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Abstract

Background: Developing and evaluating new technology that enables researchers to recover gene-expression
levels of colonic cells from fecal samples could be key to a non-invasive screening tool for early detection of colon
cancer. The current study, to the best of our knowledge, is the first to investigate and report the reproducibility of
fecal microarray data. Using the intraclass correlation coefficient (ICC) as a measure of reproducibility and the
preliminary analysis of fecal and mucosal data, we assessed the reliability of mixture density estimation and the
reproducibility of fecal microarray data. Using Monte Carlo-based methods, we explored whether ICC values should
be modeled as a beta-mixture or transformed first and fitted with a normal-mixture. We used outcomes from
bootstrapped goodness-of-fit tests to determine which approach is less sensitive toward potential violation of
distributional assumptions.

Results: The graphical examination of both the distributions of ICC and probit-transformed ICC (PT-ICC) clearly
shows that there are two components in the distributions. For ICC measurements, which are between 0 and 1, the
practice in literature has been to assume that the data points are from a beta-mixture distribution. Nevertheless, in
our study we show that the use of a normal-mixture modeling approach on PT-ICC could provide superior
performance.

Conclusions: When modeling ICC values of gene expression levels, using mixture of normals in the probit-
transformed (PT) scale is less sensitive toward model mis-specification than using mixture of betas. We show that a
biased conclusion could be made if we follow the traditional approach and model the two sets of ICC values
using the mixture of betas directly. The problematic estimation arises from the sensitivity of beta-mixtures toward
model mis-specification, particularly when there are observations in the neighborhood of the the boundary points,
0 or 1. Since beta-mixture modeling is commonly used in approximating the distribution of measurements
between 0 and 1, our findings have important implications beyond the findings of the current study. By using the
normal-mixture approach on PT-ICC, we observed the quality of reproducible genes in fecal array data to be
comparable to those in mucosal arrays.

Background
Microarray techniques have changed the practice of
detecting messenger RNA (mRNA) expression of a sin-
gle gene to the current stage of simultaneously measur-
ing the expression of thousands of genes. Daily
improvement in this technology also stimulates techni-
ques that lead to new bioassays. Among them, and of

particular interest, is a recent development that enables
the collection of genomic information from exfoliated
colonocytes in fecal matter. It is known that early detec-
tion of cancerous colon cells results in high cure and
survival rates among colon cancer patients. However,
people tend to shy away from invasive procedures such
as the colonoscopy. Consequently, it is of great interest
to develop non-invasive early detection instruments.
Although evidence exists in the fecal platform that par-
tially degraded mRNA in fecal samples can produce
meaningful measurements[1], and Davidson et al. [2]
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and Kanaoka et al. [3] suggest that it is possible to iso-
late intact fecal eukaryotic mRNA, it is unknown
whether one can expect the same quality from the large
amount of fecal microarray data. The current study, to
the best of our knowledge, is the first one that investi-
gates and reports the reproducibility of fecal microarray
data. In a proof-of-principle study conducted by human
nutrition scientists at Texas A&M University, one main
task is to find out whether one can expect the same
level of reproducibility in the fecal platform as that
observed in the mucosal platform where biological sam-
ples were taken from colon cells. Because of biological
variation, two gene expression values of the same gene
taken from the same subject are most likely not the
same. In order to determine if one can successfully
obtain the same findings when an experiment is
repeated, it is important to investigate whether the gene
expression levels of a gene from the same subject
behave more similarly to each other than to those of the
same gene from different subjects. The signal is stron-
gest and the reproducibility is highest when the out-
comes can be perfectly repeated when a different set of
measurements are taken from the same subjects. It is
expected that due to mRNA degradation, a larger pro-
portion of genes in the fecal platform would possess no
or lower reproducibility than those in the mucosal plat-
form. However, it is of interest to understand the quality
of those genes which are not degraded in the fecal
platform.
Generally, replicates are samples collected from the

same subject that are processed separately and indepen-
dently after sample collection. Our replicates differ
because the “same” biological samples are separately
processed only right before the hybridization. The for-
mer “replicates” are often collected to evaluate the qual-
ity of microarray techniques, while we are truly
interested in biological reproducibility at the subject
level. This subtle difference is particularly important;
some genes could be preserved in one sample but are
degraded in another even when both samples are from
the same subject. It is the genes with low possibility to
be degraded that we are interested in. While we focus
only on subject to subject variation, we acknowledge
that there are other types of replication in gene expres-
sion data[4].
In order to assess the agreement between measure-

ments from microarray data collected from the same
subject, we use the intraclass correlation coefficient
(ICC) as a reliability index. The use of ICC in genomic
study was promoted by Carrasco and Jover[5].
Under each platform, we compute a single ICC

value for each gene. One key advantage of ICC as a
statistical tool for evaluating reproducibility for different
platforms/instruments is that it does not require two

platforms/instruments to be evaluated under the same
treatment design. In most biological experiments,
researchers tend to conduct the second experiment with
modifications and improvements rather than simply to
repeat what has been done before. Consequently, a sta-
tistical tool for evaluating reproducibility has to have the
flexibility to accommodate this common practice. In
order to fulfill this requirement, the ICC values were
computed after removing the treatment effects. The sin-
gle index recorded per gene uses variance components
analysis to compare the measurement-similarity for
samples taken from the same subject/rat versus the
measurement-similarity for samples taken from different
subjects/rats. We report the methodology for calculating
ICC in the Methods subsection.
The larger the value of ICC, the more differentiation

among measurements collected from different biological
samples relative to that among readings collected from
the same biological material. An ICC value near 1 sig-
nifies a strong indication of reproducibility and agree-
ment between experiments. If the ICC is near 0, then
within-subject variance is relatively large compared to
between-subject variance and it is likely that one cannot
obtain the same expression level in a repeated
experiment.
In both the mucosal and the fecal genes, we observe at

least a small proportion of genes that always have low
reproducibility; their existence results in a mixture
model for the distribution of ICC values. It is common
practice to use finite mixture modeling in bioinformatics
research. The reasons tend to be twofold: to accommo-
date measurement heterogeneity and to identify poten-
tially meaningful subgroups. The most popular approach
is the use of finite normal mixtures [6-9]. Allison et al.
and Ji et al. use beta-mixture modeling to describe dis-
tributional properties of different genes’ correlation
coefficients[10,11]. Like measurements of ICC, the
values of correlation coefficients are between 0 and 1.
For the same type of data, McLachlan et al. prefer the
use of normal-mixture distributions which eliminates
the (0,1)-range constraint[8].
In a study comparing the fecal and mucosal bioassay

platforms, we obtained different proportions for the
mixture components when we modeled the probit trans-
formed ICC (PT-ICC) values with a two-component
normal-mixture distribution and when we modeled the
ICC values with a two-component beta-mixture distri-
bution. It was our conjecture that, considering the
boundary problem of beta distribution modeling, the
normal-mixture modeling might be less sensitive toward
model mis-specification. We observed the lower compo-
nent of the beta mixture to be strictly decreasing with
the density f(y|a,b) approaching infinity as y approaches
0. This phenomenon likely caused the maximum
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likelihood estimate (MLE) of b-parameters to be
unstable. We conduct a sequence of numerical studies
to compare the two approaches.
Our ultimate goal is to select the better of the two

systems to ascertain whether the “reproducible” compo-
nent in the fecal array samples share similar properties
to those of the mucosal array samples.

Results
Data sets
Gene expression levels from the colon mucosal and fecal
data samples were collected using CodeLink microarrays
(30 oligonucleotide target probe, single color labeling
system). The main dataset under study here consisted of
2171 genes for the fecal data and 2241 genes for the
mucosal data. Due to the fact that the bioassays that
were used to extract fecal mRNA were developed later,
the mucosal data we used were collected much earlier
in a different experiment. In fact, we did not have access
to the original muscosal dataset. We were able to use
the available summary statistics to produce ICC mea-
surements. All measurements (fecal and mucosal) were
collected from Spraque Dawley rats.
Fecal Data
The fecal array data were collected from rat fecal sam-
ples in a study designed to explore the effect that diet
has on genes being differentially expressed after expo-
sure to carcinogen/radiation. A normalization procedure
was developed[12]. Rats in the study were exposed to
carcinogen azoxymethane (AOM) and randomly
assigned to one of four different treatments resulting
from a 2 × 2 factorial design. The two experimental
factors were diet - fish oil/pectin (D1) and corn oil/
cellulose (D2), and radiation - with radiation exposure
(IRT) and without radiation exposure (RCT). Fecal sam-
ples were collected 14 weeks after the last exposure to
carcinogen AOM. There were 7, 6, 8, and 7 bioarrays
collected under IRT-D1, IRT-D2, RCT-D1, and RCT-
D2, respectively. Genes that were not disqualified with
at least 3 usable replicates were kept.
Mucosal Data
Rats used in the study to obtain mucosal array data
were randomly assigned in a 3 × 2 × 2 factorial experi-
ment to a treatment with diet, exposure, and time
points as factors[13]. Corn oil/n-6 polyunsaturated fatty
acid (PUFA) or fish oil/n-3 PUFA or olive oil/n-9 mono-
unsaturated fatty acid (MUFA) was used as the dietary
fat source; carcinogen AOM or saline was used as the
exposure source; time points were either 12 hours or 10
weeks after the first injection. The units were termi-
nated at the appropriate time point in order to remove
the mucosal layer from each colon so that RNA could
be extracted from the mucosal samples. The numbers of
arrays for corn, fish, and olive oil diets under AOM or

saline treatments were (7, 7, 6) and (7, 6, 7), respectively
for the 12-hour study and were (12, 10, 8) and (7, 9, 7),
respectively for the 10-week study.
Matched Subset
To address the issue of reproducibility for a finite list of
common genes between the platforms, we conducted an
additional study referred to as the “matched subset”
throughout. We were able to retrieve the NCBI gene
information from the mucosal experiments and used
them to create a matched subset in which the two sub-
sets (fecal and mucosal) were collected from the same
genes. Each subset contains 1029 measurements.
Preliminary Application to the Main Dataset
The original ICC values were fitted with a two-component
beta-mixture using an EM algorithm, producing the
following density estimation for the fecal and mucosal
data, f̂ B

f and f̂ B
m , respectively:

ˆ (.; ˆ ) . ( . , . ) . ( . , . )f Beta BetaB
f

B = +0 50 0 30 0 64 0 50 0 27 0 63  

and

ˆ (.; ˆ ) . ( . , . ) . ( . , . ).f Beta BetaB
m

B = +0 53 2 20 2 40 0 47 0 25 1 22  

We obtained the following estimated two-component
normal-mixture densities, f̂N

f and f̂N
m , for the probit

transformed fecal and mucosal ICC measurements,
respectively:

ˆ (.; ˆ ) . ( . , . ) . ( . , . )f N NN
f

N = + −0 72 0 04 0 84 0 28 3 50 0 07  

and

ˆ (.; ˆ ) . ( . , . ) . ( . , . ).f N NN
m

N = − + −0 81 0 29 0 64 0 19 3 35 0 12  

The observation of the difference in proportion esti-
mates for fecal and mucosal data leads us to question the
accuracy of the two fits. It is unclear what the proportion
of reproducible genes (upper component of the two mix-
tures) for the fecal samples should be, 0.50 or 0.72?
Unfortunately, the answer to this question depends on
the mixture model we use to fit the data. It is well known
that when a < 1 (b < 1), values of the beta distribution
strictly increase to infinity at the lower (upper) endpoint.
We find a is much smaller than 1 with the lower compo-
nents of the beta mixtures for both datasets. This
phenomenon is easily seen in the graphs displayed in
Figure 1 where we plot the fitted beta-mixture superim-
posed on the histogram of ICC values for the fecal and
mucosal data. Because the beta distribution has such a
boundary issue, we suspect that a simple violation of the
distributional assumption near the boundary could have
profound effects on maximum likelihood estimates. In
comparison, the fitted normal-mixture superimposed on
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the histogram of PT-ICC values is plotted in Figure 2. It is
worth noting that the visual evaluation of Figures 1 and 2
might not be helpful to the comparisons of these two
modeling approaches. We investigate the veracity of the
comparisons with numerical studies. In light of the
numerical outcomes from our Monte Carlo investigation,
we plotted three estimated density functions in Figure 3.
The solid curves in each plot of Figure 3 provide the ker-
nel estimated density functions of the fecal and mucosal
PT-ICC values. The estimated density functions based on
the normal-mixture models are given by the dashed lines.
Finally, the estimated density function calculated using
the transformation theory gave the estimated density
functions of PT-ICC values shown by the dotted lines.
Even though not perfectly, the kernel density estimates
and the normal-mixture based estimates correspond
roughly well with each other. However, the transformed
beta-mixture based density estimates misfit the lower
mixture component for the mucosal data. For fecal data,
this approach almost concluded that there was a single

component - a feature which could not be clearly seen in
Figure 1.
Monte Carlo Assessments
To investigate the sensitivity of each of the two mixture
modeling approaches to distributional mis-specification,
we conduct Monte Carlo simulation studies to mimic
what we observed in the fecal and mucosal microarray
data sets. Simulation for the fecal data is described as
follows:
Simulation scenario #1: Data Generated from Beta-

mixtures, Fit with Normal-mixtures
(1) Generate Y1, ..., Yn from fB

f = 0.7 Beta(2.6, 1.7) +
0.3 Beta(0.2, 0.8).
(2) Transform Y1, ..., Yn using the probit transforma-

tion and fit the PT-ICC measurements with a two-
component normal-mixture model.
Simulation scenario #2: Data Generated from Normal-

mixtures, Fit with Beta-mixtures
(1) Generate X1, ..., Xn from fN

f = 0.7 N (0.04, 0.8) +
0.3 N (-3.5, 0.07).
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Figure 1 Histogram of ICC values. The density of the fitted two-component beta-mixture to the (a) fecal data and (b) mucosal data is
superimposed.
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(2) Transform X1, ..., Xn using the inverse probit trans-
formation and fit the ICC data with a two-component
beta-mixture model.
We repeated each simulation s = 250 times for sample

size n = 1600 and used the EM algorithm to obtain the
estimates of corresponding parameters. The steps above
were repeated for the mucosal dataset where the beta
random variables were generated from fB

m = 0.8 Beta
(2.3, 2.3) + 0.2 Beta(0.3, 1.3) and the normal random
variables were generated from fN

m = 0.8 N (-0.3, 0.6) +
0.2 N (-3.3, 0.1).
We could not compare the outcomes of simulations

#1 and #2 directly when the estimated parameters were
for normal-mixtures and beta-mixtures, respectively. To
ease the comparisons, we chose to transform the result-
ing estimates in simulation #2 so that the outcomes cor-
respond to means and variances of distributions that
would give observations on the whole real line, and then
produced the Monte Carlo statistics corresponding to
the two components. Summary statistics for simulation
scenarios #1 and #2 are presented in Tables 1 and 2,

respectively. We identified the targeted parameter values
in each scenario as “Truth” and reported the Monte
Carlo mean, bias, standard deviation, and square-root of
mean squared error (RMSE) of the estimates. When
comparing the true parameters with the estimates
obtained from the fit of the assumed distribution, we
find that summary statistics from fitting transformed
normal random variables with a beta-mixture closely
resemble the phenomenon observed when analyzing the
fecal and mucosal data. Namely, it is the case that
although the true proportions for the upper components
of the fecal and mucosal data are 0.7 and 0.8, respec-
tively, estimates of πU resulting from the fit of two-
component beta distribution average 0.5. In contrast,
modeling the simulated PT-ICC by normal-mixtures
when the ICC values were generated from the beta-
mixtures, as described in simulation scenario #1,
is much less sensitive toward the distributional mis-
specification. This led us to believe that the use of the
two-component normal-mixture model on PT-ICC
is the more reliable approach of the two. We further
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Figure 2 Histogram of PT-ICC values. The density of the fitted two-component normal-mixture to the (a) fecal data and (b) mucosal data is
superimposed.
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analyzed the simulated outcomes and compared the sen-
sitivity of each modeling approach toward distributional
mis-specification through performing goodness-of-fit
tests against assumed models.
Precisely, for each simulated data set, we let the null

hypothesis, H0, be that the observed ICC (or PT-ICC)
values were from the assumed model. We then com-
pared the observed and expected counts of observations

within K bins, where K = 5, 8, and 12, using Pearson’s
chi-square goodness-of-fit test with significance level
a = 0.05 and k - 1 degrees of freedom. The exact proce-
dure of the test is described in the Methods subsection.
Analysis of goodness-of-fit test statistics resulting from
the simulation studies are given in Table 3. Ideally, if
the H0 was true, there should be no more than 5%
chance to reject the H0 when a = 0.05. Except when

Figure 3 Density estimates of the probit transformed ICC values for (a) fecal data and (b) mucosal data. The solid, dashed, and dotted
lines correspond to the kernel-based, the normal-mixture based, and the beta-mixture based density estimates.

Table 1 Summary Statistics of Simulation Scenario #1

Data Generated from Beta-mixtures, Fit with Normal-mixtures

Dataset ̂U ̂U ̂U
2 ̂L ̂ L

2

Fecal Truth 0.700 0.328 0.446 -1.771 3.330

Mean 0.725 0.302 0.440 -1.951 3.321

Bias 0.025 -0.026 -0.006 -0.180 -0.009

Std Dev 0.018 0.023 0.028 0.152 0.283

MSE 0.031 0.035 0.029 0.235 0.283

Mucosal Truth 0.800 -0.033 0.391 -2.090 2.722

Mean 0.816 -0.049 0.398 -2.254 2.823

Bias 0.016 -0.016 0.007 -0.164 0.101

Std Dev 0.015 0.022 0.022 0.157 0.272

RMSE 0.022 0.027 0.023 0.227 0.290

Summary statistics of simulation scenario #1. Monte Carlo mean, bias, standard deviation, and square-root MSE (RMSE) of upper mixture proportion μU, upper
mixture mean μU and variance U

2 , and lower mixture mean μL and variance  L
2 from scenario #1.
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K = 5, the proportions of tests that rejected H0 with
normal-mixture modeling are all less than the nominal
level of 0.05. Further, in all cases, the outcomes obtained
by normal-mixture modeling were comparable between
the two (assumed) true underlying distributions. The
same did not hold for beta-mixture modeling. When the
data were not generated according to the beta-mixture
scheme, the goodness-of-fit tests were rejected close to
or equal to 100% throughout. That is, the best fits of
beta-mixtures still could not provide sufficiently close
approximations that could pass the goodness-of-fit tests
under simulation scenario #1.
ICC Comparisons of Fecal and Mucosal Data
Since our findings from the simulation studies suggested
that we use a two-component normal-mixture to fit the
probit transformed ICC values, we adopted this strategy
and utilized it to compare reproducibility under the
fecal and mucosal array platforms. We associate the two
components of high (and low) ICC values with reprodu-
cible (and irreproducible) genes; see the Discussion sub-
section for more considerations.
We also let, for the fecal and mucosal data, πLF and

πLM be the proportions of the mixture components con-
sisting of irreproducible genes, and μUF and μUM be the
means of the mixture component with higher ICC

values. We reported two main studies that were con-
ducted for the purpose of exploring the extent of the
distributional differences between the two platforms.
Throughout, we used bootstrap methods described in
the Methods subsection. The first bootstrap analysis is
designed to find the 95% confidence interval for the dif-
ference in the proportion of irreproducible genes con-
tained in each data set, πLF - πLM. In the second
analysis, we identify the 95% confidence interval for the
average difference in the mixture components with
higher ICC values, μUF - μUM. The bootstrapped 95%
confidence intervals for the two studies were (0.06,0.10)
for πLF - πLM, and (0.27,0.40) for μUF - μUM. As a result,
we concluded that while the fecal array had a higher
proportion of irreproducible genes, its average ICC
values for the reproducible component of genes was a
little higher than that obtained from the mucosal
platform.
Outcomes for Analysis of Matched Subset
We now repeat the numerical investigation above but
replace the main dataset by the matched subset in
which fecal and mucosal measurements were collected
from the same genes. The ICC measurements from
the matched subset were fitted with a two-component
beta-mixture using an EM algorithm, producing the fol-
lowing density estimation for the fecal and mucosal
data, f̂ B

sf and f̂ B
sm , respectively:

ˆ (.; ˆ ) . ( . , . ) . ( . , . )f Beta BetaB
sf

B = +0 53 2 65 1 69 0 47 0 20 0 61  

and

ˆ (.; ˆ ) . ( . , . ) . ( . , . ),f Beta BetaB
sm

B = +0 86 1 33 1 81 0 14 0 78 910 21  

where the additional upper index “s” stands for “subset.”
We also obtained the following estimated two-component
normal-mixture densities, f̂N

sf and f̂N
sm , for the probit

Table 2 Summary Statistics of Simulation Scenario #2

Data Generated from Normal-mixtures, Fit with Beta-mixtures

Dataset ̂U ̂U ̂U
2 ̂L ̂ L

2

Fecal Truth 0.700 0.328 0.446 -1.771 3.330

Mean 0.453 0.282 0.521 -1.995 3.409

Bias -0.247 -0.046 0.075 -0.224 0.079

Std Dev 0.010 0.036 0.032 0.050 0.138

RMSE 0.247 0.059 0.082 0.229 0.159

Mucosal Truth 0.800 -0.033 0.391 -2.090 2.722

Mean 0.527 -0.149 0.387 -1.691 2.546

Bias -0.273 -0.116 -0.004 0.399 -0.176

Std Dev 0.011 0.031 0.023 0.049 0.111

RMSE 0.273 0.120 0.023 0.402 0.208

Summary statistics of simulation scenario #2. Monte Carlo mean, bias, standard deviation, and square-root MSE (RMSE) of upper mixture proportion μU, upper
mixture mean μU and variance U

2 , and lower mixture mean μL and variance  L
2 from scenario #2.

Table 3 P X k( ). ,
2

0 05 1
2> − for fecal (mucosal) data using

5, 8, and 12 bins

True
Fit Beta Normal

5 Beta 0.12 (0.08) 0.98 (0.01)

Normal 0.13 (0.09) 0.36 (0.01)

8 Beta 0.00 (0.01) 1.00 (1.00)

Normal 0.00 (0.01) 0.04 (0.02)

12 Beta 0.02 (0.01) 1.00 (1.00)

Normal 0.02 (0.00) 0.03 (0.01)
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transformed fecal and mucosal ICC measurements from
the matched subset, respectively:

ˆ (.; ˆ ) . ( . , . ) . ( . , . )f N NN
sf

N = + −0 80 0 16 0 87 0 20 3 43 0 08  

and

ˆ (.; ˆ ) . ( . , . ) . ( . , . ).f N NN
sm

N = − + −0 85 0 23 0 58 0 15 3 31 0 16  

There were two immediate observations from this
sub-study. First, even though the proportions of two
components differ from those in the main study, for the
PT-ICC values, the estimated parameters correspond
fairly well to those from the main study. That is, we
obtained almost the same lower and upper components
in the normal-mixture modeling as in the main study.
On the other hand, the estimated parameter values
changed quite dramatically for the beta-mixture model-
ing. Second, for the mucosal subset, the estimated pro-
portions for the two approaches are almost identical
whether the data was fitted by a beta-mixture or a nor-
mal-mixture. In fact, by producing a figure equivalent to
Figure 3, in Figure 4 we note that the two estimation
procedures reach the same conclusion for this estima-
tion (see Figure 4(b)). However, the outcomes produced
by beta-mixture modeling remains to be unsatisfactory
for the fecal samples. We also obtained the bootstrapped
95% confidence intervals for  LF

s
LM
s− and

 UF
s

UM
s− , where the parameters were equivalently

defined as in the main study. The two 95% confidence
intervals were (0.02, 0.31) and (0.31, 0.63), respectively.
They further confirm that, for this matched subset,
while the fecal array had a higher proportion of irrepro-
ducible genes, its average ICC values for the reproduci-
ble component of genes was a little higher than that
obtained from mucosal samples.

Discussion
There are a few points worth making here. The key pro-
blem behind the instability of beta-mixture modeling is
that one might attempt to estimate the worst component
of the mixture distribution with a small proportion of
data observed on the boundary. The specifics of simula-
tion scenarios #1 and #2 were based on our analysis of
the original subset of ICC values. We expect the same
difficulties would be encountered in the beta-mixture
modeling if we have a high density of ICC values close to
1 at the upper component. To investigate this conjecture,
we conducted an additional simulation study and report
the outcomes in the “Additional File 1.” We found that
the beta-mixture less accurately fit the transformed
normal data when the mixture had a high density of
values near 1. However, the beta-mixture had no

problems fitting transformed normal data resulting from
a beta-mixture with no asymptotes at the boundary.
There was less distinction between the quality of the fits
when the normal-mixture was used to fit PT-ICC data.
Again, suggesting that two-component normal-mixture
modeling on PT-ICC is a more reliable approach.
Although it is not obvious to interpret the meaning of

the estimated parameters, from the normal mixture
modeling in Figures 3 and 4, the cut-off between the
two mixture components is around -2. This roughly cor-
responds to the scenario of an ICC = 5%. By pure ran-
domness, even though the true correlation could be
zero, one could observe a non-zero sample correlation
of 5% or less. From our numerical analyses on the fecal
microarray data, the proportion of ICC values less than
5% range from 20% to 28%. The proportion of genes
with ICC values less than 5% for the fecal and mucosal
samples are 25% and 20%, respectively in the main
study, and are 22% and 18%, respectively for the
matched study. These numbers again match better with
the outcomes from the normal-mixture modeling.
Finally, we conducted another simulation study

using the estimated parameters from the matched
subset. The exact setup and outcomes are reported in
“Additional File 2.” For the mucosal subset of ICC
values, we find equivalent results between the beta-
mixture approach and the normal-mixture approach.
However, results from the simulation study show
unsatisfactory performances under the scenario of “Data
Generated from Normal-mixtures, Fit with Beta-
mixtures”. Our mucosal matched subset is most likely
beta-mixture distributed.

Conclusion
In this study we have demonstrated that when analyz-
ing ICC values of gene expression levels, it is a better
strategy to first probit-transform the ICC values onto
the (-8, 8) domain and then to model the PT-ICC
values with a normal-mixture model. Through this
practice, we were able to obtain outcomes that were
less sensitive toward distributional assumptions. We
avoided the problem of estimating parameters for a
beta distribution which increases to infinity at the
boundary. Our investigations suggested that even
though there tended to be a higher proportion of
genes that had low reproducibility in the fecal array
data than in the mucosal array data, the average ICC
values for those genes which possessed relatively high
ICC values in the fecal data was even a bit higher than
the corresponding average observed in the mucosal
platform. We also note that the probit transformation
strategy enables us to easily adopt the mixture of nor-
mal modeling approach that can be carried out by
MCLUST packages in R or Splus.
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Methods
Obtaining ICC Values for Genes on a Microarray Chip
We define a data observation, Yijk

g[ ] , to be the gene
expression level for gene g, subject i, treatment j, and

array k. The model for Yijk
g[ ] is given by

Y a eijk
g

j
g

i
g

ijk
g[ ] [ ] [ ] [ ],= + + (1)

for i = 1, 2, ..., I, j = 1, 2, ..., J, and k = 1, 2, ..., Kij. This
describes a microarray experiment where we consider I
subjects, J treatments, and Kij arrays for subject i under
treatment j. Also, μj is the overall mean for the jth treat-
ment, ai a~ [ , ]0 2 is the random effect due to the differ-
ent subjects, and eijk e~ [ , ]0 2 is the i.i.d random error.
The ICC value for gene g, ICCg, is characterized as

ICC
a g

a g e g
g Gg =

+
=



 

,

, ,
, , , , ,

2

2 2
1 2  (2)

where G is the number of genes.

The Probit Transformation
The probit function[14] is the inverse cumulative distri-
bution function (CDF) of the standard normal distribu-
tion. The CDF of the standard normal distribution is
often denoted by F(z), where z ∊ (-∞, ∞) and the range
is (0,1). Specifically,

Φ( ) exp ./u dyy
u

= −

−∞∫1
2

2 2


(3)

For X in the range of (0,1), the probit transformed
values, Y, of X, are defined as Y = F-1(X), thereby con-
verting (0,1) values to the real line.
Two-component mixture models
The numerical investigations of ICC and PT-ICC values
clearly show that the data comes from a mixture of two
populations. When data is modeled by a mixture of two
distributions we postulate it as though an observation
comes from distribution 1 with probability p and from
distribution 2 with probability 1 - π .

Figure 4 Density estimates of the probit transformed ICC values for the matched subset for (a) fecal data and (b) mucosal data.
The solid, dashed, and dotted lines correspond to the kernel-based, the normal-mixture based, and the beta-mixture based density estimates.
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We define Zi, a random indicator variable of the ith
observation, as

Zi =
−

⎧
⎨
⎩

1

0 1

,

, .

with prob. 

with prob. 




Let Wi denote the ith observation from the mixture
distribution, and assume that

W
f w Z

f w Zi
i

i
~

( ),

( ), ,
1

2

1

0

=
=

⎧
⎨
⎩

where f1 and f2 are the probability density functions of
distributions 1 and 2, respectively. The joint distribution
of (W,Z) is f(w, z) = f(w|z)f(z) and the marginal distribu-
tion of W is

f w f w z f z f w f w
z

( ) ( | ) ( ) ( ) ( ) ( ).= = + −∑  1 21 (4)

That is, for observations {Wi|i = 1, ..., n}, the likeli-
hood function is

[ ( ) ( ) ( )]. f w f wi i

i

n

1 2

1

1+ −
=

∏ (5)

Parameter estimation using expectation-maximization
(EM) algorithm
The expectation-maximization (EM) algorithm[15] is an
iterative approach for estimation of incomplete data
problems. Given starting values of the model para-
meters, the EM algorithm iteratively updates the esti-
mates until a specified convergence is reached.
Mixture of Betas
Ji et al. [11] advocate modeling correlation coefficients
with beta-mixtures and outline the subsequent EM algo-
rithm. Suppose y1, . . . yn are n independent observa-
tions from fY (y|θB), where fY is the density of a beta
distribution and θB = (π, a1, a2, b1, b2). Let the random
vector X = (Z, Y) = {zi, yi}, where zi is a 0-1 indicator
variable that tells which distribution, the first or the sec-
ond, the ith observation comes from.
In the algorithm, we iteratively perform the “E” and

“M” steps with the ‘complete’ data likelihood function, L
(θB|yi), for θB being

{ ( | , )} { ( | , )} ,f y f yi
z

i
z

i

n
i i   1 1 2 2

1

1

−

=
∏ (6)

and the corresponding log-likelihood being

( | ) { ( | , ) ( ) { ( | , )}.    B i i

i

n

i i iy z log f y z log f y= + −
=
∑

1

1 1 2 21  (7)

In the E-step, z is updated with its conditional expec-
tation given the observed data y. Consequently,

z E z y

k f

i
k

i i
k k k k k( ) ( ) ( ) ( ) ( ) ( )( | , , , , , )

( ) (

+ =

=

1
1 2 1 2    

 yyi
k k

k f yi
k k k f yi

k
| ( ), ( ))

( ) ( | ( ), ( )) ( ( )) ( | ( )
 

    
1 1

1 1 1 2+ − ,, ( ))
,

2
k

where the super-index, k, denotes the estimates at the
kth iteration.
In the M-step of the EM algorithm, we use zi

k( ) to
estimate the mixing proportion, where

ˆ
( )

,( ) k zi
k

i
n

n
= =∑ 1

and obtain the maximum likelihood estimates of ̂1 ,
̂1 , ̂1 , and ̂2 accordingly. The E- and M-steps are
iterated until the convergence criteria is met.
The starting values for a1, a2, b1, and b2 were set to 0.01

and {zi} was initialized by setting one half of the indicator
variables equal to 0 and the other half equal to 1 so that
ˆ ( ) 0 = 0.50. We utilized the ‘optim’ function in R to obtain
parameter estimates for the two beta density functions.
The procedure was repeated until we observed a negligible
change in the value of the log-likelihood given in (7).
Mixture of Normals
Let x1, ..., xn be n iid observations from fX(x|θN), where
fX is the density of a normal distribution and
     N = ( , , , , )1 2 1

2
2
2 . In order to estimate the para-

meters for a two-component normal mixture, we use
the MCLUST software package for R[16]. MCLUST
implements the EM algorithm, equivalent to what what
was described for the mixture of betas to carry out the
computations of a maximum likelihood approach for
normal-mixture models. For model selection, MCLUST
determines the number of clusters and the clustering
model by maximizing the Bayesian Information Criter-
ion (BIC)[17]. See[16,18] for more details regarding the
MCLUST software package.
Distribution of transformed random variables
Generate from Beta, Fit with Normal
Let Y be a random observation from a two-component
beta-mixture model with the density function fB given by

f y f y f yB( ) ( | , ) ( ) ( | , ),= + −      1 1 2 21 (8)

where 0 <π < 1 and

f y
y i y i

B i i

y i y i

t i t

i i( | , )
( )

( , )

( )

( )

 
 

 
 



=
− − −

=
− − −

− −

1 1 1

1 1 1

1 1 i dt−∫ 1
0
1
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is the beta density function with shape parameters ai,
bi, for i = 1, 2. Transform the observations using the
probit transformation by letting X = g(Y) and g(·) = F-1

(·). Then the range of X becomes (-∞, ∞) and its density
function is given by the expression

f x f g x
d
dx

g x

f g x x

N B

B

( ) ( ( )) ( )

( ( )) | ( ) | .

=

=

− −

−

1 1

1 

(9)

Generate from Normal, Fit with Beta
Let X be a random variable from a two-component nor-
mal-mixture model with the density function fN given by

f x x xN( ) ( ; , ) ( ) ( ; , ),= + −        1 1
2

2 2
21 (10)

where 0 <π < 1 and � (x; μi,  i
2 ) is the density func-

tion of normal random variable with mean μi and var-
iance  i

2 , i = 1, 2. We define the inverse probit
transformation as Y = F (X). The density function of Y
is given by

f y f y yB N( ) ( ( )) [ { ( )}] .= − − −Φ Φ1 1 1

Chi-square goodness of fit
Let X1, ..., Xn be an observed dataset. We divide the range
of the data into k bins. By comparing the number of
observations that fall into a given bin with the expected
number of observations for that bin, we are able to use
the Pearson’s chi-square, c2, goodness-of-fit test to assess
how well the proposed distribution fits the observed data.
The c2 statistic for testing the null hypothesis H0: The
data follow the specified distribution, is

X
Oi Ei

Eii

k
2

1

2
= −

=
∑ ( )

, (11)

where Oi and Ei are the observed and expected,
respectively frequencies for bin i.
To ensure that the expected frequency count is never

zero at the tails, we let the first and the last bins to be
{x|x <X(0.025)} and {x|x = X(0.975)}, respectively where X
(0.025) and X(0.975) are the 2.5th and 97.5th percentiles of
the data rounded up and down to the nearest whole
numbers. The equal distance bins correspond to the dis-
joint intervals in between.
If a dataset is fit with a mixture of normal distribu-

tions, then the density function defined in (10) is used
to determine the expected frequencies. Likewise, we use
(9) to calculate expected frequencies when a dataset is
fit with a mixture of betas.

Bootstrap Analysis
We apply bootstrap techniques[19] in order to construct
confidence intervals for assessing distributional differ-
ences between the fecal and mucosal array platforms.
Let πLF and πLM be the proportion of irreproducible
genes for the fecal and mucosal datasets. The procedure
to construct a bootstrap confidence interval for πLF -
πLM is as follows:
1. Generate bootstrap samples of size n1 and n2 by

sampling with replacement from the original n1 observa-
tions of fecal and n2 observations of mucosal ICC
values.
2. Use MCLUST to estimate the parameters of a two-

component normal-mixture fitted to each bootstrap
sample.
3. Compute di LF LM

  = −ˆ ˆ .
4. Repeat steps 1 through 3 for I = 299 times, comput-

ing d d1 299
  .

Once the di
 are obtained, a (1 - a)% bootstrap confi-

dence interval is defined by [ ( / ), ( / )]d di i
  2 1 2− ,

where di
 (a/2) and di

 (1 - a/2) are the a/2 and (1 - a/
2) percentiles of di

 . If we let μUF and μUM be the
means of the reproducible genes for the fecal and muco-
sal datasets, then the process for constructing a boot-
strap confidence interval for μUF - μUM mimics the
above procedure, replacing step 3 with “Compute
di UF UM
  = −ˆ ˆ .

Additional file 1: Simulation scenarios #3 and #4. These two
simulation studie s were designed to show that difficulties would be
encountered in a beta-mixture modeling if we have a high density of
ICC values close to 1 at the upper component. Scenario #3 represents
such a situation while scenario #4 represents a situation where no
asymptote is present.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
13-S1.PDF ]

Additional file 2: Simulation scenario mimicking the matched
subset data. These simulation studies were designed to evaluate the
study of the matched subsets in which fecal and mucosal measurements
were collected from the same genes. Throughout, we let the proportions
for the "reproducible" mixture component of the fecal and mucosal
datasets to be 0.8 and 0.9, respectively. Otherwise, the mixture
parameters reflect those obtained from fitted estimates of the matched
subset data.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
13-S2.PDF ]
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