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Abstract

geometry.

Background: Clustering the information content of large high-dimensional gene expression datasets has
widespread application in “omics” biology. Unfortunately, the underlying structure of these natural datasets is often
fuzzy, and the computational identification of data clusters generally requires knowledge about cluster number and

Results: We integrated strategies from machine learning, cartography, and graph theory into a new informatics
method for automatically clustering self-organizing map ensembles of high-dimensional data. Our new method,
called AutoSOME, readily identifies discrete and fuzzy data clusters without prior knowledge of cluster number or
structure in diverse datasets including whole genome microarray data. Visualization of AutoSOME output using
network diagrams and differential heat maps reveals unexpected variation among well-characterized cancer cell
lines. Co-expression analysis of data from human embryonic and induced pluripotent stem cells using AutoSOME
identifies >3400 up-regulated genes associated with pluripotency, and indicates that a recently identified protein-
protein interaction network characterizing pluripotency was underestimated by a factor of four.

Conclusions: By effectively extracting important information from high-dimensional microarray data without prior
knowledge or the need for data filtration, AutoSOME can yield systems-level insights from whole genome
microarray expression studies. Due to its generality, this new method should also have practical utility for a variety
of data-intensive applications, including the results of deep sequencing experiments. AutoSOME is available for
download at http://jimcooperlab.mcdb.ucsb.edu/autosome.

Background

High-throughput whole-genome expression data gener-
ated by microarray and deep sequencing experiments
hold great promise for unraveling the genetic logic
underlying diverse cellular events and disease. Without
the application of sophisticated bioinformatics and sta-
tistical methods, however, these enormous datasets
invariably defy human analysis. For example, microarray
experiments generally yield tables of expression data in
which rows represent 20,000 to 50,000 different gene
probes, and columns (usually 4-20) generally represent a
wide variety of different cellular phenotypes. Such mas-
sive, high-dimensional datasets are increasingly gener-
ated by 21°" century research technology, and robust
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and practical methods for finding natural clusters in
complex microarray data will have broad application
beyond bioinformatics in in data-intensive fields ranging
from astrophysics to behavioral economics.

Several methods have come to predominate the clus-
tering of microarray data, none of which is ideally suited
for identifying the complex systems-level interactions in
genome biology [1-3]. A common approach uses bot-
tom-up hierarchical clustering (HC) to build a dendro-
gram representing a series of clusters and sub-clusters,
with cluster number ranging between one (all the data
in one cluster) and the dataset size N (each data point
in its own cluster). A discrete partitioning in HC
requires “pruning” the tree into a known number of
clusters. Methods for predicting the number of clusters
in a dendrogram vary in predictive accuracy and effi-
ciency [3,4]. Also, since HC greedily merges all of the
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data points into a locally connected dendrogram, local
decisions about cluster membership can misrepresent
global cluster topology [5]. Another strategy uses K-
means clustering to produce a clean partitioning of a
large dataset by minimizing the statistical variance
within k& clusters of d dimensions. The number of clus-
ters, k, is the key parameter for K-means partitioning,
and a cluster number prediction algorithm is also
important for accurately selecting k without prior
knowledge [3,4]. K-means clusters are generally limited
to hyper-spherical geometries, and the requirement that
all data must belong to some cluster may poorly repre-
sent relationships in a dataset containing outlier data
points.

Over the past decade, many additional unsupervised
clustering strategies have been proposed [6,7]. For
example, Affinity Propagation uses an instance of the
max-sum algorithm to identify exemplar data points
that represent cluster centers in the dataset, but is gen-
erally restricted to symmetrical clusters, and requires a
‘preferences’ parameter that ultimately determines the
number of clusters [8]. A different approach, non-Nega-
tive Matrix Factorization (nNMF), constitutes a class of
matrix multiplication techniques that has shown utility
for identifying compact, well-defined clusters in noisy
datasets [9]. Like K-means and HC, nNMF requires an
external cluster number prediction method (e.g. cophe-
netic correlation) and manual analysis to select the final
partitioning. Spectral Clustering methods utilize linear
algebra to perform an eigenvector decomposition of
input data followed by application of a suitable cluster-
ing method (often K-means) to cluster the transformed
data points. Although spectral clustering methods have
a mathematically robust foundation and work well for
identifying clusters of diverse shapes, eigenvector
decomposition steps are computationally-intensive, and
spectral clustering also requires cluster number as input
[10]. Unless data points are represented sparsely, Spec-
tral Clustering and Affinity Propagation both require O
(N?) space for N data points resulting in poor scalability
for very large datasets such as whole genome expression
data. Finally, most modern methods are not sensitive to
outlier data points, a potentially critical limitation for
cluster analysis of noisy gene expression datasets [7].

A powerful machine learning method widely used for
the visualization of high-dimensional data, called the
Self-Organizing Map (SOM), also has applications in
data clustering [11-17]. To identify k clusters, SOM
algorithms randomly initialize a regular lattice of k
nodes, and then through an iterative learning process,
similar input data points move toward each other in the
lattice and dissimilar input data points move away from
each other. As commonly applied, SOM clustering
requires a priori knowledge of cluster number and only
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finds clusters with hyper-spherical geometries. A useful
feature of the trained SOM is the U-Matrix, which pro-
vides a quantitative description of discontinuity in the
map. By liberally allocating nodes in the lattice, U-
Matrices can be used to identify potential cluster bor-
ders [13]. Two recent methods that exploit U-Matrices
for clustering include virtual flooding of U-Matrix “val-
leys” to create cluster “islands” [14], and HC of the U-
Matrix using novel cluster merging criteria [15]. These
approaches, however, are highly sensitive to critical
SOM parameters such as grid node number [15], or
grid topology and cluster shape [14]. In addition to
novel variants of the SOM that achieve explicit cluster-
ing of the node lattice, traditional clustering algorithms,
like K-means, have also been applied to the SOM node
lattice, though the number of clusters present in the
trained map still requires external prediction and may
not be accurately identified with circular cluster geome-
tries [16,17]. In addition, the stochastic initialization of
the node lattice required for proper self-organization
leads to significant output variation for SOM-based
clustering strategies. Taken together, these problems
have limited the utility of SOM approaches for unsuper-
vised clustering of microarray data.

Analysis of data generated by high-throughput biology
experiments would greatly benefit from a facile unsuper-
vised clustering method that addresses the drawbacks of
traditional and modern clustering methods (i.e. need for
cluster number prediction, restricted cluster geometry,
lack of outlier detection, output variance, and poor scal-
ability to large datasets). Here we report a novel SOM-
based method for Automatic clustering using density-
equalized SOM Ensembles, or AutoSOME. This new
method leverages the proven strengths of the SOM for
dimensional reduction and spatial organization of large
high-dimensional datasets, while addressing major lim-
itations of general data clustering strategies. After using
an SOM for initial data organization, AutoSOME applies
a density equalization technique from cartography [18]
to rescale the SOM output lattice, utilizes a minimum
spanning tree approach from graph theory to identify
data clusters and outliers, and then employs an ensem-
ble resampling technique over multiple SOM runs to
stabilize the output [19]. The performance of Auto-
SOME is evaluated using several benchmark datasets,
including standard machine learning datasets and pub-
licly available cancer and stem cell microarray data. Our
results demonstrate that AutoSOME benchmarks favor-
ably against other clustering methods with the signifi-
cant advantage that AutoSOME is able to identify the
number of clusters in the input dataset given an intui-
tive p-value threshold. In addition, when applied to
transcriptome analysis, AutoSOME readily identifies glo-
bal variation in tumor cell gene expression that is
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missed by other methods [5,9]. A network visualization
of the AutoSOME output powerfully illustrates the
underlying fuzziness found in these cancer cell tran-
scriptome data. Finally, the utility of the new method
for gene co-expression analysis is demonstrated by the
use of AutoSOME to identify a module of ~3400 up-
regulated genes in human pluripotent stem cells, includ-
ing 1165 genes constituting a large protein-protein
interaction network related to pluripotency. These
results establish that AutoSOME is a practical and
robust new method for clustering the information con-
tent of inherently noisy, often high-dimensional, gene
expression data, and for visualizing global transcriptome
profiles.

Results

Algorithm

The AutoSOME strategy is summarized in Figure 1. A
Kohonen SOM is employed to achieve both a dimen-
sional reduction and an initial organization of the input
data that preserves local, but not necessarily global,
topology (see two leftmost images of Figure 1A) [11,20].
By measuring the similarity between adjacent nodes, an
error or dissimilarity surface (i.e. U-Matrix) is calculated,
which is cubically rescaled to accentuate separation of
individual data clusters. Using the error surface, an
aggregation of similar data in the SOM is achieved by
repositioning the SOM nodes using the density-equaliz-
ing cartogram algorithm from geography (Figure 1B)
[18]. In this case, the density-equalizing algorithm treats
the high error, or high discontinuity, regions in the map
as high density, and the low error regions as low den-
sity, and uses a diffusion-based approach to globally
equalize the density of the error surface across the
entire map. Discrete data clusters of diverse geometries
are then identified from the density-equalized SOM
using the minimum spanning tree from graph theory, as
shown in Figure 1C[21]. Only minimum spanning tree
edges that meet a specified p-value threshold are kept,
resulting in the identification of statistically significant
node clusters and outliers.

A critical issue inherent in all stochastically initialized
clustering methods is output variation. To mitigate out-
put variance generated by the SOM step, the Auto-
SOME method uses an ensemble strategy, merging
multiple iterations of the clustering scheme to establish
fuzzy clusters that are ultimately resolved by sending
data points to clusters where they occur most fre-
quently. This is illustrated using a simple yet challenging
benchmark dataset consisting of two clusters of 3-
dimensional data that form a pair of interlocking rings.
The cluster output stabilized at maximum cluster qual-
ity with increasing ensemble runs (Figure 1D), and the
intersecting rings data were clearly resolved within 25
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Figure 1 Overview of the AutoSOME method. A simple dataset
consisting of four 2-D Gaussian distributions of data points, shown
on top, is used to illustrate the major steps of the AutoSOME
method. (A) Gaussian data points are mapped randomly to the
untrained SOM node lattice (left panel), and are organized onto the
planar SOM surface after training (middle panel), and the error
surface is then computed (right panel), with red representing nodes
with highly similar data content compared to neighbors (low error),
and blue representing nodes with dissimilar neighbors (high error).
(B) A density-equalization procedure treats nodes with high error
(Gaussian cluster boundaries) as high density and forces these
nodes away from each other while nodes with low error (within
clusters) have low density and are forced to aggregate. (C) A
Minimum Spanning Tree is built from the rescaled node
coordinates, and statistically significant point aggregations of diverse
geometries are detected in the dataset using Monte Carlo sampling,
resulting, in this case, in the identification of four major clusters
corresponding to the four Gaussian point distributions, along with
several outlier clusters and singletons (shown by colored nodes in
the rightmost image). (D) Impact of number of ensemble iterations
on the F-measure, reflecting cluster quality, using the dataset of two
interlocking rings (see Figure 2).
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Figure 2 Clustering of the interlocking rings dataset by AutoSOME with a statistical confidence metric. The classic and challenging
dataset consisting of two orthogonal interlocking rings [13] was analyzed using AutoSOME. (A) Clustering of the rings dataset with increasing
ensemble runs, where different colors represent output clusters. Complete resolution of the two rings was achieved following 25 ensemble
iterations. (B) A cluster confidence metric projected onto the rings dataset after 25 ensemble runs. The confidence metric for cluster membership
is based on the fuzzy clustering ensemble produced by AutoSOME, with conf(x, ) = 100 (blue) representing the case where data point x is
always in cluster j, and conflx, j) = 0 (red) representing the case where data point x is never placed in cluster j. See Ensemble averaging in
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iterations (see Figure 2A). As a consequence of the ran-
dom initialization of each SOM, AutoSOME also pro-
vides a statistical confidence metric for membership of
every data point to its assigned cluster that is a useful
filter for improving the signal to noise ratio (see Figure
2B). All of the important aspects of AutoSOME are
detailed in the Methods section, and the software is
freely available for download (http://jimcooperlab.mcdb.
ucsb.edu/autosome, [22]).

Testing

To evaluate the unsupervised clustering capability of the
AutoSOME method, we compared the performance of
AutoSOME with a variety of traditional and modern
clustering methods using several benchmark datasets.
We also tested AutoSOME on microarray datasets, and
compared the AutoSOME output to published results
obtained using HC, K-means, and nNMF clustering
methods. Finally, we evaluated the ability of AutoSOME
to identify modules of co-regulated genes from a large
microarray dataset with over 15K expression profiles,
and performed a detailed computational analysis of the
biological significance of the largest detected co-expres-
sion module.

Our benchmarking studies included seven diverse
datasets having defined cluster number and geometry,
including six datasets widely used by the machine learn-
ing community (see Additional file 1, Table S1). We
compared our new method to several clustering strate-
gies including K-means, HC, and Spectral Clustering.

Since AutoSOME, like all SOM-based methods, per-
forms a dimensional-reduction of input data, we also
combined K-means and HC with different dimensional
reduction methods for these benchmarking studies
(including Principal Components Analysis (PCA), SOM
and density-equalized SOM). The correct numbers of
clusters in each benchmark dataset were provided for
Spectral Clustering and all K-means and HC methods.
The accuracy of cluster assignments by each method
was assessed with the commonly used F-measure as well
as Normalized Mutual Information (NMI) metrics
[4,14]. Over a diverse range of benchmark datasets,
AutoSOME clustering, with no a priori knowledge
about cluster number, outperformed most HC methods
and performed at least as well as K-means, Ward’s HC,
and Spectral Clustering methods (Figure 3 and Addi-
tional files 1 and 2). We note that K-means and HC
have previously been applied to the SOM for clustering
[15,16]. Importantly, density-equalization of the SOM
node lattice led to a considerable improvement in clus-
ter quality for all tested clustering methods, including
K-means, compared to clustering the unscaled lattice
(Additional files 1 and 2).

Whole-genome expression data are commonly repre-
sented in tabular form, where columns are feature vec-
tors reflecting individual cellular transcriptomes and
rows are feature vectors representing the expression of
individual genes. Clustering methods applied to these
data identify distinct cellular transcriptome classes or
modules of co-expressed genes or gene variants. We


http://jimcooperlab.mcdb.ucsb.edu/autosome
http://jimcooperlab.mcdb.ucsb.edu/autosome

Newman and Cooper BMC Bioinformatics 2010, 11:117
http://www.biomedcentral.com/1471-2105/11/117

Page 5 of 15

Clustering; PCA = Principal Components Analysis).

AutoSOME 100X — ----- + -4
AutoSOME 10X b---| B |-
Spectral Clustering H + -1
HC-Ward's | F----1 |+ s
K-Means - F----- +I --4
K-Means PCA - F- + i - -4
HC-Average - F - N [E— 1
HC-Complete { o }--- Il{ o
| | 1 | | \
0.5 06 0.7 0.8 0.9 1.0
F-measure

Figure 3 AutoSOME benchmarking. AutoSOME performance is compared to common clustering methods by clustering seven diverse
benchmark datasets (see Additional file 1 for datasets and details of the entire benchmarking comparison; AutoSOME method with circular node
topology is shown here). All clustering methods, apart from AutoSOME, were provided with the benchmark number of clusters for each dataset.
Boxplots (created in R [56] using default boxplot parameters) represent the distribution of F-measure scores for all benchmark datasets. An F-
measure score of 1 represents a perfect solution. (+ denotes mean F-measure, and vertical bars denote median F-measure; HC = Hierarchical

tested the ability of AutoSOME to cluster transcriptome
data using a previously “filtered” cancer cell expression
dataset representing 2093 gene probes, and three lym-
phoma tumor types (42 Diffuse Large B-cell Lymphoma
(DLBCL) lines, 9 Follicular Lymphoma (FL) lines, and
11 Chronic Lymphocytic Leukemia (CLL) lines) [5,23].
AutoSOME output is effectively visualized using a net-
work diagram in which nodes represent the transcrip-
tome of each tumor line and edges between nodes are
weighted by the fraction of times specific cell pairs were
co-clustered by AutoSOME over all ensemble iterations.
As shown in Figure 4A, AutoSOME effectively partitions
57 of 62 cell lines into three major clusters. The remain-
ing five lines were identified as outliers and clustered
into three classes, two FL, two CLL, and a singleton
DLBCL. In all cases these outlier transcriptomes are
most closely related to the large cluster representing the
correct tumor types. None of the cell lines were misclas-
sified by AutoSOME. By contrast, as previously shown,
when provided the “correct” number of tumor classes, k
= 3, K-means forces every transcriptome into one of the
three clusters, and makes one misclassification [5]. We
used HC to construct a dendrogram representing this
data (Figure 4B), but simple orthogonal slices of this
tree are unable to cleanly resolve the three tumor classes

(see [5]). Three major trunks on the hierarchical tree,
involving 56 of 62 branches, can be manually identified,
while the remaining six branches include all five outlier
lines found by AutoSOME and an additional DLBCL
singleton. Because local distance decisions are used to
build hierarchical trees, relationships of outlier lines to
the major clusters can be lost. This limitation is illu-
strated in the dendrogram shown in Figure 4B where
both singleton DLBCL lines cluster closer to the FL/
CLL lineage than the DLBCL lines. In contrast, Auto-
SOME effectively captures the relationships between
outlier transcriptomes and the three major tumor types.
A relatively new method, based on non-Negative
Matrix Factorization (nNMF), has shown utility for tran-
scriptome clustering given a pre-specified number of
clusters manually estimated using a cophenetic correla-
tion procedure [9]. To compare AutoSOME to nNMF
clustering, we analyzed the cancer transcriptome dataset
used by [9], consisting of 5000 gene probes representing
11 acute myelogenous leukemia (AML) tumor lines and
27 acute lymphoblastic leukemia lines, including 19 B-
cell (ALL-B) and 8 T-cell (ALL-T) tumor lines [24]. A
network visualization of the AutoSOME output (Figure
5A) shows that AutoSOME places 34 of the 38 lines
into three major clusters, and identifies outlier data
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Figure 4 Fuzzy cluster network highlights variation among tumor cell lines. (A) Network diagram illustrating the AutoSOME transcriptome
analysis of 42 Diffuse Large B-cell Lymphoma (DLBCL) cell lines (circular nodes), 9 Follicular Lymphoma (FL) cell lines (diamond nodes), and 11
Chronic Lymphocytic Leukemia (CLL) cell lines (rounded-square nodes) [5,23]. Nodes are colored by cluster membership. Numbers represent
individual cell lines according to their order on the original microarrays. Edges represent the pairwise affinity between any two cell lines, defined
as the extent to which particular pairs of cell lines are co-clustered by AutoSOME (0 = cells are never co-clustered to 1 = cells are always co-
clustered). The diagram was generated in Cytoscape 2.6.0 using the Edge-weighted Spring Embedded layout algorithm [34]. (B) HC of the same
cell lines using Uncentered Correlation and Average-Linkage. Cell lines are numbered and colored as in Panel A. The cancer dataset was
hierarchically clustered using the software tool, Cluster [1] and the resulting dendrogram was visualized using Java TreeView [57].
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representing a cluster of two ALL-T lines, and singleton
ALL-B and AML lines. Like nNMF, AutoSOME makes
two classification errors in clustering these data (lines 6
and 29 according to the original cell sample labels, or
lines 6 and 10 in the Supplemental Fig. nine published
by Brunet et al. [9]).

An important drawback of previous SOM-based clus-
tering methods, as noted in [9], is the instability of clus-
ter assignments (i.e. output variation), ultimately due to
the random initialization of the SOM node lattice.
Because AutoSOME merges individual runs with an
ensemble averaging approach, the method should, in
principle, tackle this limitation for both clean and noisy
datasets. To measure output variance, we use pairwise
affinity, a co-clustering metric defined as the fraction of
times a given pair of cell lines cluster together. Pairwise
affinities can range from 0 (cells never co-cluster) to 1
(cells always co-cluster). As expected for an SOM-based

method applied to noisy microarray data, AutoSOME
output appears meta-stable. This is illustrated in Figure
5B by a heat map representing the pairwise co-cluster-
ing of leukemia cell lines over 500 ensemble iterations.
By combining the discrete output from five separate
AutoSOME runs (each with 500 ensemble iterations),
pairwise affinities demonstrate that AutoSOME robustly
resolves fuzzy clusters into discrete classes over inde-
pendent runs (Figure 5C). Rather than being a limita-
tion, AutoSOME leverages the random initialization of
the SOM node lattice to sample a larger solution space
and effectively capture fuzzy data relationships. In con-
trast, nNMF like K-means, requires an explicit cluster
number a priori and overlooks outlier cell lines that
represent the natural fuzziness in whole genome expres-
sion data. We also note that the random initialization of
the node lattice naturally renders AutoSOME insensitive
to the order of input data points.
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Figure 5 Robust resolution of fuzzy clusters. (A) Fuzzy cluster network showing the AutoSOME transcriptome analysis of 11 Acute
Myelogenous Leukemia cell lines (AML, circles) and 27 Acute Lymphoblastic Leukemia cell lines (ALL), comprised of 19 B-cell lines (ALL-B,
diamonds) and 8 T-cell lines (ALL-T, rounded-squares) [9,24]. Nodes are colored by cluster membership, and numbers represent individual cell
lines as originally ordered [9]. Cytoscape network parameters are the same as those used in Figure 4. (B) The same AutoSOME output is shown
by a hierarchically reordered heat map, illustrating the considerable fuzziness of cell-cell co-clustering over 500 ensemble iterations (E = 500). The
diagonal represents self-comparison of each cell line while off-diagonal colors denote cell-cell pairwise affinities as defined in Figure 4. (C) A
hierarchically reordered heat map of final cluster assignments averaged over five independent AutoSOME runs (each £ = 500) illustrates the
consistent resolution of the fuzzy clusters into discrete, non-overlapping clusters. Hierarchically reordered heat maps shown in Panels B and C

were generated using PermutMatrix software [58].

Gene co-expression analysis is used to globally identify
sets of genes with similar patterns of expression that
underlie important cellular phenotypes. By finding gene
modules correlating with differentiation, stress resis-
tance, disease, or pluripotency, for example, co-expres-
sion analysis can reveal significant systems-level
regulatory networks, and represents another important
application of unsupervised clustering. We tested the
ability of AutoSOME to identify co-expressed genes by
reanalyzing a large, recently published Gene Expression
Omnibus [25] dataset (GSE11508) comprised of diverse

stem cell and somatic cell phenotypes [26]. Transcrip-
tome clustering of this dataset using a bootstrapped ver-
sion of nNMF, followed by a comparison of
transcriptome classes for significantly enriched interac-
tion networks, was used to identify PluriNet, a protein-
protein interaction network consisting of 299 genes sig-
nificantly associated with pluripotency. AutoSOME co-
expression clustering of the GSE11508 data identified 48
distinct gene co-expression clusters, and one singleton
gene. Several of the smaller clusters correspond to
known phenotypic classes, including umbilical vein
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Figure 6 Genes significantly up-regulated in pluripotent stem cells. (A) Heat map representation of AutoSOME co-expression analysis of the
microarray data GSE11508 [26] showing all gene expression clusters. The heat map is ordered from left to right by decreasing cluster size, and
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pluripotent stem cells (orange); ESC, undifferentiated embryonic stem cells (yellow); GCT, germ cell tumor cells (black). Cluster No. 1 represents
genes up-regulated primarily in pluripotent stem cells (PluriUp). Several other clusters are labeled below the heat map. Cell lines were
hierarchically reordered using Cluster software [1] and the heat map was generated with Java TreeView [57]. (B) Venn diagram demonstrating
that the PluriUp gene cluster shares 256 genes with PluriNet, a highly significant overlap as determined by Fisher's Exact Test (p < 107"°). (C) The
highly interconnected protein-protein interaction network called PluriPlus, consisting of 1165 PluriUp genes, is illustrated as a network diagram.
Genes are positioned in the network according to subcellular localization (Gene Ontology from Human Protein Reference Database [31]). Genes
found in both PluriUp and PluriNet are colored purple, and genes found exclusively in PluriUp are colored blue. The network diagram was
generated using the Cerebral plugin [59] of Cytoscape 2.6.0 [34].
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endothelial cells, embryoid bodies, and undifferentiated
teratocarcinoma cells. The largest cluster contains
approximately 3400 genes that are up-regulated in pluri-
potent stem cells (Figure 6A). Based on this co-expres-
sion pattern, this gene module is called PluriUp.

We further analyzed the PluriUp gene set for evidence
of biological significance using a variety of approaches.
Gene ontology enrichment (Database for Annotation
Visualization and Integrated Discovery (DAVID[27])
shows that PluriUp genes are significantly enriched for
cell cycle, regulation of transcription/translation, and
chromatin remodeling functions, consistent with pre-
vious studies [26,28] (see Additional file 3, Table S3).
Gene Set Enrichment Analysis (GSEA, [29]) was also
used to compare PluriUp genes to other sets of genes
reported to be up-regulated in embryonic stem cells
(ESCs) [26,30]. As shown in Additional file 3, Table S4,
PluriUp genes achieved the greatest enrichment for
pluripotent stem cell expression from the GSE11508
dataset. Within the context of six additional GEO data-
sets consisting of human fibroblast, induced pluripotent
stem cell (iPSC), and ESC lines (see Additional file 3,
Table S5), the PluriUp genes likewise achieved the high-
est enrichment scores for both iPSC and ESC lines (see
Table S4).

Notably, the PluriUp gene module contains 86% of the
PluriNet genes (Figure 6B), a highly significant overlap
by Fisher’s exact test (p < 10™'°, Additional file 3, Table
S6). Since PluriNet represents only genes whose pro-
ducts compose a large protein-protein interaction net-
work, we examined PluriUp for similar network
interactions using a database of 38,806 experimentally
verified protein-protein interactions (Human Protein
Reference Database (HPRD) release July 6, 2009 [31]).
Within PluriUp we identified 1165 genes that encode an
interconnected protein network that we call PluriPlus
(Figure 6B and 6C; also see Additional file 4, Tables S7-
S9 for raw network data and see Additional file 5 for a
high-resolution image). Large fractions of both the Plur-
iPlus (200/1165) and PluriUp (459/3421) genes are
known to bind at least one of the ESC-specific tran-
scription factors, OCT4, SOX2, and NANOG (p < 10’5)
[32] (Additional file 3, Table S6). In addition, the Pluri-
Plus interaction network is significantly enriched in
genes involved in the Wnt, Notch, EGFR1, and/or TGF-
Beta Receptor signaling pathways [31,33] (Table S6).
Furthermore, PluriPlus genes show the highest levels of
up-regulation in ES and iPS cells, compared to other
cellular phenotypes (p < 10™'° by Wilcoxon Rank-Sum
Test; Additional file 6, Figure S2). Taken together, these
results demonstrate the practical utility of AutoSOME
for the identification of robust gene co-expression clus-
ters, such as PluriUp, without prior knowledge of data
structure or cluster number.
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Software implementation

The AutoSOME method is implemented as a platform-
independent JAVA software tool and is available at [22].
In addition to invocation from the command-line, Auto-
SOME can be launched within an intuitive Graphical
User Interface environment (GUI). The GUI includes
several tools for exploring the cluster output, including
the generation of publication-quality heat maps as well
as real-time editing and filtration of clusters using the
confidence metric (see Figure 2B). The AutoSOME web-
page also contains all datasets analyzed in this paper,
supporting documentation, a tutorial, and instructions
to make fuzzy cluster network displays using Cytoscape
[34]. For details on how AutoSOME processes input
files see Input in Additional file 7. In addition to simple
tabular input, AutoSOME accepts common microarray
file formats: PCL (i.e. Pre-CLuster format implemented
in the Cluster software [1]) and raw series matrix text
files available from the Gene Expression Omnibus [25].

Discussion

Increasing advances in computing technologies along
with methods for rapidly analyzing diverse living and
non-living systems are catalyzing a new era of scientific
investigation characterized by a pervasive and critical
role for unsupervised data-mining methods. In a
recently published comparison of forty clustering algo-
rithms applied to gene expression and network analyses
[7], the following set of desirable features for unsuper-
vised clustering algorithms were proposed: 1) scale well
in memory and running time with increasingly large
datasets, 2) detect distant outliers, 3) produce consistent
output regardless of the ordering of input data points,
4) require minimal user input, 5) support both numeri-
cal and categorical data types, and 6) identify clusters of
diverse geometries. We developed a new unsupervised
clustering method for “omics” biology, called Auto-
SOME, to satisfy the above criteria (with the exception
of (5) which remains the subject of future work). We
rigorously evaluated the performance of AutoSOME by
comparison to other clustering methods including Spec-
tral Clustering and variations of K-means and HC with
and without dimensional reduction. Based on two differ-
ent metrics of cluster quality, AutoSOME, without spe-
cification of cluster number, performed at least as well
Spectral Clustering, K-means and Ward’s HC methods,
and achieved better results than three flavors of HC (see
Figure 3 and Additional file 1, Figure S1).

AutoSOME has significant advantages over many clus-
tering methods commonly used in bioinformatics
research. In particular, AutoSOME identifies clusters of
diverse geometries along with outlier singletons without
prior knowledge of cluster number, and processes whole
genome microarray datasets in practical running time
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using a desktop computer. AutoSOME is similar in con-
cept to another approach based on moving SOM nodes
during the training process to identify aggregated node
clusters using hierarchical tree cutting [35]. In contrast
to this previous work, however, AutoSOME globally
rescales the node lattice after training, identifies clusters
using a statistical significance cutoff, and uses ensemble
averaging to stabilize results, thus avoiding errors due to
local decisions, dendrogram pruning, and stochastic
initialization. Another recently developed clustering
method based on ensemble averaging of K-means clus-
ters also predicts cluster number and shape, but requires
N? space for N data points, limiting this method to
small datasets [36]. In its current form, the AutoSOME
method does not identify genes whose co-regulation is
restricted to a subset of arrays (see e.g., [37-39]). This is
often accomplished by bi-clustering, a class of techni-
ques that identifies “checkerboard patterns” by the
simultaneous clustering of both rows and columns. A
bi-clustering extension of AutoSOME is the subject of
future work.

Interpretation of whole genome expression data gener-
ated by microarray or deep sequencing technologies
requires a robust method to compare global gene
expression patterns. To illustrate the practical utility of
AutoSOME for gene expression studies, we re-analyzed
several microarray datasets representing gene expression
in tumor cell lines and pluripotent stem cells. Data
shown in Figures 4 and 5 demonstrate that AutoSOME
identifies important classes of cancer cells. By combin-
ing the fuzzy and discrete components of AutoSOME
results, significant variation among cancer cells was
readily visualized using an intuitive fuzzy cluster net-
work approach. Although the existence of heterogeneity
among cancer cells has important implications for can-
cer biology (e.g., clinical diagnostics, prediction of che-
motherapeutic outcomes), such inherent cell variation is
not detected by common divisive clustering methods,
like K-means, that force all data points, including out-
liers, into k clusters reported as separate and distinct
entities. Furthermore, while HC methods, by their nat-
ure, show differences within and among clusters, such
variation can be difficult to discern in complex dendro-
grams having numerous branches, although some tree-
pruning algorithms are beginning to address this pro-
blem [40]. In the cancer cell data originally generated by
Alizadeh et al. [23], for example, HC successfully identi-
fies outlier cell lines (Figure 4B), but the three major
cell clusters cannot be resolved by horizontally cutting
the tree, and the placement of some cell lines on the
tree clearly reflects local decisions that distorted the glo-
bal topology of the data (e.g., tumor lines 62 and 41 in
Figure 4). The visualization of fuzzy cluster networks
identified by AutoSOME provides a more
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comprehensive picture of natural cluster structure than
common unsupervised clustering methods, and should
be valuable as a general strategy to study global cell-cell
variation.

Gene co-expression analysis represents another power-
ful method for elucidating the regulatory logic within
genomes, and HC has played a prominent and useful
role in unsupervised co-expression clustering [1]. Unfor-
tunately, common HC algorithms scale, at best, quadra-
tically in time with increasing dataset size [3,6]. Thus, to
achieve practical computational running times for most
HC methods, whole-genome microarray datasets typi-
cally need to be reduced in size by filtration of the pri-
mary data, often by applying arbitrary differential
expression thresholds (e.g. log, fold change between
minimum and maximum expression values >2). A popu-
lar alternative to unsupervised clustering identifies co-
regulated genes among a predetermined, usually small,
number of sample classes using statistical tests, for
example Student’s t-test or ANOVA. Like HC, however,
these methods also involve filtering genes by arbitrary
criteria, such as a statistically significant difference and
predetermined minimum fold change (e.g. 2 classes: Stu-
dent’s t-test p < 0.05 and minimum log, fold change =
1.5; e.g. [41]). By filtering the primary data before analy-
sis, both approaches can discard thousands of genes,
many of which could have biological relevance (e.g. fold
change = 1.4). Further, by averaging across sample repli-
cates to compute fold change between classes, cell sam-
ples with stochastic or even meaningful spiking patterns
are absorbed and lost, potentially introducing false-posi-
tives [42]. By contrast, because AutoSOME efficiently
clusters whole-genome datasets without any assump-
tions about class membership, clustering results are
determined by natural cluster structure of the entire
dataset. This allows AutoSOME to detect and visualize
unexpected expression patterns, such as cell subtypes or
stochastic noise. AutoSOME co-expression analysis can
also detect biologically significant genes with subtle dif-
ferential expression patterns that might otherwise be
missed. After clustering, appropriate class-based statisti-
cal tests like Student’s t-test, ANOVA, or Gene Set
Enrichment Analysis [29] can be used to evaluate
significance.

To demonstrate the capability of AutoSOME for
whole-genome co-expression analysis, we reanalyzed a
publicly available metadataset (GSE11508) of diverse
human cellular phenotypes including 48 ESC and 3
iPSC lines. Application of AutoSOME co-expression
analysis to the GSE11508 dataset readily revealed promi-
nent clusters of co-regulated genes, one of which con-
tains >3400 genes primarily associated with pluripotent
stem cells. This PluriUp cluster is several times larger
than previously reported sets of genes up-regulated in
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human pluripotent stem cells [30,43], and remarkably,
constitutes about 17% of the human genome. A variety
of bioinformatics analyses revealed that PluriUp is sig-
nificantly enriched in ESC-associated cellular functions
and genes bound by ESC-associated transcription fac-
tors. Due to the relative scarcity of iPS lines in the
GSE11508 dataset, we assembled a new metadataset
containing 12 fibroblast, 8 ESC, and 42 iPSC lines from
multiple reprogramming experiments (see Additional
file 3, Table S5), and found that PluriUp is likewise sig-
nificantly enriched in iPS and ES cell types over fibro-
blast cell lines, suggesting that PluriUp genes are indeed,
pluripotency-associated, and not likely to be an artifact
of the primary GSE11508 dataset. Within the PluriUp
gene set, we also identified a large protein-protein inter-
action network significantly up-regulated in pluripotent
stem cells containing 1165 genes, or about 6% of the
human genome, which substantially expands upon a
recently published pluripotent network, PluriNet, con-
taining only 299 genes [26] (see Figure 6 for PluriPlus
network, see Additional file 4, Tables S8 and S9, for
edges and nodes, respectively; see Additional file 5 for a
high-resolution image of the PluriPlus network with
HUGO gene names). In addition to sharing 214 genes
with PluriNet, PluriPlus is significantly enriched in both
important ESC signaling pathways and genes with ESC-
associated transcription factor binding sites (see Addi-
tional file 3, Table S6). Taken together, both PluriUp
and PluriPlus were easily identified, suggesting that a
comparable workflow based on AutoSOME co-expres-
sion analysis coupled with additional bioinformatics
tools can readily lead to the discovery of co-regulated
genetic networks from myriad cellular systems.

Conclusions

We have shown through benchmarking and validation
using publicly available machine-learning datasets and
microarray data that AutoSOME is a robust cluster dis-
covery method for high-throughput biology. AutoSOME
exploits the strengths of the SOM algorithm for unsu-
pervised spatial organization and dimensional reduction
of large, unfiltered input datasets while mitigating its
shortcomings for data clustering (spatially-fixed lattice
of nodes, hyperspherical cluster geometries, output var-
iance) using a novel combination of density-equalization,
minimum spanning tree clustering, and ensemble aver-
aging strategies. In addition to predicting the number of
clusters without shape restrictions, AutoSOME identifies
outlier data points, a potentially critical feature for mod-
eling natural cluster structure that is unavailable in
common methods. Further, ensemble averaging reveals
the underlying fuzziness of data clusters, which is quan-
titatively recorded as a cluster confidence metric and
usefully visualized by fuzzy cluster networks.
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Transcriptome analysis using AutoSOME consistently
and intuitively characterized significant cell-cell variation
in cancer cell lines, and gene co-expression analysis
revealed thousands of genes up-regulated in pluripotent
stem cells, including 1165 genes composing a large pro-
tein-protein interaction network. Based on these results,
we conclude that AutoSOME should have immediate
utility for researchers seeking to discover natural data
classes from a variety of large complex datasets in biol-
ogy and beyond.

Methods

Datasets

Five of the seven benchmark datasets described in Addi-
tional file 1, Table S1 (Dermatology (derm), Iris, Breast
Cancer Wisconsin (Original) (wisc), Wine, and Zoo),
were downloaded from [44]. The other two benchmark
datasets in Table S1, synthetic bars consisting of 6
evenly-spaced vertical lines (100 points each) with 1
horizontal line above and another below (152 points
each), and interlocking rings ([13], see Figure 2), are
available on the AutoSOME website [22]. Columns of
all seven datasets were normalized into range 0-100
prior to clustering. The Alizadeh et al. [23] and Goto et
al. [24] filtered microarray datasets from different tumor
cell lines were downloaded from the authors’ website
[45] and PNAS [9], respectively. GSE11508 was down-
loaded from the Gene Expression Omnibus (GEO, [25]
as a quantile-normalized file, while the additional GEO
datasets [46-50] (listed in Additional file 3, Table S5)
were downloaded as raw CEL files and normalized
together with Robust Multi-Chip Averaging (RMA)
using the Affymetrix Expression Console software.

Self Organizing Map

Let T denote the input dataset consisting of |T| vectors
with dimensionality d. The SOM method utilizes a regu-
lar lattice of n nodes, which through a process of itera-
tive learning, becomes organized in a manner that
preserves and displays local topological relationships
among the members of T. Our implementation of the
SOM consists of a 2-D (circular or square) array of
nodes #, {1y, ny, ..., 1,,}, where each node #; consists of
a feature vector of weights identical in dimensionality to
the input T [11]. Training of the SOM is accomplished
with randomly selected training examples ¢t € T over
two phases of I iterations each (I = 1000 by default),
with the second phase devoted to fine-grained learning
(learning parameter = 0.9 and 0.1 for first and second
phases, respectively; see [11]). Both the learning para-
meter and neighborhood radius (1/2 grid and 1/4 grid
size for first and second phases, respectively) exponen-
tially decrease with increasing iterations. In addition,
our SOM implementation automatically computes the
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number of nodes |x| given the input size |T| (see SOM
node topology in Additional file 7 for details).

Error surface calculation

The error surface En represents the continuity among
trained nodes and is exploited for clustering by global
spatial transformation (see Density equalization of error
surface). Note that En is analogous in concept to the U-
Matrix visualization method [13], and is called ‘error
surface’ due to limitations of the SOM for global topol-
ogy preservation [20]. Adjacent nodes with high error
are very dissimilar while neighboring nodes with low
error are likely part of a node cluster (see Figure 1A).
En is calculated as follows:

-1
Dmax

. Dn j
En; =min| ————,1 |, where
Vnjen
1) Dl’l/‘ = ||n]||,
||-|| = Euclidean distance between n; and directly
adjacent nodes n*
ii) Dmax = %%(Dn])
iii) Softening parameter 0 deflates the contribution
of higher Dn; to En; when 6 > 1 (= 1.5 by default),
and thus reduces the influence of outlier nodes.

A cubic transformation of the SOM error surface was
empirically determined to yield better separation and
clustering compared to linear density equalization. The
error surface is thus En; < Enjo‘, Vne n, where a = 3 by
default. While more sophisticated methods are possible,
such as modeling the error surface by a probability den-
sity function [14], the method presented here worked
well in our benchmarking experiments.

Density equalization of error surface

A critical and novel feature of AutoSOME is the appli-
cation of a Density-Equalizing cartogram (DE) algorithm
[18] to globally distort the completely trained SOM
node lattice such that any clusters present in the node
lattice are converted into spatial point aggregations.
Input to the DE algorithm is a set of geographic regions
and corresponding census values. To meet the input
requirements, each node is treated as a unit area square
with top-left corner coordinates equal to its SOM grid
position. In addition, each error value En; becomes the
local population density. Nodes with high error thus
have high population density, and will be inflated, while
nodes with low error have low density and will be
deflated. By distorting each node square in proportion
to Enj, the density-equalizing spatial transformation,
n,-D L« n;, converts implicit SOM cluster structure into
explicit spatial point aggregations (see Figure 1B). Note
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that for efficient implementation, the cartogram dimen-
sions must each be a power of 2 (by default, AutoSOME
uses 64 x 64). Final node coordinates are computed as
the center of resulting density-equalized boundary
coordinates.

Minimum spanning tree clustering

As illustrated in Figure 1C, to detect clusters C of
diverse geometries within nPE, all nodes are used to
build a Minimum Spanning Tree (MST), M. The MST
graph connects all nodes n by edges e with minimum
total distance and no loops. The longest edges of M are
iteratively removed until all edges meet a user-defined
p-value threshold (< 0.1 by default). The resulting edges
e* compose a set of minimum spanning trees M* that
define (1+e-e*) clusters within the input 7. Importantly,
this process allows for singleton identification. Monte
Carlo sampling is used for calculating p-values of all
edges in M by comparison to edges from B random
minimum spanning trees comprised of the same num-
ber of nodes in the same bounded space as M [21]. By
setting B equal to a wide range of values (1-10000), a
default value of f = 10 was determined to yield an effec-
tive compromise between accurate p-value estimation
and practical running time.

Ensemble averaging

A principal feature of AutoSOME is the implementation
of an ensemble resampling method to increase output
stability and cluster quality. The algorithm is cyclically
run on the input dataset T from the SOM through MST
clustering steps a total of E times. All runs r, {ry, ry,..., 7£},
are then averaged using a novel ensemble procedure
based on a previously described method [51] (see Ensem-
ble averaging in Additional file 7 for implementation
details). In general terms, the number of clusters in each
run is initially adjusted to equal the mean number of
clusters from all runs . Next, a matrix F is constructed
with |T| rows and g columns. After integrating all clus-
ters from r, F will become a fuzzy clustering matrix,
whereby each data item can belong to more than one
cluster with fractional membership. Finally, F is resolved
into a discrete set of clusters by placing data points into
the clusters where they occur most frequently. Impor-
tantly, this process provides a cluster confidence metric
for each data point (for details, see Ensemble averaging,
Cluster Confidence Metric in Additional file 7).

Microarray data processing and analysis

Both cancer datasets were unit variance normalized and
converted into distance matrices using Euclidean distance
prior to clustering as described in the Input section of
Additional file 7. After extensive experimentation using
microarray datasets available at [45], Euclidean distance
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was empirically chosen over Pearson’s or Uncentered cor-
relation metrics for this analysis as it gave results closest
to previously known cellular phenotypes. For complete-
ness, Euclidean distance and both correlation metrics are
included as a user-defined parameter in our implementa-
tion of AutoSOME. The GSE11508 dataset was log, scaled
followed by unit variance normalization of arrays, median
centering of genes and arrays (to eliminate amplitude
shifts), and finally, normalization of genes/arrays such that
the sum of squares of each row/column = 1. Further,
probes of the GSE11508 dataset were converted into
Human Genome Organization (HUGO) gene symbols
using the IlluminaV1 probe legend obtained from the
website that accompanies [26,52]. All gene identifiers were
then collapsed into a non-redundant set by averaging
expression values for genes represented by more than one
probe, resulting in 13,056 genes (n for all statistical ana-
lyses). Probes without corresponding gene symbols were
not analyzed. In addition, updated HUGO symbols
(obtained from [53]) were mapped onto the entire PluriUp
and PluriPlus gene sets and are made available as Addi-
tional file 4, Table S7.

Cancer microarray datasets and the GSE11508 expres-
sion dataset were clustered by AutoSOME using 500
and 100 ensemble iterations, respectively. All datasets
were run with MST p-value < 0.1. In addition, all micro-
array datasets were given a maximum SOM grid size of
20 x 20, a minimum of 5 x 5, and run with circular
node topology (see SOM node topology in Additional file
7 for details). All tests and analyses were performed
using a 2.4 GHZ Intel Core 2 Quad CPU with 1.6 GB
RAM allocated to the Java Virtual Machine.

Gene functional analysis

We used a variety of methods to analyze the biological
significance of PluriUp and PluriPlus gene sets. Gene
Set Enrichment Analysis (GSEA, [29]) takes gene sets,
an expression dataset, and phenotype labels as input,
and computes enrichment scores of each gene set for
one of two phenotypes (e.g. pluripotent stem cells versus
other cell types). We used the following gene sets for
GSEA: PluriUp gene set (>3400 genes), 532 genes
extracted from [30], 299 PluriNet genes [26], and 2000
genes randomly drawn from GSE11508. GSE11508 and
the metadataset described in Table S5 were used as the
expression datasets for GSEA. DAVID [27,54] was used
to compute gene ontological enrichment. To identify
genes with ESC-transcription factor binding sites, the
PluriUp/PluriPlus gene sets were compared to genes
with OCT4, SOX2, or NANOG binding sites reported
by [32]. Genes involved in important stem cell signaling
pathways were downloaded from [33]. Finally, the Pluri-
Plus interaction network was assembled using the
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protein-protein interaction dataset downloaded from the
Human Protein Reference Database (Release 8, July 6,
2009; [31,55]). To determine statistical significance of
overlapping gene sets (e.g. PluriPlus and PluriNet), Fish-
er’s one-sided exact test was used with n = 13,056
unique genes (GSE11508 dataset), and was limited to
genes contained in the GSE11508 dataset. The Wilcoxon
Rank-Sum Test was used to determine the statistical sig-
nificance of PluriPlus gene expression levels up-regu-
lated in pluripotent stem cells compared to other cell
types (see Additional file 6, Figure S2). All statistical
analyses were performed using R [56].

Additional file 1: Benchmarking analysis. Table S1, Description of
benchmark datasets; Figure S1, AutoSOME performance compared to
seven clustering methods, including six methods with and without four
different dimensional reduction techniques; Additional references.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
117-S1.PDF]

Additional file 2: Table S2. F-measure and NMI for each benchmarking
dataset an clustering method.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
117-S2.XLS]

Additional file 3: Analysis of PluriUp and PluriPlus biological
significance. Table S3, PluriUp gene ontology functional enrichment;
Table S4, Gene Set Enrichment Analysis of PluriUp genes; Table S5,
Summary of microarray metadataset assembled from 5 iPSC
reprogramming experiments; Table S6, PluriUp and PluriPlus genes
significantly overlap with ESC-associated genes.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
117-S3.PDF]

Additional file 4: PluriUp and PluriPlus gene list and raw interaction
network. Table S7, Updated HUGO gene symbols for PluriUp and
PluriPlus; Table S8, Edges of PluriPlus interaction network; Table S9,
Nodes and annotation of PluriPlus interaction network.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
117-S4XLS]

Additional file 5: High-resolution image of PluriPlus network.
PluriPlus protein-protein interaction network with HUGO gene symbols
mapped onto each node (purple nodes = geneshared by PluriPlus and
PluriNet [26], blue nodes = gene found in PluriPlus and not in PluriNet).
Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
117-S5.JPEG]

Additional file 6: Figure S2. Up-regulation of PluriPlus interaction
network in pluripotent stem cells.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
117-S6.PDF]

Additional file 7: AutoSOME implementation details. Input, SOM
node topology, Ensemble averaging, Additional references

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
117-S7.PDF]
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