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Abstract
Background: Linking structural effects of mutations to functional outcomes is a major issue in
structural bioinformatics, and many tools and studies have shown that specific structural properties
such as stability and residue burial can be used to distinguish neutral variations and disease
associated mutations.

Results: We have investigated 39 structural properties on a set of SNPs and disease mutations
from the Uniprot Knowledge Base that could be mapped on high quality crystal structures and
show that none of these properties can be used as a sole classification criterion to separate the
two data sets. Furthermore, we have reviewed the annotation process from mutation to result and
identified the liabilities in each step.

Conclusion: Although excellent annotation results of various research groups underline the great
potential of using structural bioinformatics to investigate the mechanisms underlying disease, the
interpretation of such annotations cannot always be extrapolated to proteome wide variation
studies. Difficulties for large-scale studies can be found both on the technical level, i.e. the scarcity
of data and the incompleteness of the structural tool suites, and on the conceptual level, i.e. the
correct interpretation of the results in a cellular context.

Background
The molecular phenotype of a coding non synonymous
SNP or disease associated mutation describes the func-
tional and structural properties of a protein that are
affected by a single amino acid substitution [1]. In this
study we want to address whether the concept of the in sil-
ico determined molecular phenotype can be employed for
large-scale classification of SNPs and disease mutations.

The attempt to classify a large set of mutations based on
an incomplete molecular phenotype may seem naive at
first glance, had it not been suggested that individual
properties such as protein stability, the accessibility of the
amino acid substitution site, and the location of variants
in surface pockets are predictive determinants of the phe-
notypic effect of a variation [2-5]. A comparative study of
protein stability predictors by Blundell and co-workers
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demonstrated that although protein stability changes
caused by mutation can be relatively accurately estimated
in silico, these predictions by themselves do not yield accu-
racy on large-scale classification between benign and dis-
ruptive mutations [6-8].

Furthermore, computational analyses rely heavily on the
quality of the data under scrutiny and the computational
methods used to evaluate these data. Before investigating
39 structural properties of proteins and amino acid substi-
tutions for their predictive power regarding SNP classifica-
tion, we have investigated what major liabilities are
encountered when implementing an structural approach
to SNP annotation and classification. The results are com-
pared with those achieved by the best performers among
the state-of-the-art tools.

Results and discussion
In this study we have identified the common issues that
are encountered when performing large-scale analyses of
structural properties of human coding variation. The first
issue concerns the availability of structural data for nsS-
NPs and disease mutations, while the second involves the
availability of computational tools to predict structural
properties. The last issue concerns the quality of classifica-
tion: are the training and evaluation data sets used in the
analyses sufficient to extrapolate results for larger studies,
and do the properties used have sufficient predictive
power to separate the two data sets?

Structural coverage of human genetic variation
Despite structural genomics projects, the gap between
sequence and structural information is still wide, and the
coverage of variation data with structural data is estimated
to be as low as 14% [5]. We have investigated the bound-
aries of structural coverage by varying the quality require-
ments on the structural model (Supplementary Figure S1A
in Additional file 1), the sequence identity between query
sequence and modelled structure (Figure S1B), the per-
centage of the wild type sequence covered by the structural
model (Figure S1C), and the length of the alignment
between query and target (Figure S1D). Circa 12% of all
nsSNPs present in the Ensembl Variation Database
(release 44) can be mapped on a structural model, in
accordance with the estimate cited previously. However,
this percentage is valid only when no restrictions regard-
ing sequence identity, sequence coverage or structure
quality are applied.

In Figure S1A we see that the number of SNPs covered by
structural data drops after 40% sequence identity.
Requirements on sequence identity sufficient for predic-
tion are different for various methods. Yue & Moult [5]
found a sequence identity of 40% sufficient for accurate
prediction, while Chasman & Adams [2] obtained the best

results with identities higher than 60%. However, these
methods do not use full atomic detail to assess the struc-
tural properties of an amino acid substitution, and thus to
do not require high sequence identity to be able to model
the substitution. We use the FoldX force field to model
amino acid variation on structural models, which uses an
all-atom representation of the structure. Although this
introduces high accuracy of stability estimation [7,9,10],
it also requires high quality structural models. Our stand-
ard restrictions on building high-confidence structural
models using the FoldX force field are X-ray structures
with a resolution lower than 2.5 Å and sequence identity
higher than 80%. Applying these restrictions to the
Ensembl data results in a data set of 5416 nsSNPs (circa
4% of the data, Figure S1B).

Other factors in fluencing the structural coverage of SNPs
is the length of the alignment and the percentage of cov-
erage between the query sequence and the structural
model. A realistic criterion for human proteins to apply
would be to request the structural alignment to be about
100 amino acids long, or, for proteins shorter than 100
residues, to cover more than 80% of the query sequence.
When this criteria are combined with the need for high
quality structural data, we find that 8238 nsSNPs remain
in the data set. A summary of the number of SNPs covered
by high quality structural data, in combination with crite-
ria regarding the reliability of the nsSNP data, is shown in
Table 1. In this table we see that the application of strin-
gent criteria will result in the structural mapping of very
few nsSNP data.

Predictability of structural properties
The second issue for a large-scale structural bioinformatics
approach is the structural properties that are predictable
with state of the art tools: how well can we describe the
structural behaviour of a protein and its mutants? Previ-
ous structural studies have identified protein stability,
aggregation and misfolding as determinants of correct
functioning on the single protein level [8,11,12]. Muta-
tions affecting the functional sites of a protein, such as
DNA, ligand and protein interaction sites, are not consid-
ered within this scope, but the investigation of these sites
will most certainly be of great importance to assess the
impact of amino acid substitutions.

Tools have been developed that describe the structure and
dynamics of a protein: stability, aggregation, amyloidosis,
and folding. We have used computational methods that
are capable of assessing the effects of a mutation on pro-
tein stability (FoldX), aggregation (Tango) and amyloido-
sis (Waltz). Although algorithms exist that can predict
folding of small single domain proteins (e.g. Rosetta [13],
FoldX [14], SimFold [15]), to date no computational
method exists that can predict folding events on large
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multi-domain proteins, or that is applicable in genome
wide studies.

Although we have limited ourselves to the analysis of
structural features of single protein molecules, and have
not investigated protein-protein interactions in this study,
we have included an analysis of the binding of proteins to
molecular chaperones, as it is directly related to correct
folding of the protein. The high abundance of chaperones
in the cell emphasises their crucial role in the protein
quality control system [16], but this is not reflected in the
availability of computational tools for chaperone bind-
ing. We have used the only available tool, the Hsp70
binding predictor Limbo [17], to assess chaperone bind-
ing variation caused by amino acid alteration.

The predictive power of structural properties
Following the recommendations of Care et al [18], we
have used the SwissProt annotated disease and polymor-
phism data (SwissProt Variation Index release 52) as the
evaluation data for our analyses. Mapping of these vari-
ants on high quality structural models (X-ray structures
with resolution  2.5 Å, sequence identity with the model
above 80%) yielded a data set of 240 positive (disease-
associated) mutations and 400 negative variations (neu-
tral nsSNPs) in 98 proteins. To ensure that the analyses are
comparable, we applied the sequence based predictors to
the same small data set as the predictors that use 3D struc-
tures or structural models.

Before we evaluated the discriminative power of the indi-
vidual structural parameters, we wanted to assess whether
our data showed distinguishable patterns for three impor-
tant parameters. The first two criteria, stability difference
and the degree of burial of the mutation site, have previ-
ously been identified as providing information about the
severity of a mutation [5,19]. The third criterion is differ-
ence in aggregation propensity, which has been cited as

likely to be an important factor in disease susceptibility
[12,20] but thus far has not been applied in a proteome
wide mutation analysis.

Figure 1 shows the distributions for the stability differ-
ences (A) and differences in aggregation propensity (B)
between wild type and variant proteins, and the burial of
the mutation site (C). The first observation of both the sta-
bility and the aggregation analysis is that the observed
changes are not discrete but follow a smooth distribution
from negative to positive change. Second, there are notice-
able differences between SNPs and disease mutations, but
they cannot be distinguished by a simple cut-off value on
the output, as there is large overlap between the distribu-
tions. This is confirmed by the P-values obtained from
paired student t-tests, which are 0.96 for the stability dis-
tributions, 0.99 for the aggregation distributions, and
0.99 for the burial distributions, respectively. For the sta-
bility distributions, we see that disease mutations are gen-
erally more destabilising than SNPs, but their
distributions overlap largely. A similar analysis has been
performed on SwissProt variants using the Site Directed
Mutator stability predictor [8], and the distributions of
stability differences of disease mutations and neutral var-
iations resemble our findings.

In a first series of properties to test as classifiers, we have
investigated 13 properties of the amino acid substitution
site that contribute to the assessment of the effect of the
mutation using the FoldX algorithm (Table 2). Cut off val-
ues were generated that varied between the minimal and
maximal values measure for the specific property, and the
true and false positive rate, and the Matthews correlation
coefficient (MCC) were calculated for each cut-off value.
Table 2 lists the data for both the best MCC and the
MCC90, i.e. the coefficient that is measured at high specif-
icity (true negative rate = 90%). The corresponding ROC

Table 1: Summary of structural coverage of SNP data.

Properties # SNPs % SNPs

nsSNPs covered by high quality structural data
No additional criteria 9877 7.4
Sequence coverage > 80 or alignment length > 100 8238 6.2
Sequence identity > 80 5416 4.1
Sequence coverage > 80 or alignment length > 100, and sequence identity > 80 5318 4.0
Highly reliable nsSNPs covered by high quality structural data
Doublehit validation status, MAF > 0.01 680 0.51
Doublehit validation status, MAF > 0.01, sequence identity > 80 229 0.17
Doublehit validation status, MAF > 0.01, sequence coverage > 80 or alignment length > 100 446 0.33
Doublehit validation status, MAF > 0.01, sequence coverage > 80 or alignment length > 100, and sequence identity > 80 209 0.16

Several criteria resulting from the above analyses are applied to assess the structural coverage and reliability of that coverage of human SNPs in the 
Ensembl database, as well as the overlap of the structural coverage with quality parameters for the validation and frequency status of the 
polymorphism data.
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Distributions for the major structural criteria in the disease and polymorphism datasetsFigure 1
Distributions for the major structural criteria in the disease and polymorphism datasets. White = disease muta-
tions, grey = polymorphisms. A. Stability difference as calculated by the FoldX force field (in kcal.mol-1). B. Difference in aggre-
gation propensity as calculated by the Tango algorithm. Values close to neutral changes (in the range [-50, 50]) are left out for 
display purposes. C. Distribution of degree of burial of the amino acid substitution site.
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curves for these analyses can be found in Supplementary
Figure S2 in Additional file 1.

The same strategy was then applied to predicted values of
structural differences between mutant and wild type pro-
teins (24 properties). Statistics were calculated for stability
and entropy parameters, as well as for differences concern-
ing protein aggregation, amyloidosis and chaperone bind-
ing (Table 3, Supplementary Figure S3 in Additional file
1).

The results obtained from these detailed analyses are
unanimous: none of the parameters evaluated can be used
to separate the data. All MCC values are close to zero, and
thus the predictions are no better than a random predictor
would perform on the data. The high accuracy of FoldX
for quantitative stability prediction has been proven in
various studies [7,9,10], so we have high confidence in
our stability estimations. In accordance with the analyses
of Worth and co-workers [8], we find that high stability
differences alone are no sufficient criterion to distinguish
deleterious mutations and neutral variation. These results
show that the dominant effect of for instance stability that
was proposed in earlier large-scale studies [5,21] can not
always be generalised for other data.

The fact that none of the properties representing confor-
mational differences between wild type and variant pro-
tein contain enough information to distinguish neutral
and deleterious variation implies that large-scale classifi-

cation based on singular structural properties is not feasi-
ble and requires a better understanding of how the
complex interplay between biophysical and biochemical
properties of a protein conspire to different tolerance for
mutations in different proteins. Although we can predict
the structural and functional impact of a mutation of a
protein, it is not always feasible to translate this into a pre-
diction of the overall phenotypic effect, i.e. will the muta-
tion result in a disease phenotype or not.

Recent studies that combine structural and evolutionary
information using machine learning techniques are able
to classify relatively large data sets obtained for the Swiss-
Prot database successfully (summarised in Supplementary
Table S2). Although the combination of these two types of
information improves classification of disease mutations
greatly, the incorporation of sequence conservation meas-
ures may obscure the mechanism underlying disease. Low
frequency substitutions at conserved positions suggest
that the mutation will not be tolerated, but will not teach
us what the underlying reason of disease is. Although
knowing that an amino acid is critical for correct function
is of course useful, in a structural bioinformatics approach
the focus is more on the molecular mechanism underly-
ing disease.

A simple combination of the SNPeffect structural bioin-
formatics toolsuite on our evaluation data set showed that
in our case, at least a linear combination of these methods
is not sufficient to classify the data (TPR = 0.73, TNR =

Table 2: Predictive power of structural properties of the modeled variant proteins.

Property FPR TPR Best MCC Threshold MCC90

FoldX energy evaluation
Overall stability of residue 14 33 0.22 1.61 0.19
Backbone H bond 32 72 0.40 -1.05 0.22
Sidechain H bond 99 100 0.07 -1.76 <0
Electrostatics 86 93 0.11 -0.10 -0.01
Entropy side chain 59 80 0.22 0.32 0.05
Entropy main chain 13 27 0.18 1.96 0.10
Van der Waals contribution 25 47 0.23 -0.98 0.15
Solvation hydrophobic 10 22 0.16 -0.6 0.16
Solvation polar 42 70 0.28 1.5 0.06
Van der Waals clash 18 33 0.17 0.22 0.15
Side chain burial 51 67 0.16 0.43 -0.1
Main chain burial 59 83 0.26 0.73 0.05
Entropy by sampling of possible side chain conformations
Entropy side chain 72 84 0.15 0.93 0

The false positive rate (FPR = 1 - specificity) and the true positive rate (TPR = sensitivity) for the threshold on the specific property that gave the 
best Matthews correlation coefficient (MCC) are shown. MCC90 is the Matthews correlation coefficient for a specificity of 90% (i.e. 10% false 
positive rate). The ROC curves corresponding with the evaluation of all properties can be found in Supplementary Figure S2 in Additional file 1. 
FoldX was used to evaluate both the overall stability contribution of the amino acid substitution site in the modeled structure and the various 
factors involved in this stability. The entropy of the variant amino acid was calculated using a sampling strategy to assess the possible side chain 
conformations allowed at the substitution site. Both stability and entropy were calculated for all mutations and for a subset of buried mutations 
(side chain burial < 0.5) and surface mutations (side chain burial  0.5). Corresponding ROC curves are shown in Supplementary Figure S3 in 
Additional file 
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0.27, MCC = 0). Although we have not fully explored the
predictive power of the properties in a more sophisticated
approach, such as machine learning techniques that use
non-linear combinations (e.g. neural networks, support
vector machines), the results obtained in the previous
analyses have highlighted a major issue in disease muta-
tion classification. The failure of the classification is
mainly due to false positives, i.e. neutral mutations that
are predicted to be deleterious. To assess the "predictive-
ness" of our data set, we applied the well-established evo-
lutionary method SIFT [22] to our data and found that
SIFT was also not able to classify effectively the data. In
fact the results were even worse than our naive classifier
(TPR = 0.69, TNR = 0.21, MCC = -0.12).

As an illustration of the influence of the data set used for
evaluation on the performance of a predictor, we list the
results for the variation in performance of SNP classifica-
tion of SIFT, that uses evolutionary information to label
SNPs (Supplementary Table S3). The Matthews correla-
tion coefficient varies between -0.12 on our data set over
0.25 on human mutagenesis data, up to 0.59 on the HIV-

1 protease mutagenesis set in the original SIFT paper [22].
Although the methodology and underlying data (i.e. the
BLOCKS database) is certainly sound, and there is no
question that SIFT in most cases can be trusted to evaluate
whether or not an amino acid change is tolerated in an
evolutionary sense, this variability in classification success
illustrates the importance of the choice of training and test
data to build and evaluate predictors. SIFT was trained to
classify mutations that disrupt the function of a protein,
and may suffer from the same limitations as our structural
approach. The ability to predict which mutations will
affect function does not imply the ability to predict which
mutations cause disease.

To date, we have not explored a machine learning tech-
nique that incorporates the functional effects predicted by
our tools. Some of the problems above may be improved
by using non-linear combinations of the structural prop-
erties. Since we pose great value in the interpretation of
the classification, rule based techniques such as decision
trees are our prime choice of machine learning technique.
Studies using random forests to classify SNPs show results

Table 3: Predictive power of the differences between wild type and variant proteins for different structural properties.

Property FPR TPR Best MCC Threshold MCC90

FoldX energy evaluation
Overall stability difference 73 85 0.15 -0.45 0.14
Overall stability diff. (surface) 0 8 0.2 3.1 0.13
Overall stability diff. (buried) 21 44 0.25 2.64 0.12
Backbone clash 91 99 0.18 -1.00 -0.02
Backbone H bond 59 83 0.26 -0.025 0.06
Sidechain H bond 79 92 0.18 -0.13 -0.14
Electrostatics 6 18 0.18 0.15 0.16
Entropy main chain 6 18 0.18 0.15 0.04
Entropy side chain 64 74 0.11 -0.125 -0.05
Solvation hydrophobic 57 75 0.19 -0.15 -0.03
Solvation polar 22 36 0.15 0.20 -0.05
Torsion clash 1 3 0.07 1.00 -0.05
Van der Waals contribution 7 14 0.11 0.89 0.10
Van der Waals clash 98 100 0.10 -1.60 0.02
Entropy difference by sampling of possible side chain conformations
FoldX entropy difference 85 92 0.11 -1.85 -0.02
FoldX entropy diff. (buried) 96 100 0.14 -2.70 -0.05
FoldX entropy diff. (surface) 37 57 0.20 -0.10 0.02
Aggregation properties
Tango 1 3 0.07 39.9 0
Tango (positive, more aggr.) 14 22 0.10 16.37 0
Tango (negative, less aggr.) 69 78 0.10 -8.00 0
Waltz 0 1 0.07 748.97 0
Waltz (positive, more aggr.) 16 21 0.06 677.15 0
Waltz (negative, less aggr.) 99 100 0.07 -2412.78 0
Limbo 17 33 0.18 5.45 0

FoldX was used to evaluate both the overall stability difference between wild type and variant structure, and the constituting contributions leading 
to this stability difference. The entropy difference caused by the amino acid substitution was calculated using a sampling strategy to assess the 
possible side chain conformations allowed at the substitution site. Both stability and entropy difference were calculated for all mutations and for a 
subset of buried mutations (side chain burial < 0.5) and surface mutations (side chain burial  0.5). Corresponding ROC curves are shown in 
Supplementary Figure S2 in Additional file 1.
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similar to other state-of-the-art classification techniques
as support vector machines [23], and we plan to imple-
ment such techniques using the structural parameters
described in this manuscript in the near future.

Conclusion
The concept of using the molecular phenotypic effect of a
nsSNP to assess its effect on the structure and function of
the protein it alters was first introduced by Bork and co-
workers [1]. The question has been raised to how much of
this molecular phenotype is necessary to evaluate the con-
tribution of a SNP to a disease phenotype: are there singu-
lar dominant properties that determine the impairment of
structure and function, or do we need to consider the full
ensemble of molecular properties to interpret the impact
of the SNP? Other research groups have proposed that sin-
gle properties such as stability [5] and solvent accessibility
[2] can be used to classify SNPs. We have examined all the
individual structural bioinformatics tools that were pro-
posed in the SNPeffect toolsuite [24] for their ability to act
as a binary classifier for deleterious and neutral SNPs. Nei-
ther of the individual properties that were examined could
serve this purpose. Because several approaches were able
to classify similar data sets as the one we have used, we
applied the most used evolutionary method, SIFT [25], to
our data set. As it was not able to classify our data set accu-
rately, we argued that generalisation of the results pre-
sented by the state of the art classifiers might be an
important issue. We illustrated this problem with the var-
iability of performance of SIFT on 8 different data sets
used in various analyses.

From these analyses we concluded that strict classification
of SNPs is not feasible at the time, both because there are
still many technical difficulties to overcome, and because
the biological interpretation of the molecular phenotype
in relation to a disease phenotype is a complex matter.
Even at the single molecule level, we cannot assess how
tolerant a specific protein is to structural variation. The
inherent rigidity of a protein might influence the change
in stability that is allowed before severe conformational
changes are introduced. Furthermore, on the cellular level
biological interpretation is even harder: we can not pre-
dict the role of the protein quality control system plays in
this tolerance level, not all interactions are described at
the molecular level, and much more. Even if we can pre-
dict the molecular effect accurately, this might not neces-
sarily result in a disease phenotype because of functional
redundancy of the protein.

However, not being able to classify human variation into
disease mutations and neutral or beneficial variation does
not mean that this approach or the methods developed
are useless. By using high quality bioinformatics tools, we
can select from a large pool of variations the candidates

that are interesting for detailed investigation. This in itself
is a valuable contribution, because the amount of varia-
tion data available is too massive to be investigated exper-
imentally. In silico analyses can and will be used
successfully as an addition to in vitro and in vivo studies.

Methods
Assembly of data sets
Statistics on the structural coverage and validation status
of human non synonymous coding SNPs were performed
on data from the Ensembl human variation database
release 44, containing 12.2 million SNPs, of which
133698 cause an amino acid variation in a known tran-
script. The mapping of SNPs on protein structures was
evaluated using the "ensppdbmapping" DAS service pro-
vided by the SPICE server [26]. Positive and negative data
sets (disease related mutations and polymorphisms) for
the evaluation of SNP classification were designed with
data from the SwissProt variation index [27] in the Uni-
Prot knowledge base (version 52.0, March 2007, [28])
that were mapped onto known PDB structures and high
quality homologs thereof. The quality criteria described in
the results section (models with resolution of 2.5 Å or
higher, sequence identity of 80% or more) lead to struc-
tural models of 400 SNPs (negative) and 240 disease asso-
ciated mutations (positive).

Structural bioinformatics tools
We have used the FoldX force field [29] for all mutant
properties regarding structural location, protein stability
and its various components, the Tango [30] and Waltz
[[31], submitted] algorithms to assess the propensity for
aggregation of wild type and variant proteins, and the
Limbo algorithm [[17], submitted] to evaluate the chaper-
one-binding properties of amino acid sequences. A novel
tool developed by Lenaerts et al (unpublished) was used
to estimate the entropy of a specific amino acid site in a
high-resolution structure.

FoldX
The FoldX force field was developed for the fast and accu-
rate estimation of the free change upon mutation on the
stability of a protein or a protein complex [9,14,29,32]. It
uses an all-atom representation of these macromolecules,
and has been validated on a test database of more than
1000 mutants from more than 20 different proteins. It
currently yields a correlation of 0.78 with a standard devi-
ation of 0.41 kcal/mol.

Modelling and evaluation of mutations in FoldX is per-
formed with the BuildModel command. It is used first to
model a homologous sequence on a structural model and
to optimise the side chains to fit the new sequence, and
then to evaluate the effect of a single amino acid variation.
The Gibbs free energy of a protein is calculated with the
Page 7 of 10
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Stability command. The various structural parameters
used in the classification tests (backbone clash, backbone
H bond formation, sidechain H bond formation, electro-
statics, solvation of hydrophobic residues, solvation of
polar residues, torsion clash, Van der Waals contribution,
Van der Waals clash)

Entropy calculations based on side chain sampling
In addition to the entropy calculations intrinsic to the
FoldX force field, we use a novel method based on exten-
sive sampling of side chain conformations as developed
by Lenaerts et al. (unpublished). The sampling method
produces for each side chain the probability (P(X)) of
finding the residue's side chain in a particular conforma-
tional state. From these probabilities entropy can easily be
derived:

The method uses a rotamer database based on conditional
statistics of dihedral angles derived from the WHAT IF
data set [33]. All amino acids from this data and their cor-
responding dihedral angles (10° bin) were used to derive
the following probabilities: P(i), P(i|i-1) and P(i|i-1,
i-2), except for 1(P(1) and P(1|, )). A set of n ran-
dom rotamers can be derived from the probability distri-
bution thus calculated. This will allow sampling of
rotamers with greater resolution than classical rotamer
libraries.

The sampling itself is performed by Monte Carlo based
sampling method with Metropolis criterion (at 298 K).
The Metropolis criterion states that a certain conforma-
tional change is accepted with a probability p that
depends on the free energy change G associated with
the conformational change as given by the following for-
mula:

The free energy of each change is determined with FoldX.

Tango
The -aggregation prediction algorithm Tango [30] uses a
statistical mechanics approach to represent a competition
between major conformational states: the random coil
and the native conformations, as well as -turn, -helix
and -aggregate. Two windows of variable length slide
over the sequence, and each such window can populate
these conformational states according to a Boltzmann dis-
tribution. The frequency of population of each structural
state for a given segment will be relative to its energy,
which is derived from statistical and empirical parame-

ters. To predict the -aggregating segments of a peptide,
Tango calculates the partition function of the phase space
involving these conformational states. In our analysis we
have used Tango to calculate the difference in aggregation
tendency that results from an single amino acid variation.

Waltz
Current methods for the prediction of the sequence deter-
minants of amyloidosis suffer from two major problems:
overpredicting amorphous cross  aggregates and missing
amylogenic sequences that are enriched in the polar Q
and N residues, such as the prion protein. The Waltz algo-
rithm [[31], submitted] tackles these problems by taking
into account amyloid hexapeptides from 48 new amyloid
forming sequences, derived from 31 proteins. About half
the proteins in this extended data set were not previously
known to contain amyloidogenic sequences such as prese-
nilin-2, titin and myosin. Waltz combines terms from
amino acid sequence scoring in the learning set, physical
property analysis and homology modelling. The method
shows 84% sensitivity at 92% specificity on the AmylHex
data set [34], and correctly identifies mutations in human
proteins known to be associated with amyloid deposition.

Limbo
Limbo is a Hsp70 binding site predictor that was built
using a dual method combining sequence and structural
information [[17], submitted]. Experimental DnaK bind-
ing data of 53 non-redundant peptide sequences was used
to generate a sequence-based position-specific scoring
matrix (PSSM) based on logarithm of the odds scores. Fol-
lowing an in silico alanine scan of the substrate peptide in
the crystal structure of a DnaK-substrate complex (PDBID
1DKX) using FoldX, a structure-based PSSM that reflects
the individual contribution of certain substrate residue
types for DnaK binding was generated. The Limbo DnaK
binding site predictor was obtained by combining the
structure-based PSSM with a normalisation factor of 0.2
with the sequence-based PSSM. Limbo is able to correctly
predict 89% of the true positives in a tested peptide set
(high sensitivity), with a concurrent amount of only 5.9%
false positives for a specific score threshold (high specifi-
city). The robustness of the predictor was evaluated with a
cross-validation test, resulting in a true positive rate of
72% true positives and a false positive rate of 5.9%. The
predictor was able to identify an entire known DnaK bind-
ing site in the heat-shock promoter  32 [35]. We have
used Limbo to rank mutated proteins according to their
DnaK binding affinity.

Evaluation of classification
Several statistics can be calculated to assess the accuracy of
a binary classification. We have used the true positive rate
or sensitivity (TPR), true negative rate or specificity (TNR),
false positive rate (FPR) and false negative rate (FNR) can

H X iP x log P xi i( ) ( ) ( )= −∑ 2

p if G

p e

G
RT if G

= <

= ≥
−

1 0

0

ΔΔ
ΔΔ

ΔΔ
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be calculated using the true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) as fol-
lows:

The Matthews Correlation Coefficient [36] is used in
machine learning as a measure of the quality of binary
classifications, and can be calculated as follows:

Other measures, such as the proportion of correct predic-
tions, are not useful when the two classes are of very dif-
ferent sizes. For example, assigning every object to the
larger set achieves a high proportion of correct predic-
tions, but is not generally a useful classification.

The MCC is generally regarded as a balanced measure
which can be used even if the positive and negative classes
are of very different sizes. It returns a value between -1 and
+1. A coefficient of +1 represents a perfect prediction, 0 an
average random prediction and -1 the worst possible pre-
diction.

In a Receiver Operating Characteristic (ROC) curve the
true positive rate (TPR) is plotted in function of the false
positive rate (FPR) for different cut-off points. Each point
on the ROC plot represents a sensitivity/specificity pair
corresponding to a particular decision threshold. A test
with perfect discrimination between positives and nega-
tives has a ROC plot that passes through the upper left cor-
ner (100% sensitivity, 100% specificity). Therefore the
closer the ROC plot is to the upper left corner, the higher
the overall accuracy of the test [37].

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
Conceived and designed the experiments: JR JS FR. Per-
formed the experiments: JR. Analysed the data: JR JS FR.
Wrote the paper: JR.

Additional material

Acknowledgements
Joke Reumers was supported by the Institute for the encouragement of Sci-
entific Research and Innovation of Brussels (ISRIB), Belgium.

This article has been published as part of BMC Bioinformatics Volume 10 Sup-
plement 8, 2009: Proceedings of the European Conference on Computa-
tional Biology (ECCB) 2008 Workshop: Annotation, interpretation and 
management of mutations. The full contents of the supplement are available 
online at http://www.biomedcentral.com/bmcbioinformatics/10?issue=S8.

References
1. Sunyaev S, Lathe Wr, Bork P: Integration of genome data and

protein structures: prediction of protein folds, protein inter-
actions and "molecular phenotypes" of single nucleotide pol-
ymorphisms.  Curr Opin Struct Biol 2001, 11:125-130.

2. Chasman D, Adams RM: Predicting the functional conse-
quences of non-synonymous single nucleotide polymor-
phisms: Structure-based assessment of amino acid variation.
J Mol Biol 2001, 307(2):683-706.

3. Ferrer-Costa C, Orozco M, de la Cruz X: Characterization of dis-
ease-associated single amino acid polymorphisms in terms
of sequence and structure properties.  J Mol Biol 2002,
315(4):771-786.

4. Stitziel NO, Tseng YY, Pervouchine D, Goddeau D, Kasif S, Liang J:
Structural location of disease-associated single-nucleotide
polymorphisms.  J Mol Biol 2003, 327(5):1021-1030.

5. Yue P, Li Z, Moult J: Loss of protein structure stability as a
major causative factor in monogenic disease.  J Mol Biol 2005,
353(2):459-473.

6. Worth CL, Burke DF, Blundell TL: Estimating the effects of single
nucleotide polymorphisms on protein structure: how good
are we at identifying likely disease associated mutations?  Pro-
ceedings of Molecular Interactions – Bringing Chemistry to Life 2006.

7. Burke DF, Worth CL, Priego EM, Cheng T, Smink LJ, Todd JA, Blun-
dell TL: Genome bioinformatic analysis of nonsynonymous
SNPs.  BMC Bioinformatics 2007, 8:301.

8. Worth CL, Bickerton GRJ, Schreyer A, Forman JR, Cheng TMK, Lee
S, Gong S, Burke DF, Blundell TL: A structural bioinformatics
approach to the analysis of nonsynonymous single nucleotide
polymorphisms (nsSNPs) and their relation to disease.  J Bio-
inform Comput Biol 2007, 5(6):1297-1318.

9. Guerois R, Nielsen JE, Serrano L: Predicting changes in the sta-
bility of proteins and protein complexes: A study of more
than 1000 mutations.  J Mol Biol 2002, 320(2):369-387.

10. Tokuriki N, Stricher F, Schymkowitz J, Serrano L, Tawfik DS: The
stability effects of protein mutations appear to be universally
distributed.  J Mol Biol 2007, 369(5):1318-1332.

11. Steward RE, MacArthur MW, Laskowski RA, Thornton JM: Molecu-
lar basis of inherited diseases: a structural perspective.
Trends Genet 2003, 19(9):505-513.

12. DePristo M, Weinreich D, Hartl D: Missense meanderings in
sequence space: A biophysical view of protein evolution.
Nature Reviews Genetics 2005. AOP.

13. Simons KT, Bonneau R, Ruczinski I, Baker D: Ab initio protein
structure prediction of CASP III targets using ROSETTA.
Proteins 1999.

TPR
TP

TP FN

TNR
TN

TN FP

FNR
FN

TP FN
TPR

FPR
FP

TN FP
TNR

=
+

=
+

=
+

= −

=
+

= −

1

1

MCC
TP TN FP FN

TN FN TN FP TP FN TP FP
= −

+ + + +
( . ) ( . )

( )( )( )( )

Additional file 1
Several of the less critical figures and tables are added as supplementary 
material, together with detailed descriptions of the structural bioinformat-
ics tools used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S8-S9-S1.pdf]
Page 9 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-S8-S9-S1.pdf
http://www.biomedcentral.com/bmcbioinformatics/10?issue=S8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11179902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11179902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11179902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11254390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11254390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11812146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11812146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11812146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12662927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12662927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12662927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16169011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16169011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17708757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17708757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18172930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18172930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18172930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17482644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17482644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17482644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12957544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12957544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16074985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16074985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10526365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10526365


BMC Bioinformatics 2009, 10(Suppl 8):S9 http://www.biomedcentral.com/1471-2105/10/S8/S9
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

14. Serrano L, Guerois R: Fold-X: An algorithm to predict and engi-
neer folding pathways.  Abstr Pap Am Chem Soc 2001,
221:U395-U395.

15. Fujitsuka Y, Chikenji G, Takada S: SimFold energy function for de
novo protein structure prediction: consensus with Rosetta.
Proteins 2006, 62(2):381-398.

16. Soti C, Csermely P: Protein stress and stress proteins: implica-
tions in aging and disease.  J Biosci 2007, 32:.

17. Van Durme J, Maurer-Stroh S, Wilkinson H, Rousseau F, Schymkow-
itz J: Accurate prediction of the sequence determinants of
DnaK-peptide binding via a method that integrates homol-
ogy modelling and experimental data.  2009 in press.

18. Carvalho MA, Marsillac SM, Karchin R, Manoukian S, Grist S, Swaby
R, Urmenyi T, Rondinelli E, Silva R, Gayol L, Baumbach L, Sutphen R,
Pickard-Brzosowicz J, Nathanson K, Sali A, Goldgar D, Couch F, Rad-
ice P, Monteiro AN: Determination of cancer risk associated
with germ line BRCA1 missense variants by functional anal-
ysis.  Cancer Res 2007, 67(4):1494-1501.

19. Ramensky V, Bork P, Sunyaev S: Human non-synonymous SNPs:
server and survey.  Nucleic Acid Res 2002, 30(17):3894-3900.

20. Worth CL, Blundell TL: Estimating the effects of SNPs on pro-
tein structure: loss of protein interactions and stability as
indicators of mis-function and disease-association.  Curr Top
Biochem Res 2008 in press.

21. Yue P, Melamud E, Moult J: SNPs3D: candidate gene and SNP
selection for association studies.  BMC Bioinformatics 2006, 7:166.

22. Ng PC, Henikoff S: Predicting deleterious amino acid substitu-
tions.  Genome Res 2001, 11(5):863-874.

23. Bao L, Cui Y: Prediction of the phenotypic effects of non-syn-
onymous single nucleotide polymorphisms using structural
and evolutionary information.  Bioinformatics 2005,
21(10):2185-2190.

24. Reumers J, Conde L, Medina I, Maurer-Stroh S, Van Durme J, Dopazo
J, Rousseau F, Schymkowitz J: Joint annotation of coding and
non-coding single nucleotide polymorphisms and mutations
in the SNPeffect and PupaSuite databases.  Nucleic Acids Res
2008:D825-9.

25. Ng PC, Henikoff S: SIFT: predicting amino acid changes that
affect protein function.  Nucleic Acid Res 2003, 31(13):3812-3814.

26. Prlic A, Down TA, Hubbard TJ: Adding some SPICE to DAS.  Bio-
informatics 2005, 21(Suppl 2):ii40-1.

27. Yip YL, Famiglietti M, Gos A, Duek PD, David FPA, Gateau A, Bairoch
A: Annotating single amino acid polymorphisms in the Uni-
Prot/Swiss-Prot knowledgebase.  Hum Mutat 2008,
29(3):361-366.

28. UniProt Consortium: The Universal Protein Resource (Uni-
Prot).  Nucleic Acids Res 2007:D193-7.

29. Schymkowitz JWH, Rousseau F, Martins IC, Ferkinghoff-Borg J,
Stricher F, Serrano L: Prediction of water and metal binding
sites and their affinities by using the Fold-X force field.  Proc
Natl Acad Sci USA 2005, 102(29):10147-10152.

30. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L: Pre-
diction of sequence-dependent and mutational effects on the
aggregation of peptides and proteins.  Nat Biotechnol 2004,
22(10):1302-1306.

31. Maurer-Stroh S, Debulpaep M, Kuemmerer N, Lopez de la Paz M,
Martins I, Reumers J, Copland A, Serpell L, Serrano L, Rousseau F,
Schymkowitz J: An exploration of the sequence determinants
of amyloid formation and the development of the WALTZ
prediction algorithm.  2009 in press.

32. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L: The
FoldX web server: an online force field.  Nucleic Acid Res 2005,
33:W382-W388.

33. Vriend G: What If – a molecular modeling and drug design
program.  J Mol Graph 1990, 8:52.

34. Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisen-
berg D: The 3D profile method for identifying fibril-forming
segments of proteins.  Proc Natl Acad Sci USA 2006,
103:4074-4078.

35. McCarty JS, Rudiger S, Schonfeld HJ, Schneider-Mergener J, Nakahi-
gashi K, Yura T, Bukau B: Regulatory region C of the E. coli heat
shock transcription factor, sigma32, constitutes a DnaK
binding site and is conserved among eubacteria.  J Mol Biol
1996, 256(5):829-37.

36. Matthews BW: Comparison of the predicted and observed sec-
ondary structure of T4 phage lysozyme.  Biochim Biophys Acta
1975, 405(2):442-451.

37. Zweig MH, Campbell G: Receiver-operating characteristic
(ROC) plots: a fundamental evaluation tool in clinical medi-
cine.  Clin Chem 1993, 39(4):561-577.
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16294329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16294329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17536170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17536170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17308087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17308087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17308087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12202775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12202775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16551372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16551372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11337480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15746281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15746281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15746281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18086700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18086700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18086700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18175334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18175334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15361882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15361882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15361882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2268628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2268628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16537487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16537487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8601834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1180967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1180967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8472349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8472349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8472349
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Structural coverage of human genetic variation
	Predictability of structural properties
	The predictive power of structural properties

	Conclusion
	Methods
	Assembly of data sets
	Structural bioinformatics tools
	Evaluation of classification

	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References



