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Abstract

Background: Molecular studies of microbial diversity have provided many insights into the bacterial communities
inhabiting the human body and the environment. A common first step in such studies is a survey of conserved
marker genes (primarily 16S rRNA) to characterize the taxonomic composition and diversity of these communities.
To date, however, there exists significant variability in analysis methods employed in these studies.

Results: Here we provide a critical assessment of current analysis methodologies that cluster sequences into
operational taxonomic units (OTUs) and demonstrate that small changes in algorithm parameters can lead to
significantly varying results. Our analysis provides strong evidence that the species-level diversity estimates
produced using common OTU methodologies are inflated due to overly stringent parameter choices. We further
describe an example of how semi-supervised clustering can produce OTUs that are more robust to changes in
algorithm parameters.

Conclusions: Our results highlight the need for systematic and open evaluation of data analysis methodologies,
especially as targeted 16S rRNA diversity studies are increasingly relying on high-throughput sequencing
technologies. All data and results from our study are available through the JGI FAMeS website http://fames.jgi-psf.
org/.

Background
Microbial diversity within the human body has recently
been quantified through 16S rRNA surveys [1-4] and
metagenomic methods. The latter provide a detailed
view of the genomic composition and functional poten-
tial of human-associated microbial communities through
shotgun sequencing [5]. However this level of resolution
comes with a high price-tag - billions of base-pairs need
to be sequenced to ensure a sufficient level of sampling
of complex communities [6] such as those found in the
human gastrointestinal tract. 16S rRNA surveys provide
limited insight into the composition of the commensal
microbiome. However, due to substantially lower costs,
such studies are currently the only practical approach
for studying large numbers of samples (such as those

generated in a clinical setting). In this paper, we explore
the limitations of unsupervised clustering methods used
to analyze 16S rRNA data, particularly the large impact
of small changes in the parameters of the analysis pro-
cess. We specifically focus on the most common strat-
egy - the clustering of 16S rRNA sequences into a
collection of operational taxonomic units (OTUs) or
phylotypes on the basis of sequence similarity. An eva-
luation of taxonomic classification through database
searches [4] or other fully supervised classification
methods [7] are beyond the scope of this paper. Fully
supervised approaches are inherently limited due to the
current undersampling of the global microbial popula-
tion, only allowing accurate classification of a fraction of
sequences (as low as 20% in some studies [1]). As an
alternative, the unsupervised clustering of 16S sequences
allows for detection of species-like units in complex
unknown bacterial environments, even if a precise taxo-
nomic identity cannot be assigned to these units.
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The OTU clustering process typically begins by con-
structing a multiple alignment (MSA) of the 16S rRNA
sequences. The MSA is then used to estimate pairwise
distances between individual sequences, expressed as the
fraction of nucleotides that have changed as the
sequences have evolved from their most recent common
ancestor. To accurately reflect evolutionary processes,
the distances inferred from the MSA are corrected using
one of several models of evolution [8]. The distances are
provided as input to a hierarchical clustering algorithm
(nearest neighbor, furthest neighbor, or average neigh-
bor/UPGMA are commonly used). Sub-clusters or
OTUs are defined by applying a distance threshold,
selected to roughly approximate a specific taxonomic
level: thresholds between 1-3% are typically used to
approximate individual species, 5% for individual genera,
15% for classes, etc. [9-11]. Note that alternative
approaches to OTU creation exist (e.g. those that avoid
MSAs (CD-hit) [12], or use databases [13]), but the gen-
eral technique we describe above has been widely
employed across bacterial diversity studies.
The choice of MSA, distance correction, clustering

algorithm, and distance threshold vary considerably
between studies, and to our knowledge, there has been
no rigorous evaluation of the impact of methodological
choices on the ecological conclusions of the analysis
process. Previously, simulated datasets have been suc-
cessfully used to evaluate methods for the assembly and
binning of metagenomic data [14]. In this study, we rely
on simulated datasets to provide a comprehensive
assessment of the extent to which individual parameters
in the OTU clustering process affect the estimated
diversity and composition of a microbial environment.
We evaluate methodological choices in terms of how
well the clustering of sequences into a set of OTUs
matches the clustering imposed by the known (i.e. data-
base annotated) membership of the sequences to indivi-
dual bacterial species. The OTU clusterings are
compared using a mathematically robust metric - the
Variation of Information (VI) [15] - an information-the-
oretic measure of the amount information lost or gained
by changing from one clustering to another.
Through this evaluation framework, we will demon-

strate that OTUs are highly sensitive to small changes
in the clustering methodology and reveal a surprising
observation that reducing the stringency of clustering
distance thresholds tends to produce more accurate spe-
cies-level representations of a community. We will
further assess the impact of OTU variability on common
ecological measures of diversity and provide an example
of how semi-supervised clustering could produce more
robust OTU structures by accounting for varying evolu-
tionary rates across the microbial phylogeny.

Methods
Creation of simulated datasets
Our simulated dataset comprises 1677 16S rRNA
sequences from the RDP database (release 9.57) [16],
that satisfy the following properties: (i) at least 800 bp
long; (ii) can be aligned by NAST [17] requiring a
match to the template alignment of at least 75% identity;
(iii) have full taxonomic identification at all levels from
phylum to species according to the RDP taxonomy
(Garrity et al. [18]); and (iv) the taxonomic identity of
each of the sequences is confirmed by the RDP Naïve
Bayesian classifier [7] at ≥ 95% confidence, GreenGenes
SimRank [19], and through BLASTN [20] searches
against a reduced RDP database (after filtering out the
set of simulated sequences). Thus, while it is impossible
to verify the correct taxonomic membership of all these
sequences, we can guarantee that their annotation is
consistent across multiple databases and classification
procedures. These sequences were largely obtained from
bacterial isolates (96.2%) and had unambiguous taxo-
nomic assignment at the species level. Our simulated
environment spans 49 species, 46 genera, 37 families, 21
orders, 12 classes, and seven phyla including Proteobac-
teria, Bacteroidetes, Firmicutes, and Actinobacteria.
Alpha-, Beta-, and Gammaproteobacteria make up 66%
of the sequences in roughly equal proportions. A similar
class distribution has been reported for microbial com-
munities found in the phyllosphere of the Atlantic rain-
forest [21].
It is important to note that, by choice, these sequences

are high quality and belong to relatively well-character-
ized taxonomic groups. Therefore any results obtained
on this highly curated dataset represent an upper bound
on the performance that can be achieved when analyz-
ing noisy data from environmental surveys.

Parameter evaluation: multiple sequence alignments,
distance corrections, clustering methods and distance
thresholds
All 1677 sequences were aligned using MUSCLE [22],
ClustalW [23], and NAST [17] using default parameters.
ClustalW was run with the “Fast” option for pairwise
alignments, a heuristic setting that dramatically
improves running time (scaling roughly linearly as the
number of sequences increases, as opposed to cubic
running times necessary for the full alignment proce-
dure) at the cost of a lower quality alignment. In the
NAST alignment, all columns containing only gaps were
removed, and each MSA was trimmed so that every
sequence spanned the entire alignment. The trimmed
MSAs covered the range of V2, V3, and V4 hypervari-
able regions within the E. coli O157:H7 str. TW14359
16S rRNA gene.
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Distance matrices were constructed with DNADIST
from the PHYLIP package [8] using each of the Jukes-
Cantor, Kimura 2-parameter, and Felsenstein84 correc-
tions, keeping the remaining parameters at their default
values (in particular, insertions/deletions are ignored in
the distance computation). (Olsen and F84 distance-
corrected matrices were also generated using the ARB
package [24] in a later analysis not included in our combi-
natorial search.) Distance matrices were then provided as
input to DOTUR [25], and the resulting data clustered
using, in turn, nearest neighbor, average neighbor, and
furthest neighbor clustering procedures on each individual
matrix. Individual clusters were generated, for each clus-
tering algorithm, by varying a distance threshold para-
meter ranging from 0.00 to 0.45 (incremented by 0.01).
The distance threshold D has a different meaning depend-
ing on the particular algorithm: in furthest/average/nearest
neighbor, two clusters are merged if the maximum/aver-
age/minimum distance between any two elements in the
combined cluster is less than or equal to D.
The process described above generated 1242 sets of

clusters/OTUs (3 MSAs × 3 distance corrections × 3
clustering algorithms × 46 distance thresholds), 749 of
which are distinct (i.e. multiple parameter combinations
lead to the same set of OTUs).

Comparing clusterings
We employed the Variation of Information (VI) metric
[15] as a measure of similarity between two partitions
(or clusterings) of a given set [15]. For this study, the
set comprises the 1677 16S sequences selected for the
artificial environmental sample. Mathematically, a given
clustering C, is a partition of a set S into disjoint subsets
(clusters) where:
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If there are m elements in set S, and we let mi be the
number of elements in cluster Ci, then to compute the
Variation of Information between two clusterings, we
first find the probability that a randomly selected
sequence is in a particular cluster, that is, P i mi
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Given this discrete probability distribution, the uncer-
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, and finally, the varia-

tion of information between C and D is defined as the
sum of the individual clustering entropies less 2 times
the mutual information:

VI C D H C H D I C D, ( ) ( ) , .      2

If C and D are identical clusterings, then H(C) = H(D) =
I(C,D), and the VI = 0. The VI distance is a true metric,
satisfying symmetry, non-negativity, and the triangle
inequality.
In order to provide a reference set of VI distances

for known clusters, we measured the VI between the
“true” species clustering (i.e. annotated according to
the RDP taxonomy) and the annotated phylum, class,
order, family, and genus clusterings (Additional File 1:
Table S1).

VI-cut method for defining OTUs
VI-cut is a procedure that finds a clustering from a hier-
archical tree decomposition T that optimally matches a
subset of known labels, as defined by the Variation of
Information metric [26]. A clustering is defined by
choosing a set of nodes in T. Each chosen node c corre-
sponds to a single cluster consisting of all the leaves (i.e.
sequences) in the subtree rooted at c. Collectively, the
chosen nodes correspond to a node-cut K, which
induces a non-overlapping clustering AK. Let D repre-
sent the partial clustering of labeled sequences such that
sequences with the same label are grouped together.
The VI-cut algorithm finds the AK that minimizes the
VI distance to D:

min  
K

KVI A D( , )

Although there are exponentially many possible node-
cuts in T, an optimal node-cut can be found efficiently
using dynamic programming [26]. As described, the VI-
cut algorithm creates overly-general clusters when faced
with sparsely labeled data. To correct for this, we used a
strategy called forbidden nodes. Specifically, any node n
with a corresponding diameter ≥ 0.07 was labeled as
“forbidden”, and we required that the clusters produced
by VI-cut do not contain any forbidden nodes. This
requirement implicitly restricts the maximum diameter
of an OTU to 7% divergence. To incorporate forbidden
nodes into the VI-cut algorithm, we first ran the stan-
dard VI-cut algorithm. Any cluster that contained a
forbidden node n was then sub-divided into non-over-
lapping clusters by identifying subtrees dominated by n
that do not contain any forbidden nodes.
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Assessment of OTU methodology factors using ANOVA
To isolate the individual impact of each component in
an OTU methodology, the 200 methodologies resulting
in the lowest VI distance from the annotated species
clustering were analyzed using multi-way analysis of var-
iance (ANOVA) considering four factors: multiple
sequence alignment, evolutionary distance correction,
clustering algorithm, and distance threshold.

Results
OTU variability
The results of our analysis (summarized in Figure 1)
reveal a large variation in the level of concordance of
the OTU clustering with the annotated species-level
composition of the environment when varying metho-
dology parameters. We specifically highlight the para-
meters with most impact - distance threshold (Figure
1C), MSA (Figure 1A and 1B), and clustering strategy

(Figure 1D) - parameters that accounted for 56%, 33%,
and 7% of the total variation, respectively (confirmed by
ANOVA, see Table 1). Distance correction measures did
not significantly contribute to the variability (F-test, F =
0.002, P = 0.998), implying that such corrections are
roughly equivalent within the short evolutionary time
frame defining a microbial species. We extended this
comparison to include the Olsen distance correction in
ARB [24], which we found produced OTUs virtually
identical to those created using the F84 correction.
None of the parameter combinations perfectly cap-

tured the annotated species composition (49 OTUs, VI
distance = 0). Large variation in the OTU content is
observed even when we fix the similarity threshold to
0.01 (approximately strain-level) - the number of OTUs
ranges from 79 to 248 at this similarity level, depending
on the choice of MSA or clustering strategy. Surpris-
ingly, the OTU clustering closest to the annotated

Figure 1 OTU variability observed through comprehensive methodology search. (a) The number of OTUs found versus the VI distance
from the annotated species clustering for 749 OTU sets. Generally, smaller clustering distances lead to many OTUs while larger clustering
distances result in very few OTUs, both of which poorly approximate the species-level structure in the sample. Near 49 OTUs, the true number of
species in the simulated sample, the OTU sets are relatively closer to the true species structure. Detail of the lower-left corner of (a) re-colored
by (b) MSA, (c) distance threshold, and (d) clustering algorithm.

White et al. BMC Bioinformatics 2010, 11:152
http://www.biomedcentral.com/1471-2105/11/152

Page 4 of 10



species clustering was obtained using a similarity thresh-
old of 0.05 - a value larger than the cutoffs usually used
to approximate the species-level composition of an
environment (0.01-0.03 [1,3,11]). In terms of alignment,
methodologies employing ClustalW or NAST were
roughly similar and performed slightly better than those
using MUSCLE (Figure 1B). However, applying our vali-
dation methodology to ten randomly selected subsets of
the original data, we discovered that no MSA program
consistently outperformed the others (see Consistency of
methods across multiple datasets below). In terms of
clustering strategy, furthest neighbor resulted in the best
agreement with the annotated species structure of our
environment (Figure 1D).
Even the combination of analysis parameters with the

lowest VI distance (ClustalW, furthest neighbor, 0.05
distance threshold) led to an overestimate of the num-
ber of species in our sample, resulting in 56 OTUs. This
result highlights a fundamental limitation of hierarchical
clustering strategies for 16S rRNA analysis - only 42 of
the 49 species present in our sample corresponded to a
homogeneous sub-tree within the best hierarchical clus-
tering of the data. The remaining 7 species cannot be
correctly clustered irrespective of the similarity thresh-
old chosen.
The results presented above highlight a wide variation

in the OTU structure as we explore the parameters of

the analysis process. To determine whether such varia-
tion is also present in the methodologies used in prac-
tice, we compared three analysis methodologies that
performed well in our combinatorial search to several
methodologies reported in published literature. The
results shown in Table 2 indicate that the published
methodologies can overestimate the diversity of the
simulated environment, sometimes by more than 3-fold
(see the “Termite hindgut” methodology). The fragmen-
tation of the resulting OTUs is particularly striking
among the most abundant phylotypes (Figure 2), where
sequences belonging to the same species are distributed
among multiple OTUs.

Nonparametric estimators of richness and diversity
The large variability in the OTU estimates produced by
different methodologies also had a significant effect on
commonly inferred ecological parameters. The Chao1
(SChao1) [27] and ACE (SAce) [28] richness estimators
and the Shannon diversity (H) index [29] are measures
commonly used to approximate the level of diversity
present in an environment. Restricting our analysis to
methodologies with distance thresholds from 0.01-0.05,
these three measures were found to be highly sensitive
to differences in OTU structure. Under the true (anno-
tated) species clustering, SAce = 57, SChao1 = 67, and H =
3.41. SAce and SChao1 estimates for the computed OTU

Table 1 Multi-way ANOVA table assessing components used in OTU methodologies.

Parameter Sum of Squares Degrees of freedom Mean Sq. F Prob >F

Distance threshold 0.4411 11 0.0401 23.0160 < 0.0001

MSA 0.0480 2 0.0240 13.7843 < 0.0001

Clustering 0.0099 2 0.0050 2.8503 0.0604

Distance correction < 0.0001 2 < 0.0001 0.0020 0.9980

Error 0.3171 182 0.0017

Total 0.7910 199 0.0708

The factor with the largest effect on the quality of the OTUs was the distance threshold, followed by the MSA, and then the clustering algorithm. The distance
correction explained < 0.01% of the variance and no statistically significant difference could be detected between the corrections (P = 0.998).

Table 2 OTU sets closest to the annotated species clustering for each multiple sequence alignment.

Correction MSA Clustering Distance OTUs Ace Chao1 Shannon VI

F84 ClustalW fn 0.05 56 79 116 3.39 0.044

Optimal F84 NAST fn 0.06 56 78 176 3.39 0.054

JC MUSCLE fn 0.06 54 69 132 3.37 0.068

Drosophila (host) [36] JC ClustalW fn 0.03 70 109 162 3.49 0.087

Marine sponge [37] F84 ClustalW fn 0.03 70 109 162 3.49 0.087

Soil [11] JC NAST fn 0.03 99 150 169 3.66 0.157

Deep sea biosphere [13,38] JC MUSCLE fn 0.03 96 396 466 4.66 0.190

Termite hindgut [39] JC NAST fn 0.01 185 360 351 4.11 0.320

The “VI” column indicates the VI distance of each clustering from the annotated species clustering. Best methods chosen by our validation methodology for each
MSA ("Optimal”) are contrasted with five recently published methodologies. The “Correction” column corresponds to the evolutionary distance correction. Note
that for the optimal methods using ClustalW and NAST alignments, the F84 and K2P corrections produced identical OTU sets because the distance matrices were
very similar, though not identical. All methods in this table used furthest neighbor (fn) clustering. The Ace, Chao1, and Shannon diversity estimators are also
provided.
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Figure 2 Comparison of OTU sets to true species clusters. The innermost rings represents the 20 most abundant species in the sample. Each
species shown has ≥ 40 sequences in the dataset (total observations shown next to name of each species). The middle ring displays OTUs of
the methodology using the parameters that resulted in the closest approximation of the species structure. The outer ring is an OTU set
generated from methodologies used to study microbial communities of (a) soil [11] and (b) termite hindguts [39]. Previously published
methodologies partition most species into several OTUs, resulting in an over-fragmentation of the species-level structure of the environment.
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clusterings ranged from 52 to 427 and 84 to 466 phylo-
types, respectively, while Shannon diversity indices ran-
ged from 3.04 to 4.66 (Figure 3). Accurate estimates of
the diversity of an environment are essential when plan-
ning whole-genome shotgun metagenomics sequencing
projects, and an environment whose diversity is incor-
rectly perceived to be too high might not be studied at
a metagenomic level.

Partial masking of MSAs
To improve phylogenetic analyses, researchers often
remove hypervariable segments of MSAs either manu-
ally or using a filter such as LaneMask [30,31]. We
explored the impact of this approach on OTU cluster-
ing. Specifically, we used the GreenGenes LaneMask fil-
ter, which reduces a NAST alignment to 1287 highly
conserved columns. The results are surprising - on aver-
age, employing LaneMask resulted in a worse approxi-
mation of the true species composition than the
unmasked alignment (see Figure 4). This suggests that

the use of a generic mask might be inappropriate when
analyzing highly similar sequences with the goal of con-
structing OTUs, though its use may still be relevant to
phylogenetic analyses of divergent sequences.

Semi-supervised clustering alternatives
Our study has so far made the assumption that one of the
primary goals of a 16S analysis pipeline is to estimate the
composition of an environment at a pre-specified taxo-
nomic level (e.g. species). As demonstrated by our results,
the OTU methodologies proposed in the literature fail to
achieve this goal, generally overestimating the number of
species. Even by systematically evaluating various settings
for the parameters of the analysis process, we could not
obtain perfect concordance between the OTU structure
and the species composition of the environment. This is
in part due to the fact that the concept of “species” is
born out of gross morphological and phenotypic traits of
microorganisms, and therefore cannot be precisely
mapped to fine-scale molecular measurements. Further-
more, the rate of evolution varies across the tree of life,
making it unrealistic to rely on a single distance
threshold.
As an alternative, we investigated the use of a semi-

supervised clustering method to adaptively select a set
of local distance thresholds that lead to OTUs that bet-
ter fit the species composition of the environment. Spe-
cifically, we employed VI-cut [26], a clustering approach
that identifies a cut within a hierarchical clustering tree
that maximizes the fit with a labeled subset of the
sequences. In the case of 16S analysis, VI-cut constructs
a set of OTUs that optimally matches (in terms of VI
distance) the species structure of an environment as

Figure 3 Variability in nonparametric estimators and diversity
indices using a clustering distances 0.01-0.05. Plots of (a) Ace
and Chao1, and (b) Shannon measures reveal significant sensitivity
to OTU sets. Each plotted methodology used either the MUSCLE,
ClustalW, or NAST MSA; they also used either furthest, nearest, or
average neighbor clustering, and one of the following evolutionary
distance corrections: JC, K2P, or F84.

Figure 4 Sensitivity of OTU structure to masking. Comparison of
OTU sets constructed with (x-axis) and without (y-axis) the
application of a LaneMask to the multiple alignment generated by
NAST. Both axes are labeled by the corresponding VI distance from
the true species clustering. Overall, masked alignments resulted in
poorer concordance to the true data labels. The dashed line is the
identity function y = x.

White et al. BMC Bioinformatics 2010, 11:152
http://www.biomedcentral.com/1471-2105/11/152

Page 7 of 10



inferred from a small subset of sequences that have
known taxonomic assignments (for more details see
Methods).
We applied VI-cut to our data by simulating partial

taxonomic knowledge of the dataset. For each MSA and
the optimal distance correction (shown in Table 2), we
randomly selected 10% of the sequences and provided
VI-cut with their true labels. To assess the variability in
the algorithm’s results, we repeated this procedure 20
times. As seen in Figure 5A, VI-cut outperforms meth-
odologies that employ a single distance threshold, irre-
spective of the MSA employed or the random selection

of labeled sequences. The need for an adaptive threshold
(such as that provided by the VI-cut approach) is high-
lighted in Figure 5B - the diameter of clusters corre-
sponding to a single species in our data varies
considerably among our sequences (from 0.01 to 0.07)
and the semi-supervised learning algorithm implemen-
ted in VI-cut is able to closely approximate the true dis-
tribution of distance thresholds. Note that perfect
concordance between OTUs and species cannot be
achieved even with the best hierarchical clustering tree
constructed from our data. It is an open question
whether other clustering approaches could perform bet-
ter in this context.

Consistency of methods across multiple datasets
To investigate the consistent improvement of the VI-cut
methodology over other methods, we created ten addi-
tional 16S environmental samples - each sample con-
taining 500 randomly selected sequences from the
original dataset. We repeated our comparison of VI-cut
to other methods for these ten simulated samples.
Examining the results across each MSA, we found that
VI-cut consistently produced the best species-level
approximation compared to standard methodologies
(Table 3). Importantly, we point out that no MSA pro-
gram was consistently optimal across all datasets.

Discussion and Conclusions
In this study we have shown how small differences in
OTU methodologies can lead to significant variability in
the resulting OTU structure, thereby affecting estimates of
microbial diversity and ecological conclusions. Our results
indicate that the most important factor in an OTU metho-
dology is the distance threshold imposed during clustering,
and that small changes in this parameter lead to a substan-
tial variance in the estimated diversity of a community,
making it difficult or even impossible to directly compare
the results of studies utilizing different thresholds. Com-
monly employed thresholds of 0.01-0.03 (i.e. 97-99% simi-
larity) fail to capture the underlying species composition
of an environment and are frequently too stringent, pro-
ducing inflated estimates of diversity. This result is in large
part due to the fact that the overly-general biological defi-
nition of a species cannot be directly mapped at the fine-
scale resolution provided by molecular-level observations.
In addition, diversity estimates are highly sensitive to the
abundance of rare members of a community and, thus,
can be easily confused by the “noise” caused by sequencing
errors, transient organisms, or “naked” DNA not originat-
ing from one of the members of the community. For all of
these reasons, aggregate diversity measures do not neces-
sarily correlate with the biological functions performed
by members of a community, and must be augmented by
additional, more specific, measurements of the community

Figure 5 Results of VI-cut compared to standard
methodologies. (a) Standard methodologies using a specific MSA
with furthest neighbor clustering to find OTUs. VI-cut was employed
using the same MSA and distance correction in each plot. For each
VI-cut trial, 10% of the sequences were randomly selected and
given labels. Over 20 trials, OTUs determined by VI-cut are stable
and more accurate than the standard methodologies. (b)
Distribution of distances within clusters defined by the species-
annotation and a sample VI-cut clustering. Clusters with one
member (i.e. singletons) are not shown. There is considerable
variation (D = 0.01-0.07) in the optimal distance threshold among
species.
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structure (e.g. focused on the most abundant members, or
on individual sub-classes of organisms).
While the community simulated in our study was

dominated by Proteobacteria, a significant proportion of
the data belongs to other microbial phyla, thus the gen-
eral results of our study likely hold in most other data-
sets. Furthermore, the organisms present in our samples
are sufficiently distant at the 16S rRNA level to allow
unambiguous clustering once a distance threshold was
selected, i.e. the results we obtained reflect actual char-
acteristics of 16S rRNA data rather than artifacts of the
analysis process.
Our simulated samples were composed of a small num-

ber of high-quality sequences with exceptional length
(>800 bp) - a relatively simple challenge compared to
current datasets generated by pyrosequencing (Roche/
454). 16S surveys employing pyrosequencing technolo-
gies generate considerably larger datasets (millions of
sequences per sample), comprising reads of shorter
lengths (~100-400 bp). The results we describe for long
reads will only be exacerbated in the context of short-
read data. Further, these data present several new com-
putational challenges for OTU clustering including the
need for faster alignment algorithms, the computation

and storage of evolutionary distances (the size of distance
matrices is proportional to the square of the number of
sequences being analyzed), and the selection of distance
thresholds appropriate for sequences with significantly
less phylogenetic information than the Sanger-based
reads used in our study. The analysis of the new sequen-
cing data require the development of robust methods
for OTU clustering, as well as rigorous validation of
analysis methods. We finally demonstrated that a semi-
supervised clustering approach (VI-cut) can significantly
improve analysis quality, highlighting the potential for
semi-supervised clustering approaches to fill the gap
between the two extreme classes of approaches com-
monly used in analyzing 16S rRNA datasets: fully-super-
vised database searches that rely on expensive highly-
curated datasets; and fully unsupervised OTU clustering
procedures that use ad hoc similarity thresholds in an
attempt to match poorly-defined taxonomic labels.
Semi-supervised procedures such as VI-cut can generate
accurate clusterings while only requiring high-quality
labels for only a small subset of the sequences.
Finally, it is important to observe that clustering 16S

rRNA sequences into a set of OTUs is a valuable analy-
sis tool even if the resulting OTUs do not correlate with
pre-defined taxonomic entities. However, the ad hoc
choice of analysis parameters, in particular the selection
of different distance thresholds, complicates cross-study
comparisons and even basic descriptions of diversity. As
16S rRNA surveys are increasingly applied in a clinical
setting [5,32-35] (e.g. to determine how microbiota cor-
relate with human disease states), it is critical to accu-
rately measure taxonomic diversity and identify
individual species. Our results highlight the need for
standardizing 16S rRNA analysis methods, or in the
very least, reporting results obtained with multiple dis-
tance thresholds or clustering algorithms.
The data used in this study have been deposited in the

FAMeS online database http://fames.jgi-psf.org - a repo-
sitory for metagenomic analysis benchmarks [14]. Soft-
ware used for semi-supervised clustering analysis is also
available at http://www.cbcb.umd.edu/VICut/.

Additional file 1: Variation of information distances of high-level
taxonomic clusterings from the annotated species clustering. To
give the reader some intuition about the VI distance metric, we
computed VI distances between the annotated species-level clustering
and other clusterings based on phylum, class, order, family, and genus
annotations. This file contains a table of these reference distances.

Abbreviations
OTU: operational taxonomic unit; rRNA: ribosomal ribonucleic acid; VI:
Variation of Information; MSA: multiple sequence alignment; RDP: Ribosomal
Database Project; ANOVA: analysis of variance;

Table 3 Top standard methodologies and performance of
VI-cut.

MSA Clustering Distance mean VI

MUSCLE VI-cut adaptive 0.0589

ClustalW VI-cut adaptive 0.0595

ClustalW fn 0.03 0.0688

MUSCLE fn 0.04 0.0691

ClustalW fn 0.04 0.0697

MUSCLE fn 0.05 0.0748

NAST VI-cut adaptive 0.0762

ClustalW fn 0.02 0.0838

NAST fn 0.05 0.0845

MUSCLE fn 0.03 0.0860

NAST fn 0.06 0.0872

ClustalW fn 0.05 0.0942

NAST fn 0.04 0.0992

MUSCLE fn 0.06 0.1025

ClustalW fn 0.06 0.1176

NAST fn 0.03 0.1222

MUSCLE fn 0.02 0.1370

ClustalW fn 0.01 0.1505

NAST fn 0.02 0.1633

NAST fn 0.01 0.2362

MUSCLE fn 0.01 0.2629

Methods are ranked by their mean VI-distance over 10 simulated datasets. We
constrained the results to commonly accepted methods using furthest
neighbor clustering and distance thresholds less than 0.07. A distance
threshold of 0.01 is consistently among the worst performing methodologies.
VI-cut consistently results in the best clustering for each MSA.
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