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Abstract

Background: The ability to predict drug sensitivity in cancer is one of the exciting promises of
pharmacogenomic research. Several groups have demonstrated the ability to predict drug
sensitivity by integrating chemo-sensitivity data and associated gene expression measurements from
large anti-cancer drug screens such as NCI-60. The general approach is based on comparing gene
expression measurements from sensitive and resistant cancer cell lines and deriving drug sensitivity
profiles consisting of lists of genes whose expression is predictive of response to a drug.
Importantly, it has been shown that such profiles are generic and can be applied to cancer cell lines
that are not part of the anti-cancer screen. However, one limitation is that the profiles can not be
generated for untested drugs (i.e., drugs that are not part of an anti-cancer drug screen). In this
work, we propose using an existing drug sensitivity profile for drug A as a substitute for an untested
drug B given high structural similarities between drugs A and B.

Results: We first show that structural similarity between pairs of compounds in the NCI-60
dataset highly correlates with the similarity between their activities across the cancer cell lines. This
result shows that structurally similar drugs can be expected to have a similar effect on cancer cell
lines. We next set out to test our hypothesis that we can use existing drug sensitivity profiles as
substitute profiles for untested drugs. In a cross-validation experiment, we found that the use of
substitute profiles is possible without a significant loss of prediction accuracy if the substitute
profile was generated from a compound with high structural similarity to the untested compound.

Conclusion: Anti-cancer drug screens are a valuable resource for generating omics-based drug
sensitivity profiles. We show that it is possible to extend the usefulness of existing screens to
untested drugs by deriving substitute sensitivity profiles from structurally similar drugs part of the
screen.
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Introduction and background
In the last decade, cancer treatment has seen a shift from
a “one size fits all” philosophy to a more personalized
approach. Technical advances allow for the assessment
of complex genetic defects and pathway aberrations,
enabling refined cancer classification and treatment
prediction based on molecular rather than histological
features. Gene expression profiling has been used to
classify patient samples as being benign or malignant or
to classify them into cancer subclasses [1-3]. Lately,
molecular profiling of cancer samples has been applied
to the prediction of drug sensitivity [4]. Drug-sensitive
samples have been compared to drug-resistant samples
to build “drug sensitivity profiles”, statistical models
built from a defined set of genes whose differential
expression in a cell line may confer sensitivity to a drug.
Thus, cancer cell lines whose gene expression patterns are
similar to the genes in the sensitivity profile will have a
higher probability of responding to the drug. It has been
demonstrated that gene expression profiling can refine
the prediction of drug response to targeted drug
therapies. For example, Harris et al. used gene expression
profiling to identify lists of genes that are potential
predictors of response to Herceptin and Vinorelbine in
HER2-positive breast cancers [5]. Another study used the
COXEN (CoExpression Extrapolation) algorithm to
build sensitivity profiles for the drugs cisplatin and
paclitaxel [4]. The profiles were subsequently used to
predict drug response in bladder and breast cancer
samples. Of particular interest is the fact that these
samples were not part of the original anti-cancer
cancer panel, showing that drug sensitivity profiles
generated from the screen can be generalized to any
tumor sample.

Approaches such as COXEN make use of comprehensive
pharmacogenomic resources to derive drug sensitivity
profiles. COXEN was applied to the NCI-60 (National
Cancer Institute) anti-cancer screen, which tested
>40,000 compounds on 60 cancer cell lines, all of
which have been profiled (in a separate effort) for
genome-wide gene expression [6,7]. Sensitivity profiles
for the compounds in the screen can be generated by
comparing gene expression values of sensitive and
resistant cell lines.

The COXEN algorithm (and similar approaches) can
only generate profiles for compounds that are part of an
anti-cancer drug screen [8]. If a drug was not tested as
part of the NCI-60 dataset, its sensitivity profile cannot
be generated. Updating an existing cancer screen with the
latest available or experimental drugs is a non-trivial
issue, and requires the same expertise, infrastructure and
conditions as when the screen was established the first
time around.

In this work, we present a method to predict responses to
drugs that are not part of available anti-cancer screens.
We propose to find substitute sensitivity profiles for
these untested drugs by using structural similarity.

It has been known that the structure of a compound is
related to its activity (QSAR – Quantitative Structure
Activity Relationship). Shi et al. performed an analysis
where 131 compounds (whose mechanisms of action
were known) were clustered based on activity across
cancer cell lines [9]. They found that compounds with
similar structures clustered together. Several other
studies have been performed to show that specific classes
of compounds (eg. Taxols) have similar activity patterns
across cancer cell lines [10]. Therefore, it can be
hypothesized that structurally similar compounds have
similar activities and might affect the same pathways. In
other words, the sensitivity pattern for drug A (not part
of the screen) might be similar to that of drug B (part of
the screen) if drug A and drug B are structurally similar.
We are interested in extending this idea to test whether
the drug sensitivity profiles of a structural analogue of a
drug can be used as a substitute when predicting its
response in cancer cell lines.

Results and discussion
To analyze whether a structural analogue of a drug can
be used to predict its response, two questions need to be
answered. The first question is whether two structurally
similar drugs have the same sensitivity pattern across the
NCI-60 cancer cell lines. Secondly, even if we can show
that there is a strong association between structural
similarity and drug sensitivity, we need to test whether
the correlation is strong enough to be of any practicality.
The second question we would like to ask is whether the
sensitivity profile of drug A be used to predict activity of
drug B without a significant loss of accuracy, if drug A
and drug B are structurally similar. We investigated
whether this proposition holds only for compounds in
the same chemical family, or also for compounds that
are similar but from different families.

Structural similarity and response similarity in NCI-60
cancer cell lines
The first question we set out to address was whether two
structurally similar drugs have the same sensitivity
pattern across cancer cell lines in an anti-cancer screen,
even when the mechanisms of action or the classes of the
compounds might not be known. We used the Tanimoto
coefficient between pairs of compounds as the structural
similarity measure (see Methods for more details).

In figure 1, we show pairs of compounds ordered by
their Tanimoto structural similarity coefficients (x-axis),
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and the similarity between their responses across the
60 cancer cell lines (y-axis). The similarity between
responses was measured as the percentage of cell lines
that elicited the same response to both the compounds.
As the Tanimoto coefficient increases (structures become
more similar), the similarity between the cell line
responses increases too (i.e., the same set of cell lines
are sensitive/resistant to the two compounds). This
supports the hypothesis that if two compounds are
structurally similar, their sensitivity patterns in the NCI-
60 data are similar too. This can be interpreted in the
following manner: Two structurally similar drugs may
bind similar cellular structures, and activate or inhibit
similar cellular pathways, and therefore share a common
cause of resistance. We next set out to investigate the
practical implications of this finding.

Predictive power of sensitivity profiles of
structurally similar drugs
The second question we wanted to ask is whether we can
use one drug as a substitute to perform gene-expression-
based sensitivity prediction for another drug. In this
scenario, we take advantage of an existing anti-cancer
screen, such as the NCI-60, to construct a sensitivity
profile for a drug A, and use it as a substitute profile for
another drug B. Specifically, we wanted to see what the
loss of accuracy in response prediction would be if the

sensitivity profile was constructed from a drug with high
structural similarity. Using a cross-validation setup
within the NCI-60 data set, we could measure the
change in prediction accuracy when using drug B’s
sensitivity profile compared to using a substitute profile
generated from drugs A with various levels of structural
similarity to B.

Figure 2 shows pairs of compounds ordered by their
Tanimoto coefficients (x-axis), and the loss of prediction
accuracy when one of the pair’s sensitivity profile is used
as a substitute profile for the other (y-axis). This figure
demonstrates that the higher the structural similarity, the
lower the loss of accuracy in response prediction. Highly
dissimilar compounds (Tanimoto coefficient < 20) show
a loss in prediction accuracy of ~20%, while structurally
similar compounds (Tanimoto coefficient > 80) show a
much lower loss in prediction accuracy (~6%). This
drop is highly significant (using a threshold of 80 for
the Tanimoto coefficient, the distributions of accuracy
values below and above the threshold were signifi-
cantly different with a p value of <8 × 10�8). Therefore,
in situations where a drug has not been tested as part
of an anti-cancer screen, the sensitivity profile of a
structurally similar drug can be used as a substitute
in response prediction without a significant loss in
accuracy.

Figure 1
Tanimoto coefficients vs. Similarity between NCI-60
responses. Each data point represents a pair of compounds,
where the x-coordinate is the Tanimoto coefficient
(calculated by Chemcpp), and the y-coordinate is the
similarity between their NCI-60 responses. For each
interval of Tanimoto coefficients, the 99% confidence
intervals (for response similarity values) are shown as the
blue bars, with the number of pairs of compounds at each
interval indicated.

Figure 2
Tanimoto coefficients vs. Loss in prediction accuracy.
Each data point represents a pair of compounds, where the
x-coordinate is the Tanimoto coefficient (calculated by
Chemcpp), and the y-coordinate is the loss in prediction
accuracy when a substitute drug’s sensitivity profile is used in
response prediction. For each interval of Tanimoto
coefficients, the 99% confidence intervals (for loss in
accuracy values) are shown as red bars, with the number of
pairs of compounds at each interval indicated.
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Families of compounds in our dataset
To ensure that not all structurally similar pairs of
compounds in our dataset belonged to the same family,
we identified 1130 pairs of compounds with Tanimoto
coefficients higher than 70. We were able to extract
several pairs of interest where the compounds did not
belong to the same family. Figure 3 shows derivatives of
Camptothecin (a Topoisomerase I inhibitor [11]) along
with amino acid derivatives clustered together in a
visualization of the 244 compounds in our dataset.
Comparing their activity patterns in NCI-60, we found
that both classes exhibited exactly the same activity
across the cell lines. Both camptothecins and amino-acid
derivatives have been known to have anti-neoplastic
activities, but we couldn’t find any evidence in the

literature of the amino acid derivatives inhibiting
Topoisomerase I. The above example shows that while
the pairs of compounds might belong to different
functional or mechanistic families, structural similarities
(> 70%) highly correlate with their cellular responses.

Conclusion
Cancer patients need access to the latest decision criteria
given an increasing number of highly specific and
targeted anti-cancer drugs. It is believed that the pre-
treatment cellular state is predictive of whether a cancer
cell is going to respond to a particular drug. Functional
anti-cancer drug screens give access to pre-treatment gene
expression states from sensitive and resistant cancer cells,

Figure 3
Visualization of the clustering of compounds in the NCI-60 data. The first two principal components of each of the
244 compounds are used as x and y coordinates to visualize the clustering of the compounds. Compounds closer to each other
in the plot represent structurally similar compounds. Amino acid derivatives are highlighted in red, while derivatives of
camptothecin are highlighted in blue, while all other compounds are shown in green.
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and are useful in deriving drug sensitivity profiles that
can be applied to independent cancer samples. One
major limitation of this approach is that profiles can
only be generated for drugs that have been tested in anti-
cancer screens. In our work, we addressed the issue of
deriving sensitivity profiles for untested drugs for which
we do not (yet) have response information across a
number of cell lines. For those drugs, we examined the
possibility of using substitute drug sensitivity profiles
from structurally similar drugs that have been tested in
the screen.

We established that it is indeed true that structural
similarity is highly correlated with sensitivity across
cancer cell lines. We have also shown that for structurally
related drugs, the use of substitute sensitivity profiles is
likely to result in response predictions similar to using a
drug’s own profile in the first place. Our study may thus
be helpful in increasing the relevance of existing screens,
by expanding their use to other drugs (not part of the
screen) with high structural similarity. Since not all new
cancer drugs are immediately tested in anti-cancer
screens, our approach ultimately increases the number
of drugs for which patient response can be predicted.

A drawback of the current study is the small number of
drugs that we could include in our analysis, i.e. drugs that
showed sufficient variation across cell lines. This introduces
some bias that may favor pairs of compounds in the same
class and with high similarity in activity patterns. None-
theless, the above experiments demonstrate that there is a
strong correlation between structural similarity and drug
sensitivity in the NCI-60 cancer cell lines.

In terms of future work, we want to explore the following
issues. First, we want to fine-tune our sensitivity profile
generating algorithm, in order to increase the prediction
accuracy when using a compound’s own profile (which
currently averages at 74%). Second, we want to explore
other structural similarity measures to ensure that we
indeed identify the closest structural pairs among the
NCI-60 compounds. Third, we want to investigate other
similarity measures (based on function or mechanism)
that can identify an analogue for sensitivity profile
substitution.

Methods
NCI-60 datasets
The NCI-60 is an anti-cancer screen composed of over
40,000 compounds tested on 60 cancer cell lines from 9
different tissue types. We downloaded the compounds’
log(GI50) values (concentration of compound needed
for 50% growth inhibition) from http://dtp.nci.nih.gov.
Gene expression values for the 60 untreated cancer cell

lines were obtained from Gene Expression Omnibus
(Accession GDS1761) [7].

Compound selection criteria were adopted from Staun-
ton et al [8]. Briefly, for each compound, the 60 log
(GI50) values (representing the responses of the 60
cancer cell lines to the compound) were normalized.
Those cell lines with log(GI50) values that were at least
0.8 standard deviations above the mean were considered
sensitive to the compound, and those values at least 0.8
standard deviations below the mean were considered
resistant. Log(GI50) values that fell within the 1.6
standard deviation window around the mean were
considered intermediate, and were not included in the
analysis. Since only compounds that exhibit a variable
response across the cancer cell lines are useful in
sensitivity analysis, the 40,000 compounds were filtered
in the following manner

1. Standard deviation of the log(GI50) values of the
compound across the 60 cancer cell lines is at least 0.625

2. At least 10 of the 60 cell lines are sensitive

3. At least 10 of the 60 cell lines are resistant

4. At least 30 of the 60 cell lines are either sensitive or
resistant (do not fall in the intermediate category)

244 compounds matched the aforementioned criteria,
and were used in our analysis.

Structural similarity and response similarity
in NCI-60 cancer cell lines
Structural similarity between compounds
Swamidass et al. evaluated different structural similarity
metrics (including the Tanimoto coefficient) to classify
compounds as being sensitive or resistant to the NCI-60
cell lines [12]. They concluded that 2D representations of
molecules yield the best accuracies when assigning the
response class of a cell line to a compound. Therefore,
we used the Tanimoto coefficients on the 2D representa-
tions of the compounds when calculating their pair-wise
similarities. To compute the Tanimoto coefficient
between all pairs of the 244 compounds in our dataset,
we used Chemcpp (a chemoinformatics toolbox that
computes similarity between chemical compounds),
available at [13]. Each compound’s 2D structure,
represented as a mol file, was downloaded from the
Pubchem server [14]. Briefly, the Tanimoto coefficient
represents the similarity between two compounds based
on the presence or absence of molecular fragments.
Chemcpp uses a graph-based approach to compute the
Tanimoto kernel between two molecules as follows
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where P is the set of molecular fragments taken into
account, and jG(p) is a bit value representing the
presence of a molecular fragment p in the graph
representation of a compound, G. Chemcpp outputs
the normalized Tanimoto coefficients between all pairs
of compounds in the dataset, thus giving a relative
measure of similarity among them.

Response similarity between compounds
For each pair of compounds in our dataset, the similarity
between their responses across the 60 cell lines was
calculated as the percentage of cell lines that responded
similarly to (either both sensitive or both resistant) both
the compounds. Cell lines classified as intermediate for
either of the compounds were not included in the
calculation. Figure 1 shows Tanimoto coefficients
plotted along response similarities, to demonstrate the
correlation between structural similarity and response
similarity in the NCI-60 cancer cell lines.

Predictive power of sensitivity profiles of
structurally similar drugs
If a drug has not been tested as part of a screen, we
wanted to see how much accuracy would have to be
compromised if a structurally similar drug was used as a
substitute to predict response. This second question
involved generating the sensitivity profiles for each of
the 244 compounds in our dataset. We then used the
sensitivity profile of a drug A as a substitute for drug B,
recorded the structural similarity between A and B, and
measured the drop in prediction accuracy compared to
using drug B’s sensitivity profile.

Sensitivity profile generating algorithm
For each of the 244 compounds, the log(GI50) data and
gene expression data were integrated to generate
sensitivity profiles (a statistical model based on a list
of differentially expressed genes) which were then used
to predict the response of a cancer cell line to one of the
compounds. For each compound, the response of each
of the cell lines in the NCI-60 panel was predicted in a
leave-one-out cross-validation setting. Specifically, the
remaining 59 cell lines were used as a training set to
predict the response of the compound to the 60th cell
line using a generalized linear model. The steps of our
algorithm were as follows

For each of the compounds:

1. Using each one of the 60 cell lines as the testing set, the
remaining 59 cell lines were assigned as the training set.

2. The 59 cell lines were separated into those sensitive
and resistant to the compound.

3. Using the expression values of 9706 genes across the
cell lines, a t-test was used to identify the 10 most
differentially expressed genes between the sensitive and
resistant sets. These 10 genes were identified as the
‘sensitivity profile’ genes for the compound.

4. A generalized linear model was used in Matlab to
predict the response of the 60th cell line, using the
expression values of the 10 genes that were part of the
sensitivity profile [15].

Structural similarity and sensitivity prediction
For each pair of drugs A and B for which the Tanimoto
coefficient was available, the loss of prediction accuracy
was calculated in the following manner

1. The sensitivity profile was generated for all 244
compounds using NCI-60 data.

2. For each drug A, 60 responses were predicted for the
NCI-60 cell lines using the drug’s profile. The predicted
responses were compared to drug A’s experimental
responses from NCI-60 to calculate an overall accuracy
for drug A, which we termed AccuracyA using A’s profile

3. The profiles of the remaining 243 drugs (drug B) were
used to predict responses of drug A to the 60 cancer cell
lines. These predicted responses were compared to drug A’s
experimental responses to calculate AccuracyA using B’s profile

4. The loss in prediction accuracy was calculated as the
absolute difference between AccuracyA using A’s profile and
AccuracyA using B’s profile. This difference can be thought to
represent the loss of accuracy when using another drug’s
profile as a substitute in response prediction

Figure 2 shows Tanimoto coefficients plotted along loss
in prediction accuracies, to demonstrate the relationship
between structural similarity and predictive value of
substitutive sensitivity profiles in the NCI-60 dataset.

Families of compounds in our dataset
To analyze the families of the compounds in our dataset,
we first annotated all 244 compounds with their generic
or IUPAC names, downloaded from Pubchem [5]. Using
these annotations, we were able to identify broad
families for most of the compounds. Using the Tanimoto
structural similarity matrix calculated by Chemcpp, we
calculated the first two principal components of each
of the compounds, using Matlab’s princomp function.
We used these two components as the x and y
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coordinates for visualizing the clustering of the com-
pounds in Figure 3.
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