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Abstract

Background: Maximizing the utility of DNA microarray data requires optimization of data acquisition through
selection of an appropriate scanner setting. To increase the amount of useable data, several approaches have been
proposed that incorporate multiple scans at different sensitivities to reduce the quantification error and to
minimize effects of saturation. However, no direct comparison of their efficacy has been made. In the present
study we compared individual scans at low, medium and high sensitivity with three methods for combining data
from multiple scans (either 2-scan or 3-scan cases) using an actual dataset comprising 40 technical replicates of a
reference RNA standard.

Results: Of the individual scans, the low scan exhibited the lowest background signal, the highest signal-to-noise
ratio, and equivalent reproducibility to the medium and high scans. Most multiple scan approaches increased the
range of probe intensities compared to the individual scans, but did not increase the dynamic range (the
proportion of useable data). Approaches displayed striking differences in the background signal and signal-to-noise
ratio. However, increased probe intensity range and improved signal-to-noise ratios did not necessarily correlate
with improved reproducibility. Importantly, for one multiple scan method that combined 3 scans, reproducibility
was significantly improved relative to individual scans and all other multiple scan approaches. The same method
using 2 scans yielded significantly lower reproducibility, attributable to a lack-of-fit of the statistical model.

Conclusions: Our data indicate that implementation of a suitable multiple scan approach can improve
reproducibility, but that model validation is critical to ensure accurate estimates of probe intensity.

Background
DNA microarrays allow analysis of genome-wide gene
expression. While an entire transcriptome can theoreti-
cally be quantified on a single array, in practice a pro-
portion of probes analysed will not provide quantifiable
signal. For example, when scanning any complex biolo-
gical sample hybridized to a microarray, low copy num-
ber genes may emit low fluorescence signals not
detectable above background; conversely, high copy
number genes may emit fluorescence signals that are
saturated. To maximize the amount of data acquired
from a single microarray scan, the user attempts to gen-
erate a scan that spans the entire intensity range by
selecting appropriate photo-multiplier tube (PMT) set-
tings. In selecting the PMT of the scanner, the user has

two major concerns: quantification error associated with
image analysis (e.g., distinguishing signal from back-
ground) and signal saturation associated with the selec-
tion of scanner sensitivity [1-12]. If the microarray is
scanned at a low sensitivity, more probes may be within
background and thus there is uncertainty associated
with the measured signal intensity (quantification error).
If the sensitivity is set too high, more probes will be
saturated (data censoring). If filtering absent or satu-
rated probes prior to statistical analysis, having probes
in the background or probes with saturated signal inten-
sities results in fewer probes that can be assessed for
statistically significant changes.
The range of fluorescence intensities on an array is

unknown prior to scanning. As a result, the optimal
PMT setting is not known. Currently there is no objec-
tive guideline for selecting the optimum scanner setting
[2,10,11]. However, a number of approaches have been
proposed to maximize the amount of data acquired
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from an array. Using lower sensitivity scans to minimize
the number of probes with saturated signal intensity
may be considered preferable, as it ensures that data can
be obtained for the greatest number of probes [3].
Others suggest that high sensitivity settings should be
used to obtain quantifiable fluorescent signals from low
copy number genes that may be close to background
[2]. A third possibility is that if a small set of scans is
available, the optimal scan may be determined following
assessment by a given metric, such as the signal-to-
noise ratio (SNR) [1,4]. As no single scan may be opti-
mal for all probes, taking the union of data generated
from a number of individual scans may be an effective
method for extracting additional information from an
array [11]. Having the majority of the expression data in
the centre of the intensity range (i.e. around 256 fluores-
cent units) is an alternative metric [5,13]. However,
Sharov et al. [12] suggested that this may result in too
many probes within background, and so aiming for an
average intensity [log(R × G)/2] between 10 to 12 (1024
to 4096 fluorescent units (FLUs)) may be preferable.
Unless scanning at very high PMT, overall there are
more probes in the background than at saturation.
Approaches that improve quantification of low copy
number probes would therefore be advantageous.
An appealing alternative to these single scan

approaches is to combine data from two or more scans
at different scanner sensitivities to yield an improved
estimate of gene expression for a greater proportion of
microarray probes [1-10]. Such an approach would use
information acquired from both high and low sensitivity
scans to improve quantification of low and high copy
number genes respectively. This should theoretically
increase the quantity of useable data. A number of mul-
tiple scan approaches have been presented in the litera-
ture [1-10]. To our knowledge, there has been no
systematic comparison of multiple scan approaches.
Multiple scan approaches do come at a cost, namely
increased scanning and computational time compared
with single scan approaches. Such a comparison would
therefore be of use in determining whether a multiple
scan approach is warranted, and if so, which multiple
scan approach to use. In order to determine the best
approach, a number of questions should be addressed:
(1) Is reproducibility greater at low or high scanning
intensity? (2) Do multiple scan approaches increase the
dynamic range (i.e. the range of useable data above
background and below 10% of saturation)? (3) Do com-
binations of scans of the same microarray improve data
reproducibility? (4) Are there differences in the reprodu-
cibility of data among multiple scan approaches?
In the present study we used data produced in our

laboratory from 40 technical replicates scanned sequen-
tially at different laser settings to compare three

different approaches to combining multiple scans [1-3].
The first approach (Lyng et al. [1]) estimates the multi-
plicative scaling effect of the scanner using a subset of
the high intensity probes not affected by saturation.
This scaling is then applied to the data obtained from
the low scan to impute probes affected by saturation.
The second approach (Garcia de la Nava et al. [2]) uses
all the data to estimate the multiplicative scaling effect
using robust regression and then minimizes an objective
function for each probe to estimate the signal intensity.
The third approach (Khondoker et al. [3]) uses a func-
tional regression model to fit the data from multiple
scans to obtain a single estimate of gene expression.
Individual scans at low, medium and high sensitivity
were compared with these multiple scan approaches
using a variety of metrics including SNR, mean and
coefficient of variation of the negative control probes,
and proportion of useable data. To compare data repro-
ducibility across approaches, a Spearman correlation
analysis of the technical replicates was conducted. Our
data indicate that employing a multiple scan approach
can improve reproducibility over a subset of the inten-
sity range.

Results
To enable comparison of single scan and multiple scan
approaches, we employed data from a recent 2-colour
experiment [14] that included forty replicates of a com-
mercially-available reference RNA. Mouse Universal
Reference RNA (Stratagene, CA, USA) was labeled with
Cy3 and hybridized to Agilent 22K DNA microarrays.
Cy5-labelled lung RNA samples were also hybridized, as
described previously [14], but data from the Cy5 chan-
nel were not used in the present analysis. Chips were
scanned at 3 PMT settings on a ScanArray Express (Per-
kin-Elmer) scanner ranging from 59-65 for the low sen-
sitivities, 75-81 for medium and 85-88 for high.
Summary statistics of the median intensity of arrays at
low, medium, and high scan (Table 1) revealed that the
low scan in the present study had an average normalized
log2 median intensity of 7.27 and ranged from 7.24 to
7.28. In comparison, the medium sensitivity yielded a
median signal intensity of 8.95 and ranged from 8.91 to
8.98. The high scan ranged from 9.86 to 9.97 with a
median of 9.91 across the 40 microarrays.

Table 1 Summary statistics of the median intensity of
arrays at low, medium, and high scan.

Scan Mean Median Standard
Deviation

Minimum Maximum

Low 7.26 7.27 0.01 7.24 7.28

Medium 8.95 8.95 0.02 8.91 8.98

High 9.91 9.91 0.02 9.86 9.97
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To examine the impact of scanning intensity and mul-
tiple scan approaches on the dataset as a whole, ratio-
intensity plots were generated for all individual and
multiple scan approaches using the cyclic lowess nor-
malized data (Figure 1). The range of average intensities
for the individual scans was 7-8 units. Increasing varia-
tion in the log ratio was observed with increasing PMT.
This was especially seen in the lower range (i.e. in the
background). The log2 intensity range appeared some-
what compressed at higher PMT. We used data cap-
tured from multiple scans of each array to compare the
following three methods: (1) a method by Lyng et al.
[1], which estimates a multiplicative scaling effect using
a subset of probes with high signal intensities not influ-
enced by saturation; (2) the clipping saturation maxi-
mum likelihood approach (CSML) from García de la
Nava et al. [2], which estimates the multiplicative scaling
effect using all probes by employing a robust regression
approach; and (3) the Khondoker et al. [3] method
using the multiscan library [15] in R [16], which

employs a functional regression model assuming the
expression data is Cauchy distributed. This latter
method allows incorporation of any number of scans,
and so it was assessed using both 2- and 3-scan cases;
in contrast, the first two methods are limited to using
data from two scans (low and high). The three multiple
scan approaches yielded an average intensity range of
roughly 10 units, although the data acquired using the
approach of Lyng et al. was shifted by two units (8-18)
compared to the other two methods (6-16). Of the mul-
tiple scan approaches, the 3-scan case of Khondoker et
al. appeared to have the least amount of variation in
relative intensity, and was comparable to the low scan.
In contrast, the 2-scan case of the Khondoker et al.
method appeared to have considerable variability, parti-
cularly among low intensity probes. For the García de la
Nava et al. CSML method, the log ratio was observed to
approach 0 at about 13 units. This was not observed for
the individual scans or for either of the two other multi-
ple scan approaches.

Figure 1 Ratio intensity plots using cyclic lowess normalized data.
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To examine how each approach affected the back-
ground fluorescence, the mean fluorescence and coeffi-
cient of variation of negative control probes were
measured. For the individual scans, higher background
was observed with increasing PMT (Figure 2a). Among
the approaches that synthesize data across multiple
scans, negative control means were roughly equal
between the Lyng et al. method and the high scan. In
contrast, CSML and the Khondoker et al. method using
2 or 3 scans exhibited considerably lower mean values,
equal to or less than the low scan. The inter-quartile
ranges were similar across all scans and methods, sug-
gesting high reproducibility of the negative controls
across microarrays. Comparison of the coefficient of var-
iation of the negative control spots for individual scans
revealed that the low scan had the lowest value (Figure
2b). While the average coefficients of variation for the
medium and high scans were similar, the inter-quartile

range for the high scan was considerably larger. All mul-
tiple scan approaches displayed coefficients of variation
that were greater than the low scan. The CSML and
Khondoker et al. 2-scan case exhibited the highest coef-
ficient of variation, and the CSML method had the most
variable coefficient of variation.
Since probe detection is dependent on signal strength

in addition to the level of background florescence, we
examined the SNR for all scans and for the multiple
scan approaches. Here the SNR was defined as the med-
ian of the log2 of the foreground signal intensity divided
by the mean of the negative controls. SNRs for the indi-
vidual scans decreased with increasing scanner intensity
(Figure 3). Of the multiple scan approaches, the SNRs
for the Khondoker et al. (2- and 3-scan) and CSML
methods were highest, with mean values greater than
the low scan. The SNR determined for the Lyng et al.
method was the lowest among multiple scan

Figure 2 Mean and coefficient of variation for the negative control probes. A) Comparative boxplots of the mean of the 162 negative
control probes for each of the 40 microarrays were generated from the cyclic lowess normalized data. B) Comparative boxplots of the
coefficient of variation of the 162 negative control probes for each of the 40 microarrays were generated from the cyclic lowess normalized
data.
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approaches, and was identical to that of the high scan.
Note that Figure 3 is virtually the inverse of Figure 2a,
implying that the background is the defining component
of the SNR.
To investigate whether multiple scan techniques

increase the dynamic range, we generated box plots of
the percentage of useable data (i.e. data above the mean
plus three standard deviations of the negative control
probes and less than 10% of saturation) for the 40 arrays
(Figure 4a). Comparison of the individual scans revealed
that the dynamic range of the low scan was significantly
greater than that of the high scan (paired t-test, Bonfer-
roni-adjusted p = 0.0144), but was not significantly differ-
ent from the medium scan (paired t-test, Bonferroni-
adjusted p = 0.1047). The Khondoker et al. method with
2 scans had the lowest percentage of useable data, and
was statistically different compared to all other
approaches (paired t-test, Bonferroni-adjusted p < 0.05).
Since it is hypothesized that multiple scan approaches
increase the dynamic range relative to individual scans,
we compared all other approaches to the low scan, as
this scan yielded the greatest dynamic range of the indivi-
dual scans (Figure 4b). There was no significant improve-
ment of any multiple scan approach relative to the low
scan. Other significant differences (Lyng > high; CSML >
medium, high; Khondoker > medium, high; CSML >
Lyng) are presented in Additional File 1: Table S1.
In order to compare the reproducibility of results
obtained using individual scans at different sensitivities

(low, medium, high) or using a multiple scan approach,
we performed a Spearman correlation analysis on 40
technical replicates using the entire dataset of 22575
probes. This analysis revealed very little difference
among the various approaches, with correlations ranging
from 0.8586 to 0.8812 (Table 2). The only approach that
was statistically significant after Bonferroni correction
was the Khondoker et al. approach using 3 scans, which
yielded a slightly higher correlation coefficient than the
other approaches. Given the similar reproducibility for
all approaches when using the entire dataset for calcula-
tion of the Spearman correlation, we examined whether
correlations varied across the intensity spectrum. Strati-
fication of all 22575 probes into percentiles revealed
that while most approaches yielded remarkably similar
correlation estimates across the intensity range, the
Khondoker et al. 2-scan and 3-scan results deviated
from the other approaches (Figure 5). All scans and
methods had poor correlation for the lower percentiles,
and correlations improved as probe intensity increased.
In order to statistically test for differences among the
approaches, we stratified probe intensities by decile, and
performed Spearman correlations (Additional File 2:
Table S2). Comparison of individual scans revealed no
significant improvement in the reproducibility of low
intensity probes at higher PMT settings. Remarkably,
the Khondoker et al. 2-scan case resulted in lower cor-
relations over the range 70th to 100th percentile. In
sharp contrast, the 3-scan case yielded a statistically

Figure 3 Signal-to-noise ratio. The median of the normalized data (log2) minus the mean of the negative controls for each of the 40
microarrays was used to generate comparative boxplots for each of the individual scans and the three multiple scan approaches.

Williams and Thomson BMC Bioinformatics 2010, 11:127
http://www.biomedcentral.com/1471-2105/11/127

Page 5 of 12



significant improvement in reproducibility over the 30th

to 60th percentile. There were no other significant differ-
ences among the approaches. Our data indicate that
scanning at higher PMT settings does not result in any
gain in reproducibility for low intensity probes. Indeed,
the low scan yielded equivalent correlation estimates to
the medium and high scans across the entire intensity
range. Although correlations were generally poor for
probes in the background, our data indicate that use of
a multiple scan approach can improve somewhat the
reproducibility of these probes.
To investigate the substantial difference in reproducibil-
ity between the 2- and 3-scan cases of the Khondoker

et al. method, we generated residual plots of the model
fit. We observed clear differences in the residual plots for
the two cases (Figure 6). For the 2-scan case, there was a
significant lack-of-fit for probes in the high intensity
range (Figure 6a). In contrast, in the 3-scan case there
was a better fit for data across the entire intensity range
(Figure 6b). To verify that the lack-of-fit was not specific
to this dataset, we examined the example (4 scans of a
single array for 1000 probes) provided in the multiscan R
library [15] associated with this method. Using these
data, we applied the Khondoker et al. method for the 2-
and 3-scan cases. For the 2-scan case (i.e. using only low
and high scans) we observed a similar lack-of-fit, whereas
for the 3-scan case no significant lack-of-fit was observed
(data not shown), consistent with the results presented
here. Khondoker et al. [3] state that for functional regres-
sion models there are problems when estimating separate
scaling terms for each beta coefficient as the likelihood
function goes to infinity if any one of the variance para-
meters goes to zero. As a result, their model assumes
that the scale parameters increase in proportion to the
beta coefficients across scans. For our data, and for the
data provided with the multiscan R library [15], at least
one of the s1 and s2 terms approaches 0 for the 2-scan
case (data not shown). This was not apparent when 3 or
more scans were used, and may explain the difference in
reproducibility between the 2- and 3-scan cases.

Figure 4 Box-plots of the dynamic range for individual and multiple scan approaches. A) Proportion of useable data (probes above
background and below 10% of saturation) plotted for all approaches. B) Difference in proportion of useable data for each approach relative to
the low scan (indicated by the horizontal line). * indicates significantly different from the low scan, paired t-test, p < 0.05 after Bonferroni
correction).

Table 2 Spearman correlations for all scans and methods
using the entire dataset.

Bonferroni Adjusted 95% CI

Scan Mean Lower Limit Upper Limit

Khondoker with 3 Scans 0.8812 0.8729 0.8858

CSML 0.8670 0.8602 0.8727

High 0.8658 0.8599 0.8717

Lyng 0.8657 0.8595 0.8712

Low 0.8643 0.8569 0.8705

Medium 0.8636 0.8569 0.8706

Khondoker with 2 Scans 0.8586 0.8524 0.8637

The mean and 95% Bonferroni-adjusted confidence intervals estimated using
the bootstrap are displayed for each dataset.
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To investigate the poor correlation observed for the
lower deciles, the average distribution of probe signal
intensities was plotted with overlaying correlation esti-
mated using a sliding window of 2000 probes for each
approach. As the Khondoker et al. 3-scan case had the
highest correlation estimates, it is presented in Figure 7.
Plots for all other approaches are presented in Addi-
tional File 3: Figure S1. For all approaches, approxi-
mately 50% of the data were judged to be within the
background as identified by the vertical line at the mean
plus three standard deviations of the negative control
probes. Correlation estimates were poor for all datasets
below the 50th percentile, and improved as the average
intensity increased beyond the 50th percentile.

Discussion
Applying optimal scanner settings for microarray experi-
ments greatly enhances data acquisition. However,
defining what is optimal is a challenge, and there is little
consensus on how to achieve an optimal scan. Specific
average intensities have been put forth as guidelines
[4,12], but actual PMT settings must be determined
empirically. Some argue that scanner settings should be
set to maximize the SNR [1]. Others argue that one
should minimize censoring due to saturation [3]. Yang
and Speed [17] found that after normalization, the ranks
or ordering for the majority of genes remained the same

at different PMTs, indicating that for most probes PMT
setting may be irrelevant. Combining scans at different
intensities has been suggested as an approach to yield
improved datasets [1-10]. In the present work we objec-
tively compared individual scans at three different inten-
sities, and evaluated the utility of three algorithms that
incorporate data from multiple scans using several
metrics for assessing data quality.
Sharov et al. [12] suggested that the sensitivity placing

the greatest amount of data within the limits of the
quantifiable range is approximately 8 FLUs (log2). How-
ever, it was argued that this may be too close to back-
ground, and so an average value between 10 and 12 was
suggested as a good balance between having too many
probes with intensities that are close to background vs.
too many approaching saturation [12]. The low scan
used in the present work, with a FLU of ranging from
7.24 to 7.28, was therefore well below the suggested
optimal level, the medium scan (8.91-8.98) was close to
the “optimal sensitivity”, while the high scan (9.86-9.97)
approached the “well-balanced” level (Table 1). Our
choice of scanner sensitivities therefore spans a relevant
range of PMT settings.
Changes to the scanner sensitivity and the act of com-

bining data generated from multiple scans will alter the
distribution of signal intensities. Examination of ratio-
intensity plots revealed extension of the range in the

Figure 5 Correlation by intensity. A sliding window of 2000 probes was used to estimate the correlation from the low intensity to the high
intensity probes. All correlations were aligned by percentile to plot the correlation by intensity for the individual scans and multiple scan
methods. Coloured lines indicate methods that display significant differences from all other methods over some interval. Blue, the Khondoker et
al. method with 2 scans. Red, the Khondoker et al. method with 3 scans.
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average intensity for the multiple scans compared with
the individual scans (Figure 1). However, it is unclear
whether the increased range is meaningful in terms of
improved data quality. Indeed, in the present study
there was no clear relationship between increased inten-
sity range and improved reproducibility. Further exami-
nation of ratio-intensity plots revealed additional
differences among the multiple scan approaches exam-
ined. The clipping saturation model used here, which
incorporates a maximum likelihood approach, was pre-
viously shown to provide a smooth transition for various
datasets [2]. In contrast, pinching of data was observed
using the threshold approach for the gamma saturation
model [2]. Our data show that a similar artifact can also
be observed using the maximum likelihood approach.
Such artifacts raise concern regarding possible distortion
of the data using this method. It is also noteworthy that
the 2-scan and 3-scan cases of the Khondoker et al.
method yielded quite different ratio-intensity plots, with
the 2-scan case exhibiting considerably greater variabil-
ity than the 3-scan case. The differences in the ratio-
intensity plots suggest that visual displays of the data
are useful for rapid examination of data quality.

While scanning at higher sensitivities has been pro-
posed as an approach to improve quantification of low
intensity probes [1,8,11], there may be a corresponding
increase in the background noise, which would impact
the SNR. In the present study, the mean and coefficient
of variation of the negative controls were both signifi-
cantly higher for the medium and high scans compared
to the low scan (Figure 2), confirming an increase in the
background noise at higher PMT settings. However, this
might not be considered relevant if probe signal intensi-
ties increase at a greater rate than the background noise
with increased scanning sensitivity, since this would
result in an improved SNR. Remarkably, investigation of
SNRs for the three scanning sensitivities and the multi-
ple scan approaches revealed that the low scan had a
median SNR that was considerably higher than that for
the medium and high scans (Figure 3). Therefore, our
data indicate that maximizing the SNR may not be
achieved by scanning at higher PMT setting, since any
gains achieved by increasing the PMT appear to be lost
due to the increase in background signal. Rather, our
data suggest that using this metric, a low scan may be
more appropriate. A further advantage of the low scan

Figure 6 Residual plots of the Khondoker et al. 2- and 3-scan cases. Standardized residuals were plotted against rank of estimated probe
intensity. A) 2-scan case. B) 3-scan case.
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is that it avoids the need to censor a large proportion of
probes due to signal saturation, as discussed previously
[3]. There was considerable disparity among the multi-
ple scan approaches used with respect to mean and
coefficient of variation of the negative controls and the
median SNR. The relative success of the Khondoker et
al. and CSML approaches in generating the highest
SNRs likely relates to the lower mean of the negative
control probes. The Lyng method replaces values from
the high scan that are above a certain threshold
(15.6FLUs) with data from the low scan, adjusted by a
correction factor. Thus, the high background observed
using the Lyng approach is not unexpected as the
method is aimed towards addressing censoring due to
saturation and not to maximize SNR.
Incorporation of multiple scans should theoretically

enable one to obtain more useable data by reducing the
impact of quantification error and censoring due to
saturation. Comparison of the three multiple scan
approaches against the individual scan with the greatest
dynamic range (the low scan) revealed no significant
improvement in dynamic range (Figure 4). We have
defined dynamic range as the proportion of probes that
have signals above background (mean plus three stan-
dard deviations of the negative control probes) and
below 10% of saturation. For multiple scan approaches,
the upper end of the dynamic range is determined by
the low scan. To increase the dynamic range relative to

the low scan would therefore require a reduction in the
estimated background. The mean of the negative control
probes was indeed reduced by applying specific multiple
scan approaches (CSML, Khondoker et al. 2-scan and 3-
scan cases; Figure 2a). However, the coefficient of varia-
tion for these probes was considerably higher compared
to the low scan when a multiple scan approach was
applied (Figure 4b). According to these data, the higher
coefficient of variation observed for the multiple scan
approaches appears to be responsible for the lack of
improvement in dynamic range compared to the low
scan. This may be a result of lack-of-fit of the statistical
models employed for probes in the background. If mul-
tiple scan approaches are to increase the dynamic range,
there would have to be improvements in how the
approaches handle data for low intensity probes.
In comparing multiple scan approaches, impacts on

reproducibility should be considered, as increased repro-
ducibility should translate into improved ability to
detect differential gene expression. Comparison of corre-
lation estimates based on the dataset as a whole revealed
little difference among the various approaches, with only
the 3-scan case of the Khondoker et al. approach yield-
ing a statistically higher correlation (Table 2). However,
it is recognized that low abundance genes exhibit lower
reproducibility while genes with higher intensity tend to
have improved reproducibility [18]. This implies that
reproducibility differs across the entire distribution of

Figure 7 Distribution of average probe intensity. A data display of the density of probe intensity was generated using the Khondoker et al.
method for 3 scans. The correlation based on the average intensity for the probes within the sliding window was overlaid in red. The vertical
line indicates the upper bound of the background estimated by the mean plus three standard deviations of the negative controls. The red
dashed line extends the correlation over the range of the data to the second y-axis.
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signal intensities. We therefore partitioned the distribu-
tion of signal intensities into percentile bins, thereby
improving the resolution in order to detect differences
among the approaches. The analysis revealed that over
specific intensity ranges, approaches differed with
respect to data reproducibility (Figure 5). There was no
indication from our data that incorporation of a multi-
ple scanning approach improved data quality below the
30th percentile. It is important to note that roughly 50%
of probes were deemed to be within background (Figure
7 and Supplemental Figure 1). Also, there were no gains
in reproducibility for probes greater than the 70th per-
centile. However, for probes within the 30th to 60th per-
centile, the Khondoker et al. 3-scan case yielded
statistically higher correlations compared to all indivi-
dual scans and multiple scan approaches (Additional
File: Table S2). Remarkably, the 2-scan case yielded sta-
tistically lower correlations compared to all other
approaches, including single scans, indicating that the
number of scans is a critical factor for data reproducibil-
ity using this method. The residuals for high intensity
probes indicate that the assumptions for the model may
not have been satisfied in the 2-scan case (Figure 6a).
Our data indicate that the correlation estimates are dri-
ven primarily by the high intensity probes (Additional
File 2: Table S2), and so the increased variance for these
probes in the 2-scan case may result in the lower repro-
ducibility observed. The data reveal that 1) not all multi-
ple scan approaches are equal; 2) multiple scan
approaches can yield more reproducible data than indi-
vidual scans; and 3) the number of scans used can
markedly impact data quality, including reducing the
quality of the data below levels seen for individual scans.
Overall the data show that incorporation of either of

the CSML or the Khondoker et al. multiple scan
approaches yielded high SNR, low variability of negative
controls, extended probe intensity ranges, and high cor-
relations among samples. Given the improved reprodu-
cibility of data that can be achieved, it may be desirable
to use a multiple scan approach despite the additional
scanner and computational time required. A further
advantage of using a multiple scan approach is that
“optimal” PMT settings need not be estimated in
advance or determined empirically, as the user simply
scans at a number of PMT settings and applies a multi-
ple scan approach. Issues associated with how well the
data fit the model are a concern, as shown here using
the CSML and Khondoker et al. 2-scan case. Most
importantly, a significant concern is the possibility that
application of a multiple scan approach could actually
reduce data quality, as was observed for the Khondoker
et al. 2-scan case. Assessment of data quality using
ratio-intensity plots or other metrics is advisable.

Conclusions
In summary, using data from a study involving a large
number of technical replicates enabled comparison of
single scan and multiple scan approaches. Our results
revealed clear differences in the distribution of the data,
background, SNR, and reproducibility of the data among
the methods. The algorithm developed by Khondoker et
al. with 3 scans produced the best data according to the
metrics assessed in this study. A further advantage of
the Khondoker et al. approach is that it can accommo-
date any number of scans, unlike the Garcia de la Nava
and Lyng approaches, which use two scans only. How-
ever, our data suggest that the Khondoker et al.
approach may not be suitable for use with fewer than 3
scans. While incorporation of a multiple scan approach
may not be warranted in all situations, it has the poten-
tial to yield better quality and more reproducible data
than any individual scan.

Methods
Sample preparation, hybridization, and scanning
The datasets used here comprise 40 technical replicates
and are publicly available in the NCBI Gene Expression
Omnibus database (Accession # GSE19493; http://www.
ncbi.nlm.nih.gov/projects/geo). Universal Mouse Refer-
ence RNA (Stratagene, CA, USA) was labelled with Cy3
and hybridized to Agilent Mouse G4121A Microarrays.
The Cy5 channel measured lung mRNA levels from a
toxicology experiment described elsewhere [14]; these
were not analysed for the present study. Arrays were
incubated overnight at 60°C in Agilent hybridization
solution and washed according to manufacturer’s
instructions. Arrays were scanned at three different
PMT settings (Low: 59-65, Medium 75-81, High 85-88)
using a ScanArray Express (Perkin-Elmer Life Sciences,
Woodbridge, ON, Canada), and data were acquired with
ImaGene 5.5 (BioDiscovery, CA, USA).

Processing and normalization
Non-background subtracted median signal intensity data
from the low and high scans were read into R 2.9.0 [16].
Background was estimated as the mean plus 3 standard
deviations of the (-)3xSLv1 negative control probes. For
the Lyng et al. method, probes with signal intensities
between 20,000 to 30,000 FLUs in the high scan were
identified. For each of these probes the ratios of the high
scan signal intensity to the low scan signal intensity were
calculated. The average of these ratios provided the cor-
rection factor that was multiplied with the low scan data
to impute the corresponding values in the high scan
above 50,000 FLUs. For implementing the CSML
method, a scatterplot of the low scan versus the high
scan sensitivity was constructed to identify the type of
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saturation (clipping saturation or gamma saturation).
Our data exhibited clipping saturation (data not shown).
The clipping saturation maximum likelihood approach
was written in R. Here the lqs function in the MASS
library [19] was used to robustly estimate the required
parameters. The Khondoker et al. method was applied to
the low, medium, and high scans using the multiscan R
library [15]. All data from individual scans and resulting
data from the methods using multiple scans were nor-
malized using the cyclic lowess [20] approach in R using
the normalize.loess function in the affy library [21].

Dynamic range analysis
For individual scans, dynamic range was defined as the
proportion of data that had signal intensities greater than
background and less than 10% of saturation. For multiple
scans, the dynamic range was defined as proportion of
data that had signal intensities greater than background
and less than 10% of saturation of the low scan. Paired t-
tests were conducted to identify differences among
between all approaches. The p-values were adjusted for
multiple comparisons using the Bonferroni approach.

Correlation analysis
In order to ascertain the reproducibility of the technical
replicates, a correlation analysis was done following the
methodology outlined in [22]. Rank transformation of
the normalized data was used to estimate the correlation
matrix. The bootstrap was applied to obtain Bonferroni-
adjusted 95% percentile confidence intervals (B =
10,000) for the average correlation for each of the indi-
vidual scans and for the three multiple scan methods.
The correlation analysis was also conducted by stratify-
ing the intensity range of the probes into percentiles
based on the median signal intensity for the 40 arrays.
For each of the percentiles the estimated correlation and
95% Bonferroni-adjusted confidence intervals (B =
10,000) were obtained.

Additional file 1: Pairwise comparisons of the proportion of useable
data for all approaches. Paired t-tests were conducted for all possible
pairwise combinations to identify differences in the proportion of
useable data. The estimated difference, p-value and Bonferroni adjusted
p-value for each comparison are presented.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
127-S1.XLS ]

Additional file 2: Spearman correlations by intensity using
percentile bins. For each of the percentiles determined from the
average intensity distribution, the mean and 95% bootstrap percentile
confidence intervals are displayed in brackets. Highlighted results
indicate significant differences by comparing 95% Bonferroni adjusted
confidence intervals for all scans and methods. Orange, significantly
higher correlations compared to all other methods. Blue, significantly
lower correlations compared to all other methods.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
127-S2.XLS ]

Additional file 3: Distribution of average probe intensity. The
distribution of probe intensity was generated for each single scan and
multiple scan method. Overlaid in red is the correlation based on the
average intensity for the probes within the sliding window. The upper
bound of the estimated background is indicated by the vertical line. The
red dashed line extends the correlation over the range of the data to
the second y-axis.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
127-S3.JPEG ]
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