasetFigure 4
Meta-variable BN learned using the whole dataset. 
Bayesian network learned on the whole dataset using meta-
variables associated to each gene.
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Comparison with haplotype-based BN
A typical way of performing association analysis using
aggregated variables instead of single SNPs is to group
them into haplotype blocks. Thus, we compared our clas-
sification approach with a haplotype-based one, consider-
ing haplotypes as variables to learn the BN. Haplotype
definition was performed through the following steps:

• linkage disequilibrium (LD) analyses using Haploview
software [19] to identify haplotype blocks for each gene
region;

• haplotype blocks filtering to keep only blocks with fre-
quency in the dataset larger than 10% (the frequencies are
estimated using the expectation-maximization algorithm
[20]);

• selection of the most informative haplotype configura-
tion for each haplotype block, according to a case-control
analysis based on permutation tests on the whole dataset;

• inference of the haplotype phases for each individual on
the previously selected blocks (we used PLINK software
package [16]);

• removal of individuals with a posterior haplotype prob-
ability < 0.80.

After haplotype phases reconstruction and individuals
selection, we learned a BN using haplotype phases as var-
iables and we then applied the same validation scheme
previously described for the single-SNP and meta-variable
based approaches. The network built on the whole dataset
is represented in Figure 5: the phenotype is connected to
5 haplotypes out of 14 (h-A1, h-B1, h-C, h-F and h-H),
which map to 5 genes. Three of these genes (A, B and G)
are directly connected to hypertension also in the meta-

variable network. Yet haplotypes belonging to the same
genes are not always connected with each other and the
network shows a higher interconnectivity among varia-
bles than the meta-variable one. The classification accu-
racy of this network is 65.83% and thus higher than the
single-SNP and meta-variable networks. However, the
classification performances on the hold-out test sets are
lower than the other two approaches, with an average clas-
sification accuracy of 54.57% (Table 1). The haplotype
method seems prone to overfit the data, since it has the
worst performance in terms of generalization accuracy,
but the best one in terms of training accuracy. We also
applied the Friedman statistical test [18] to verify the dif-
ference in the median accuracy of the three methods,
obtaining significant results (p < 0.05).

Conclusion
The new approach presented in this paper can be consid-
ered as an instrument to derive a gene-based predictive
model based on SNPs data. Such model is more parsimo-
nious than the one based on single SNPs, while preserving
the capability of highlighting predictive SNPs configura-
tions. Its limited number of nodes provides an abstract
view of the relationships between genes and the pheno-
type of interest, and therefore represents an alternative
way to analyze the available data. The prediction perform-
ance of this approach was consistently superior to the
SNP-based and the haplotype-based one in all the sets
studied in the paper.

The results of this approach should however be cautiously
interpreted. First of all, the proposed learning method
heavily exploits the training set, and, therefore, is prone to
overfit the data. The evaluation should be performed on a
separate test set to carefully assess the predictive perform-
ance. Moreover, learning the meta-nodes requires classifi-
cation tree pruning to reduce overfitting. For this reason,

Table 1: Classification performance on the test sets.

Model SNP based Meta-variable based Haplotype based Majority Classifier

Classification Accuracies (%) and K 
statistics

CA K-stat CA K-stat CA K-stat CA

Sampling test 1 55.71 0.09 64.28 0.26 57.14 0.12 51.43
Sampling test 2 55 0.07 59.28 0.16 53.57 0.04 51.43
Sampling test 3 63.57 0.25 67.86 0.34 55 0.07 51.43
Sampling test 4 62.14 0.22 65.72 0.29 49.29 -0.04 51.43
Sampling test 5 58.57 0.15 64.28 0.26 57.85 0.13 51.43
Mean values on test sets 58.99 0.16 64.28 0.26 54.57 0.06 51.43
95% Confidence Interval 54.28–63.72 60.36–68.2 50.34–58.80
Standard Deviation 3.8 3.16 3.4
Standard Error 1.7 1.41 1.52

The table summarizes the results obtained by repeating 5 times a random sampling hold-out scheme in which 75% of the dataset (216 affected and 
203 unaffected individuals) was employed as training set and the remaining 25% as test set (72 affected and 68 unaffected individuals). In particular, 
the table shows the classification accuracies obtained on the test sets by the single-SNP BN, the meta-variable BN and the haplotype BN, the 
accuracies of the majority classifier and the k-statistics.
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the learning process needs to specify tree pruning param-
eters.

Furthermore, the method's goal is to perform prediction
and the meta-variables have a precise meaning as predic-
tors of a phenotype of interest. The method is designed to
extract models based on gene-related SNPs, and cannot be
properly applied to intergenic SNPs.

Finally, the results have been obtained after a selection of
SNPs performed on the entire dataset. For this reason, the
absolute values of the accuracies here reported are proba-
bly overestimated. However, since all the analyzed BNs
have been learned with the same set of SNPs, their com-
parison is fair.

As regards the limits of the association study, we are aware
of the potential confounding factors related to age and AH

differences between groups. To address this issue we are
genotyping an age-matched control population.
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Haplotype-based BN learned using the whole datasetFigure 5
Haplotype-based BN learned using the whole dataset. Bayesian network learned on the whole dataset using haplotypes 
as variables.
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