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Abstract

Background: The decision environment for cancer care is becoming increasingly complex due to
the discovery and development of novel genomic tests that offer information regarding therapy
response, prognosis and monitoring, in addition to traditional histopathology. There is, therefore, a
need for translational clinical tools based on molecular bioinformatics, particularly in current
cancer care, that can acquire, analyze the data, and interpret and present information from multiple
diagnostic modalities to help the clinician make effective decisions.

Results: We present a platform for molecular signature discovery and clinical decision support
that relies on genomic and epigenomic measurement modalities as well as clinical parameters such
as histopathological results and survival information. Our Physician Accessible Preclinical
Analytics Application (PAPAyA) integrates a powerful set of statistical and machine learning
tools that leverage the connections among the different modalities. It is easily extendable and
reconfigurable to support integration of existing research methods and tools into powerful data
analysis and interpretation pipelines. A current configuration of PAPAyA with examples of its
performance on breast cancer molecular profiles is used to present the platform in action.

Conclusion: PAPAyA enables analysis of data from (pre)clinical studies, formulation of new
clinical hypotheses, and facilitates clinical decision support by abstracting molecular profiles for
clinicians.
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Background
Introduction
Advancement in molecular bioinformatics research is
generating an overwhelming amount of information.
Clinicians acknowledge that there is a need to accelerate
the translation of knowledge discovery from genome
scale studies to effective treatment and tailored cancer
management. Commercially available tools such as
GeneSpring or open source tools can process and
visualize genomics data for preclinical applications. On
the clinical side, a number of clinical decision support
tools exist that incorporate clinical guidelines, assist
clinicians in diagnostics, or intelligently interpret clinical
data to give insight in the underlying trends. However,
there is unique clinical value to be added by providing
the clinician with an integrated view of the patient
molecular profile and where the patient is compared to
patients with similar clinical parameters and history. For
the latest genomic tests that have entered the clinical
guidelines, there is need for clinician driven analysis
with patient-centric data and informatics-assisted dis-
covery in an easily configurable environment that could
be quickly tuned to new clinical questions.

There is a dearth of tools focused on the clinical use
scenario that can meaningfully integrate information
from multiple molecular modalities such as genomic
(copy number variation), transcriptomic (gene expres-
sion) and epigenetic (differential methylation) data and
that can provide a clinically-relevant comprehensive
picture of the molecular state of a sample. Systems exist
that acknowledge this issue and integrate various mole-
cular data [1], however such work is primarily driven by
knowledge discovery rather than for clinical use.

In this paper we introduce a Physician Accessible
Preclinical Analytics Application – PAPAyA, a platform
for clinical decision making that relies on multiple
information modalities: gene expression and differential
DNA methylation as well as clinical parameters such as
histopathological results and survival information. We
have assembled a powerful set of statistical and machine
learning tools that leverage the connections among the
different modalities and present a clinically meaningful
portrait of the individual sample.

Breast cancer and genomic profiling
Breast cancer is a complex disease driven by the
accumulation of multiple molecular alterations. Recent
molecular advances in high-throughput genomic, tran-
scriptomic and epigenomic technologies have made it
possible to focus on the molecular complexity of breast
cancer and help guide cancer prognostication and
therapy prediction.

Perou et al. demonstrated that breast cancer can be
classified into distinct groups based on their gene
expression profiles [2]. The Estrogen Receptor positive
(ER+) group is characterized by higher expression of a
panel of genes that are typically expressed by breast
luminal epithelial cells (’luminal’ cancer). The Estrogen
Receptor negative (ER-) branch covered three subgroups
of tumors: 1) overexpressing ERBB2 (HER2); 2) expres-
sing genes characteristic of breast basal cells (basal-like
cancer); and 3) normal-like samples. The clinical
relevance of this stratification is that ER+ tumors are
typically associated with good prognosis and basal-like
and HER2 tumors have poor prognosis. Further refine-
ment in molecular classification however, can result in
differing clinical significance.

Gene expression profiling has also led to the develop-
ment of several gene-expression assays, of which
OncotypeDX [3] and MammaPrint [4] are gaining
acceptance in routine clinical use. OncotypeDX analyzes
the expression of 21 genes and calculates a recurrence
score to identify the likelihood of cancer recurrence in
patients and an assessment of their likely benefit from
chemotherapy. MammaPrint analyzes the expression of
70 genes and allows patients (<61 years) with early-stage
breast cancer to be categorized as having risk of distant
metastasis. High-risk patients may then be managed with
more aggressive therapy, while low risk patients can be
spared from toxic chemotherapy.

Recent advances in molecular profiling technologies
have led to the application of more than one genomic
modality to address similar clinical questions. For
example, gene expression profiling can be enhanced
with the detection of certain genomic copy number
variations, amplifications and deletions using Represen-
tational Oligonucleotide Microarray Analysis (ROMA)
and correlated with patient survival [5]. We have also co
developed Methylation Oligonucleotide Microarray Ana-
lysis (MOMA) in collaboration with Cold Spring Harbor
Laboratory to perform genome-wide scans of CpG island
methylation in normal and tumor samples [6].

Such growth in genomic profiling strategies leading to
additional in-vitro diagnostic multivariate index assays
will result in a plethora of tailored genomic tests that
cater to specific clinically prevalent sub-populations.
Appropriately integrating the information provided by
multiple genomic profiling strategies can help reduce the
resulting complexity in decision-making and offer
unique patient-specific insights to the clinician. The
main objective in designing the PAPAyA platform was to
provide a highly flexible translational platform where we
can explore integration of patient clinical data and
multiple high-throughput molecular measurements. The
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aims were to design and implement a platform that can
a) easily be used to prototype new ideas for clinical
studies support, and b) introduce new clinical tools for
data analysis contexts relevant to clinical practice based
on molecular measurements.

Methods
Design
PAPAyA is designed to provide common interface to
multiple data sources, use of tools that utilize the data,
and to facilitate a flow of data analysis and assessments
of results. PAPAyA stores and provides access both to
clinical as well as molecular data from clinical studies.
The user interface enables access and analysis of data
from multiple samples in a discovery flow, and clinical
interpretation flow on a single sample – a patient. The
core data access and presentation functionality is built in
the platform, whereas the available data transformation
steps are dynamically defined through plug-in tools
depending on the data type and use flow.

The design supports easy registration and execution of
applications written in R, Matlab, Python, and Perl as
well as binary executables. It is in principle easy to
extend this support to additional execution platforms.
Applications are registered as tools annotated for their
use contexts, which enable definition of numerous
analysis pipelines capturing a sequence of processing
steps. Tools can be developed for a specific modality (e.
g. copy number variation, gene expression, and methyla-
tion) or for a particular clinical study. Here, context is a
collection of tools that are allowed to be invoked at a
certain step in the workflow.

Principal architecture
The principal architecture of the platform is given in
Figure 1. User Interface combines elements of presenta-
tion and handles user actions. Presentation shows
synchronously the present context(s), data, analysis
results, output of tool executions, and visual elements
for navigation and execution dynamically based on the
current application context. Flow Control translates the
context definitions into visualization components. Based
on user’s interaction, Action translates user requests into
a change of display (and context) or requests a tool
execution by the Tool Execution Engine. The latter
component, based on the application context, user-
provided input and the description of the tool handles
the output. The execution instance of a Tool is controlled
by the application to the extent that it provides
parameters for its execution.

The salient feature of PAPAyA is that not only data from
the studies but also application behavior and tool

definitions are stored and handled by the comprehensive
Database Management System. Given the intentional loose
coupling of each tool with the platform, it is typical to
assume that each tool comes with its own data – External
Data. However, many of the tools utilize the data stored
in PAPAyA’s database.

PAPAyA building blocks
Contexts
The behavior of PAPAyA is defined by the user through a
state diagramwhere each state can havemultiple contexts.
Transition from one context to another is defined a priori
by some user or tool action. PAPAyA allows for fine-
tuning of context descriptions with user-defined con-
straint variables, which are set and un-set depending on
the user’s actions and selected element type as in sample
ID, measurement modality, or microarray probe. The
visual representation of the contexts consists of two
components: a display of the relevant parameters of the
selected sample, measurements, measurement feature,
signature, etc., and dynamic access to the available tools
in the current context.

Figure 1
Principal architecture of PAPAyA. User Interface
combines elements of presentation and handles user actions.
Presentation shows synchronously the present context(s),
data, analysis results, output of tool executions, and visual
elements for navigation and execution dynamically based on
the current application context. Flow Control translates the
context definitions into visualization components. Based on
user's interaction, Action translates user requests into a
change of display (and context) or requests a tool execution
by the Tool Execution Engine. The latter component, based on
the application context, user-provided input and the
description of the tool handles the output. The execution
instance of a Tool is controlled by the application to the
extent that it provides parameters for its execution. Tools
have access to the internal database, but given the loose
coupling with PAPAyA, it is often the case that External Data
is used by a tool. Such data comprise measurements,
annotation, and results from the execution of other tools
within PAPAyA.
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Execution
Each tool is an application or a routine that is defined by
its execution platform (e.g. R, Matlab), output type (e.g.
graphics or text), and parameters that the GUI handles
by providing the user with a dialog to fill in. The input
parameters can be pre-filled from the tool definition, but
also from the current context of execution (e.g. the
current patient ID, sample ID). It is very easy to integrate
a tool into PAPAyA. Most software modules will likely
require no modification apart from formatting the
output to comply with the visual elements of the user
interface. This also enables improved versions of the
tools to be added by simply replacing the current tool
with an updated version without reconfiguration of
PAPAyA.

Data
An instance of PAPAyA needs to be configured to
support the data requirements and the user need for
transformation of the data. This is done through flow
definition in conjunction with registration of tools. The
data structure in Table 1 defines flows by characterizing
states and contexts that are linked to the tools’
definitions. Each row in the flow table defines a transition
which encodes different states of user interaction and
their changes. Several states are pre-defined and are
internal to the platform – they link to the static part of
the user interface. The user is allowed to configure any
number of user-specified states characterized by some
transition. A transition is typically an invocation of a
tool described in a row of the flow table. In addition,
transition can set or reset internal constraint variables

that together with the current state, define the current
context. In each state, the context determines which
transitions are available to the user at a particular step
(time). Based on this, the user interface dynamically
configures the layout of the screen as well as the visual
elements that allow the user to activate the permitted
transitions.

Implementation
PAPAyA is implemented in C#. The GUI-intensive parts
of PAPAyA enable navigation through clinical studies
where the central part is the patient sample. For each
sample, all available measurements are navigable and
linked to further characterizations available in the
context of the sample and the modality. In PAPAyA, all
characterization is around molecular signatures as
described in more detail in the Results section. Further-
more, PAPAyA provides decision support views of the
current patient sample and measurements that transform
the results for use in a clinical setting.

Results
Overview
The focus of PAPAyA is on discovery of molecular
signatures for clinical stratification of patient samples
and their utilization in a clinical setting. The data
browsing and signature discovery pipeline comprises
statistical and machine learning algorithms (supervised
and unsupervised) and operates on multiple modalities
of high throughput measurements in a high-perfor-
mance computing environment. The output of these
algorithms consists of molecular signatures addressing
specific clinical questions (benign vs. malignant, tumor
subtype, relapse free survival, etc.) that are based on
several individual or combination of modalities (DNA
copy number, DNA methylation, and gene expression).
The signatures are typically evaluated for performance
characteristics (sensitivity and specificity) using statisti-
cal approaches. Clinical researchers can benefit from an
integrated system that enables them to evaluate and
explore these signatures in a user-friendly environment,
and be able to characterize signatures and the likely
scenarios in which they can be integrated into an
oncologist’s or pathologist’s clinical practice.

PAPAyA facilitates these tasks by applying multivariate
statistical analysis and data mining algorithms across
modalities in an integrated fashion. The clinical trial
database is accessible to bioinformatics tools such as
feature filtering, hierarchical clustering, multimodal
feature correlation, top-down hierarchical sorting, a
methyl binding sites tool, and computationally intensive
search approaches such as our CHC Genetic Algorithm
(GA) coupled with Support Vector Machines [7]. These

Table 1: Flow Definition

Field Description

StateFrom Current state
Type Tool execution; internal transition; ...
Description Free-text description
Action Tool name; initialization; internal actions
ConstraintExist User-defined variables that can be set to define

constraints. For example methylation modality
active vs. expression modality active;
analysis mode vs. decision support mode; etc.

ConstraintSet Constraints to set with this transition
Constraint-Unset Constraints to unset with this transition
StateTo New state

The flow is defined with transitions between states (from StateFrom to
StateTo) based on use Action. Example state may be pre-processing,
analysis, post-processing, and single-patient evaluation. Each state uses
internal constraints that can be set or unset during transitions (based on
ConstraintSet and ConstraintUnset). The current state and the
constraints currently set (ConstraintExist) define a context. Example
constraints can be based on the molecular modality used. For example,
constraint EXP (for expression) and AFFY (for an Affymetrix platform)
when set in the pre-processing state will make available only the tools
suitable for the platform and modality.
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tools are used for discovery of univariate and multi-
variate prognostic or predictive signatures and clinically
relevant disease subtypes using each of the modalities
independently and in combination.

PAPAyA allows for patient-centric analysis and infor-
matics-assisted discovery to be performed systematically
in a pipeline that is fine-tuned to assist in answering
specific clinical questions. The analysis can be tailored to
be patient-centric or signature centric thereby allowing
for discovery or clinical decision support respectively. As
a way of introduction to our platform we present several
use scenarios of integrated analysis of multi-modality
retrospective breast cancer data [2,5,8].

Discovery using PAPAyA
In discovery, high-throughput molecular data is pro-
cessed using a series of tools that are available to the user
as the analysis progresses. Initially, the user selects one of
the filtering tools and based for example on selection of
gene expression data, the context of the analysis will
prompt PAPAyA to make available a set of tools such as a
genetic algorithm wrapper around a classifier designed
for gene expression data. This wrapper tool can be
executed multiple times using different configurations
using a different type of classifier to evaluate candidate
signatures. The result of this analysis is a set of candidate
signatures that the researcher can analyze and prioritize
based on the application of additional available tools in
this context. Figure 2 shows an annotated screenshot of
the PAPAyA interface to a list of signatures that classify
the patient as belonging to either luminal or basal
subtype. Here, one of the candidate signatures is
expanded to obtain information on their member
genes with access to gene cards and feature browser.

Discovered gene expression signatures can now be
further explored using the signature browser as a starting
point. The signature browser allows the user to navigate
among the various signatures, their component genes
and performance. Most importantly, based on the
current context, PAPAyA makes the appropriate tools
available to the user in a seamless manner. For example,
a tool to organize gene expression heatmaps by
histopathological parameters such as grade, ER status is
one such tool. This visualization provides an additional
level of detail in browsing specific gene expression levels.
Figure 3 shows the output of this tool. The user will
observe that the gene’s expression level also correlates
with the hormone status (under expressed in hormone
positive and over expressed in hormone positive) and
tumor grade (over expressed in grade I and II, and under
expressed in grade III). This tool thus enables the user to
gain insights into clinical associations that were not used

in the signature discovery process. This helps to assess
significance of the genes as well as confidence in the
signatures in which these genes are found.

The signature browser also links to tools that extend the
analysis to additional modalities for which data is
available. For example, when DNA methylation data is
available for the same sample set, the methylation
profiles of individual genes can be directly accessed
and visualized. Starting with methylation based signa-
tures in the signature browser, the user can explore the
underlying DNA methylation profiles of the loci that
constitute methylation signatures. Similar to the gene
expression example in Figure 3, DNA methylation data
can be organized around clinical groups, thus providing
additional information to the user. Figure 4 shows the
methylation state of one such locus in a set of breast
cancer samples stratified into normal and tumor tissues.
This tool can also be used in a clinical setting to assess
the confidence in patient stratification. In Figure 4, the
specific patient profile is shown together with the
samples from a related clinical study and the measure-
ment for this patient for this locus is marked. Here, there
is indication that the methylation profile of this patient
may be more similar to the normal samples rather than
tumors into which this patient is placed according to the

Figure 2
Summary and exploration of signatures. Different tools
and functionalities are highlighted in the dotted boxes.
Output from tool execution is shown in the central part of
the screen. Context-specific tools and Context information
remain on the screen at all times.
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diagnosis. Such indication and other stratifications can
be further used by the clinician to drive for example
therapy decisions.

Thus PAPAyA user interface provides the user with the
applicable tools based on the selected modality and
stage in the discovery process. Another important aspect
of this process is that the entire framework driving it is
easily extensible with additional tools and data, main-
taining the capability to work across multiple modalities.

Therefore, additional data collected for the same
samples, (Eg. microRNAs profiling or sequencing/muta-
tion information) can be easily added to the analysis by
adding tools and contexts to the flow to support
visualization and analysis of such data.

Clinical decision support
The same concepts as presented above are used in the
clinical decision support (CDS) mode of PAPAyA assists
in the interpretation of tumor profiles of specific
patients. In a patient-centric mode, we start by browsing
the basic clinical data such as tumor size, stage and
grade, and histopathological data such as hormone
receptor status (estrogen receptor ER and progesterone
receptor PR) and ErbB2 amplification as shown in
Figure 5. The clinical data explorer provides access the
molecular profiling data as well as the signatures derived
from high-throughput modalities such as gene expres-
sion, DNA methylation and copy number measure-
ments. Signatures derived in the discovery process are
applied to stratify the patient samples and can be used to
assign confidence in a stratification based on the
signature’s performance with respect to all patients in
the database. We present output from PAPAyA plat-
form’s CDS modules based on Support Vector Machine
based classifiers for predicting tumor subtype using gene
expression and clustering of DNA methylation profiling

Figure 3
The Feature Browser tool helps visualize
correlations between gene expression levels and
clinical parameters. Example of clinical data shown with
the expression of CRABP2 (cellular retinoic acid binding
proteins – a carrier protein for members of the vitamin A
family). Three heatmaps show the expression for this gene
grouped based on the clinical information. In the first
heatmap, hormone receptor status is used to group the
samples under positive (white bars in the first row) and
negative (black bars in the first row). In the second heatmap,
HER2 status is used to group the HER2 positive samples
(white bars), and HER2 negative (black bars). The third
heatmap groups the samples based on grade: grade I (white
bars), grade II (orange bars), and grade III (black bars). This
gene's expression level correlates with the hormone status
(under expressed in hormone positive and over expressed in
hormone positive) and tumor grade (over expressed in grade
I and II, and under expressed in grade III). This tool thus
enables the user to gain insights into clinical associations that
were not used in the signature discovery process. The tool
also can also generate heatmaps for any number of genes,
allowing joint assessment of the expression for multiple
expression profiles.

Figure 4
Methylation feature browser. The DNA methylation of a
single locus is a diagnostic marker from breast cancer. The
level of DNA methylation is indicated on the y axis, whereas
the x axis enumerates the samples. Here, all normal samples
are not methylated, and the cancer samples are. The point
marked with a black square indicates the methylation level of
a sample of interest – this is used to assess a methylation
profile in the context of a clinical study.
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data. In Figure 6 shows the results of a hierarchical
clustering algorithm used to stratify samples based on
their DNA methylation profiles. The patient’s profile is
visualized against all samples in a clinical study in the
form of a dendrogram and the figure inset shows the
patient sample marked with an ’X’. The homogeneity of
the subtree in which the patient’s sample appears
provides the clinician an indication of the confidence of
the prediction. In another example, to facilitate clinical
decisions based on the gene expression signatures, an
(support vector machine) SVM classifier provides predic-
tion of cancer subtype along with ameasure of confidence
in the prediction. In Figure 7, we provide part of a
screenshot showing the output of this CDS tool, where
the subtype prediction for the patient’s sample along with
the prediction probability is indicated.

The statistics and visualization we just described can be
used by clinicians to gain additional insights and tailor

the treatment to the physiological state of the patient.
Tools that implement additional standard tools such as
breast cancer clinical prognostic indices such as Notting-
ham Prognostic Index and St. Gallen Consensus can also
be easily incorporated into PAPAyA. Additionally,
integration of third party molecular signatures into the
platform is supported by the existing database structure.

Discussion
We designed and implemented PAPAyA as a platform
that can easily be used to integrate existing tools and
facilitate prototyping new ideas for clinical studies
support. It also provides new clinical tools around
multiple molecular modalities, standard clinical para-
meters and contexts defined by clinical experts. The
platform has flexible architecture and can incorporate
new modalities very easily. This flexibility still introduces
different practical challenges. For example, quality
control of new tools or tool updates is essential as well
as ensuring appropriate combinations of tools to avoid
derivation of wrong conclusions (e.g. use protocol
definitions).

To leverage the insights into the molecular state of
clinical samples, there has to be clinically-relevant
linkage across modalities. We have started deep integra-
tion of DNA methylation and gene expression in
PAPAyA, however we have to further include tools that
facilitate integration of the inherent dependencies
between the molecular and the standard histopatholo-
gical modality. Finally, it would be extremely useful to
integrate imaging data and utilize tumor morphology
and texture with the molecular signatures for applica-
tions such as prognosis and prediction.
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Figure 5
The Clinical Data Explorer. Access to clinical data for a
patient such as stage, grade ER and ErbB2 status.

Figure 6
Clinical decision support from DNA methylation
signatures. One patient's profile is visualized against all
samples in a clinical study in the form of a dendrogram. The
leaves of the dendrogram are annotated with tumor/normal,
and good/poor prognosis. In the figure inset, the patient is
marked with an 'X'.

Figure 7
Clinical decision support from gene expression
signatures. The gene expression signature that best predict
the cancer subtype for a patient is shown with its prediction
probability.
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