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Abstract

Background: Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It
supports a wide range of DBN architectures and probability distributions, including distributions from directional
statistics (the statistics of angles, directions and orientations).

Results: The program package is freely available under the GNU General Public Licence (GPL) from SourceForge
http://sourceforge.net/projects/mocapy. The package contains the source for building the Mocapy++ library, several
usage examples and the user manual.

Conclusions: Mocapy++ is especially suitable for constructing probabilistic models of biomolecular structure, due
to its support for directional statistics. In particular, it supports the Kent distribution on the sphere and the bivariate
von Mises distribution on the torus. These distributions have proven useful to formulate probabilistic models of
protein and RNA structure in atomic detail.

Background
A Bayesian network (BN) represents a set of variables
and their joint probability distribution using a directed
acyclic graph [1,2]. A dynamic Bayesian network (DBN)
is a BN that represents sequences, such as time-series
from speech data or biological sequences [3]. One of the
simplest examples of a DBN is the well known hidden
Markov model (HMM) [4,5]. DBNs have been applied
with great success to a large number of problems in var-
ious fields. In bioinformatics, DBNs are especially rele-
vant because of the sequential nature of biological
molecules, and have therefore proven suitable for tack-
ling a large number of problems. Examples are protein
homologue detection [6], protein secondary structure
prediction [7,8], gene finding [5], multiple sequence
alignment [5] and sampling of protein conformations
[9,10].
Here, we present a general, open source toolkit, called

Mocapy++, for inference and learning in BNs and espe-
cially DBNs. The main purpose of Mocapy++ is to allow
the user to concentrate on the probabilistic model itself,
without having to implement customized algorithms.
The name Mocapy stands for Markov chain Monte
Carlo and Python: the key ingredients in the original

implementation of Mocapy (T. Hamelryck, University of
Copenhagen, 2004, unpublished). Today, Mocapy has
been re-implemented in C++ but the name is kept for
historical reasons. Mocapy supports a large range of
architectures and probability distributions, and has pro-
ven its value in several published applications [9-13].
This article serves as the main single reference for both
Mocapy and Mocapy++.

Existing Packages
Kevin Murphy maintains a list of software packages for
inference in BNs [14]. Currently, this list contains 54
packages. A small subset of these packages share some
key features with Mocapy++ (see Table 1). These
packages have an application programming interface
(API), perform parameter estimation and are free of
charge (at least for academic use). Mocapy++ is mainly
intended for use in scientific research, where reproduci-
bility and openness of scientific results are important.
Commercial closed source packages are therefore not
included in this discussion.
In bioinformatics, models are typically trained using

large datasets. Some packages in Table 1 only provide
exact inference algorithms that are often not suitable for
training models with large datasets. Other packages
have no or little support for DBNs, which is important* Correspondence: palu@binf.ku.dk
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for modelling biomolecular structure. To our knowledge
none of the publically available open source toolkits
support directional statistics, which has recently become
of crucial importance for applications in structural
bioinformatics such as modelling protein and RNA
structure in 3D detail [9,10,12,15]. Furthermore, Mocapy
++ is the only package that uses the stochastic EM
[16-18] algorithm for parameter learning (see the Mate-
rials and Methods section). These features make Moc-
apy++ an excellent choice for many tasks in
bioinformatics and especially structural bioinformatics.

Implementation
Mocapy++ is implemented as a program library in C++.
The library is highly modular and new node types can
be added easily. For object serialization and special func-
tions the Boost C++ library [19] is used. All relevant
objects are serializable, meaning that Mocapy++ can be
suspended and later resumed at any state during train-
ing or sampling. The LAPACK library [20] is used for
linear algebra routines.
Mocapy++ uses CMake [21] to locate packages and con-

figure the build system and can be used either as a static
or shared library. The package includes a Doxygen config-
uration file for HTML formatted documentation of the
source code. An example of a Python interface file for
SWIG http://www.swig.org is also included in the package.

Data structures
Most of the internal data is stored in simple Standard
Template Library (STL) [22] data structures. However,
STL or other public libraries offer little support for multi-
dimensional arrays when the dimension needs to be set
at run-time. In Mocapy++ such a multidimensional array
is for example needed to store the conditional probability
table (CPT) of the discrete nodes. The CPT is a matrix
that holds the probabilities of each combination of node
and parent values. For example, a discrete node of size 2
with two parents of sizes 3 and 4, respectively, will have a

3 × 4 × 2 matrix as its CPT. Mocapy++ therefore has its
own implementation of a multidimensional array, called
MDArray. The MDArray class features dynamic alloca-
tion of dimensions and provides various slicing opera-
tions. The MDArray is also used for storing the training
data and other internal data.

Specifying a DBN in Mocapy++
Consider a sequence of observations. Each position in
the sequence is characterized by n random variables
(called a slice, see Figure 1). Each slice in the sequence
can be represented by an ordinary BN, which is dupli-
cated along the sequence as necessary. The sequential
dependencies are in turn represented by edges between
the consecutive slices. Hence, a DBN in Mocapy++ is
defined by three components: a set of nodes that repre-
sent all variables for a given slice, the edges between the
nodes within a slice (the intra edges) and the edges that
connect nodes in two consecutive slices (the inter edges).

Node Types
Mocapy++ supports several node types, each corre-
sponding to a specific probability distribution. The

Table 1 Some popular Free BN packages with an API. Extracted from Murphy [14].

Name Authors Source Inference Learning

Bayes Blocks Harva et al. [30] Python/C++ Ensemble learning VB

BNT Murphy [31] Matlab/C JTI, MCMC EM

BUGS Lunn et al. [32] N Gibbs Gibbs

Elvira Elvira Consortium [33] Java JTI, IS EM

Genie U. Pittsburgh [34] N JTI EM

GMTk Blimes, Zweig [35] N JTI EM

Infer.NET Winn and Minka [36] C# BP, EP, Gibbs, VB EP

JAGS Plummer C++ Gibbs Gibbs

Mocapy++ Paluszewski and Hamelryck C++ Gibbs S-EM, MC-EM

The abbreviations are N: source code is not freely available, BP: belief propagation, EP: expectation propagation, JTI: junction tree inference, Gibbs: Gibbs sampling,
MCMC: Markov chain Monte Carlo, VB: variational Bayes, IS: importance sampling. JAGS is available online from http://www-fis.iarc.fr/~martyn/software/jags/
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Figure 1 BARNACLE: a probabilistic model of RNA structure. A
DBN with nine slices is shown, of which one slice is boxed. Nodes
D and H are discrete nodes, while node A is a univariate von Mises
node. The dihedral angles within one nucleotide i are labelled ai to
ζi. BARNACLE is a probabilistic model of the dihedral angles in a
stretch of RNA [12].
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categorical distribution (discrete node), multinomial (for
vectors of counts), Gaussian (uni- and multivariate), von
Mises (uni- and bivariate; for data on the circle or the
torus, respectively) [23], Kent (5-parameter Fisher-Bing-
ham; for data on the sphere) [24] and Poisson distribu-
tions are supported. Some node types, such as the
bivariate von Mises and Kent nodes, are to our knowl-
edge only available in Mocapy++. The bivariate von
Mises and Kent distributions are briefly described here.
These distributions belong to the realm of directional
statistics, which is concerned with probability distribu-
tions on manifolds such as the circle, the sphere or the
torus [23,25].
Kent Distribution
The Kent distribution [9,24,26-29], also known as the 5-
parameter Fisher-Bingham distribution, is a distribution
on the 2D sphere (the surface of the 3D ball). It is the
2D member of a larger class of N-dimensional distribu-
tions called the Fisher-Bingham distributions. The den-
sity function of the Kent distribution is:

K C           , , , , ( ) ( , )exp{ [( ) ( ) ]}
1 2 3 1 2

2
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where x is a random 3D unit vector that specifies a
point on the 2D sphere.
The various parameters can be interpreted as follows:

• �: a concentration parameter. The concentration of
the density increases with �.
• b: determines the ellipticity of the equal probability
contours of the distribution. The ellipticity increases
with b. If b = 0, the Kent distribution becomes the
von Mises-Fisher distribution on the 2D sphere.
• g1: the mean direction.
• g2: the main axis of the elliptical equal probability
contours.
• g3: the secondary axis of the elliptical equal prob-
ability contours.

The normalizing factor C(�, b) is approximately given
by:

C
e
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The Kent distribution can be fully characterized by 5
independent parameters. The concentration and the
shape of the equal probability contours are characterized
by the � and b parameters, respectively. Two angles are
sufficient to specify the mean direction on the sphere,
and one additional angle fixes the orientation of the
elliptical equal probability contours. The latter three
angles are in practice specified by the three orthonormal
g vectors, which form a 3 × 3 orthogonal matrix.

The advantage of the Kent distribution over the von
Mises-Fisher distribution on the 2D sphere is that the
equal probability contours of the density are not
restricted to be circular: they can be elliptical as well.
The Kent distribution is equivalent to a Gaussian distri-
bution with unrestricted covariance. Hence, for 2D
directional data the Kent distribution is richer than the
corresponding von Mises-Fisher distribution, i.e. it is
more suited if the data contains non-circular clusters.
The Kent distribution is illustrated in Figure 2. This dis-
tribution was used to formulate FB5HMM [9], which is
a probabilistic model of the local structure of proteins
in terms of the Ca positions.
Bivariate von Mises Distribution
Another distribution from directional statistics is the
bivariate von Mises distribution on the torus [23]. This
distribution can be used to model bivariate angular data.
The density function of the bivariate von Mises (cosine
variant) distribution is:

f C( , ) ( , , )exp( cos( ) cos( ) cos( )                      1 2 3 1 2 3 ))

where C(�1, �2, �3) is the normalizing factor and j, ψ
are random angles in [0, 2π[. Such an angle pair defines
a point on the torus.

Figure 2 Samples from three Kent distributions on the sphere.
The red points were sampled from a distribution with high
concentration and high correlation (� = 1000, b = 499), the green
points were sampled from a distribution with low concentration
and no correlation (� = 10, b = 0), and the blue points were
sampled from a distribution with medium concentration and
medium correlation (� = 200, b = 50). The distributions underlying
the red and green points have the same mean direction and axes
and illustrate the effect of � and b. For each distribution, 5000
points are sampled.
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The distribution has 5 parameters:

• μ and ν are the means for j and ψ respectively.
• �1 and �2 are the concentration of j and ψ
respectively.
• �3 is related to their correlation.

This distribution is illustrated in Figure 3 and
described in greater detail in Mardia et al. [23]. The dis-
tribution was used by Boomsma et al. [10] to formulate
a probabilistic model of the local structure of proteins
in atomic detail.

Inference and Learning
Mocapy++ uses a Markov chain Monte Carlo (MCMC)
technique called Gibbs sampling [1] to perform infer-
ence, i.e. to approximate the probability distribution
over the values of the hidden nodes. Sampling methods
such as Gibbs sampling are attractive because they allow
complicated network architectures and a wide range of
probability distributions.
Parameter learning of a DBN with hidden nodes is

done using the expectation maximization (EM) method,
which provides a maximum likelihood point estimate of
the parameters. In the E-step, the values of the hidden
nodes are inferred using the current DBN parameters.
In the subsequent M-step, the inferred values of the hid-
den nodes are used to update the parameters of the
DBN using maximum likelihood estimation. The E- and
M-step cycle is repeated until convergence. Parameter
learning using the EM algorithm requires a method to
perform inference over the possible hidden node values.

If one uses a stochastic procedure to perform the E-step
(as in Mocapy++), a stochastic version of the EM algo-
rithm is obtained. There are two reasons to use a sto-
chastic E-step. First, deterministic inference might be
intractable. Second, certain stochastic versions of the
EM algorithm are more robust than the classic version
of EM [16]. EM algorithms with a stochastic E-step
come in two flavors [1,17]. In Monte Carlo EM (MC-
EM), a large number of samples is generated in the EM
step. In Stochastic EM (S-EM) [16-18] only one sample
is generated for each hidden node, and a ‘completed’
dataset is obtained. In contrast to MC-EM, S-EM has
some clear advantages over deterministic EM algo-
rithms: S-EM is less dependent on starting conditions,
and has a lower tendency to get stuck at saddle points,
or insignificant local maxima. Because only one value
needs to be sampled for each hidden node in the E-step,
S-EM can also be considerably faster than MC-EM. S-
EM is especially suited for large datasets, while for small
datasets MC-EM is a better choice. Mocapy++ supports
both forms of EM.

Results and Discussion
Hamelryck et al. [9] sample realistic protein Ca-traces
using an HMM with a Kent output node. Boomsma et al.
[10] extend this model to full atomic detail using the
bivariate von Mises distribution [23]. In both applica-
tions, Mocapy was used for parameter estimation and
sampling. Zhao et al. [11] used Mocapy for related work.
Mocapy has also been used to formulate a probabilistic
model of RNA structure [12] (Figure 1) and to infer func-
tional interactions in a biomolecular network [13].
To illustrate the speed of Mocapy++, we use three

parameter estimation benchmarks and report the execu-
tion time on a standard PC (Intel Core 2 Duo, 2.33 GHz).
The first benchmark is an HMM with 50 slices and two
discrete nodes in each slice (one hidden node and one
output node). All nodes have 5 states. The second bench-
mark is similar, but with a 4-dimensional Gaussian out-
put node and a 10 state hidden node. The third
benchmark is more complex and is shown in Figure 4.
Using a training set consisting of 200 sequences, 100

iterations of S-EM take 14 seconds for the discrete
HMM, 41 seconds for the Gaussian HMM and 195 sec-
onds for the complex BN. The evolution of the log-like-
lihood during training is shown in Figure 5.
In practice, the most time consuming step in para-

meter learning is Gibbs sampling of the hidden nodes.
The running time for one sweep of Gibbs sampling for
a hidden discrete node is O(l × s) where l is the total
number of slices in the data and s is the size of the
node. The largest model that, to our knowledge, has
been successfully trained with Mocapy++ is an extension
of TorusDBN [10]. The dataset consisted of 9059

Figure 3 Samples from three bivariate von Mises distributions
on the torus. The green points were sampled from a distribution
with high concentration and no correlation (�1 = �2 = 100, �3 = 0),
the blue points were sampled from a distribution with high
concentration and negative correlation (�1 = �2 = 100, �3 = 49),
and the red points were sampled from a distribution with low
concentration and no correlation (�1 = �2 = 10, �3 = 0). For each
distribution, 10000 points are sampled.
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sequences with a total of more than 1.5 million slices.
The model has 11897 parameters and one EM-iteration
takes 860 seconds. The number of S-EM iterations
needed for likelihood convergence is around 100.
Toolkits for inference and learning in Bayesian

networks use many different algorithms and are imple-
mented in a variety of computer languages (Matlab, R,
Java,...); comparisons are thus necessarily unfair or even
irrelevant. Therefore, we feel it suffices to point out that
Mocapy++ has some unique features (such as the sup-
port for directional statistics), and that the benchmarks
clearly show that its performance is more than

satisfactory for real life problems - both with respect to
speed and data set size.

Future Directions of Mocapy++
The core of Mocapy++ described here is not expected
to change much in future versions of Mocapy++. How-
ever, Mocapy++ is an evolving project with room for
new features and additions. We therefore encourage
people to propose their ideas for improvements and to
participate in the development of Mocapy++. Potential
directions include:

• Additional probability distributions
• Structure learning
• Graphical user interface
• Plugins for reading data in various formats

Conclusions
Mocapy++ has a number of attractive features that are
not found together in other toolkits [14]: it is open
source, implemented in C++ for optimal speed efficiency
and supports directional statistics. This branch of statis-
tics deals with data on unusual manifolds such as the
sphere or the torus [25], which is particularly useful to
formulate probabilistic models of biomolecular structure
in atomic detail [9-12]. Finally, the use of S-EM for para-
meter estimation avoids problems with convergence
[16,17] and allows for the use of large datasets, which are

Figure 4 The model used in the third benchmark. Each slice
contains two hidden nodes (H and I). They are parents to a
multivariate four-dimensional Gaussian node (G) and a bivariate von
Mises node (V), respectively. The sizes of H and I are five and three,
respectively. The length of the BN is 50 slices.

Figure 5 Log-likelihood evolution during S-EM training. Each column shows the evolution of the log-likelihood for one of the three
benchmarks described in the results section. The training procedure was started from two different random seeds (indicated by a solid and a
dashed line). The log-likelihood values, log P (D|Hn, θn), used in the upper figures are conditional on the states of the sampled hidden nodes (θn
are the parameter values at iteration n, Hn are the hidden node values at iteration n and D is the observed data). The log-likelihood values in the
lower figures, log P (D|θn), are computed by summing over all hidden node sequences using the forward algorithm [5]. Note that the forward
algorithm can only be used on HMMs and is therefore not applied on the complex benchmark.
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particularly common in bioinformatics. In conclusion,
Mocapy++ provides a powerful machine learning tool to
tackle a large range of problems in bioinformatics.

Availability and Requirements
• Project name: Mocapy++
• Project home page: http://sourceforge.net/projects/
mocapy
• Operating system(s): Linux, Unix, Mac OS X, Win-
dows with Cygwin
• Programming language: C++
• Other requirements: Boost, CMake and LAPACK,
GNU Fortran
• License: GNU GPL
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