
Sanchez-Garcia et al. BMC Bioinformatics 2010, 11:189
http://www.biomedcentral.com/1471-2105/11/189

Open AccessS O F T W A R E
SoftwareJISTIC: Identification of Significant Targets in 
Cancer
Felix Sanchez-Garcia*1,2, Uri David Akavia2,3, Eyal Mozes2 and Dana Pe'er2,3

Abstract
Background: Cancer is caused through a multistep process, in which a succession of genetic changes, each conferring 
a competitive advantage for growth and proliferation, leads to the progressive conversion of normal human cells into 
malignant cancer cells. Interrogation of cancer genomes holds the promise of understanding this process, thus 
revolutionizing cancer research and treatment. As datasets measuring copy number aberrations in tumors accumulate, 
a major challenge has become to distinguish between those mutations that drive the cancer versus those passenger 
mutations that have no effect.

Results: We present JISTIC, a tool for analyzing datasets of genome-wide copy number variation to identify driver 
aberrations in cancer. JISTIC is an improvement over the widely used GISTIC algorithm. We compared the performance 
of JISTIC versus GISTIC on a dataset of glioblastoma copy number variation, JISTIC finds 173 significant regions, whereas 
GISTIC only finds 103 significant regions. Importantly, the additional regions detected by JISTIC are enriched for 
oncogenes and genes involved in cell-cycle and proliferation.

Conclusions: JISTIC is an easy-to-install platform independent implementation of GISTIC that outperforms the original 
algorithm detecting more relevant candidate genes and regions. The software and documentation are freely available 
and can be found at: http://www.c2b2.columbia.edu/danapeerlab/html/software.html

Background
A comprehensive study of the genomic alterations that
occur in cancer is vital for understanding this disease.
Technological advances have made it possible to detect
chromosomal regions of amplifications and deletions
genome-wide and at high resolution. Datasets measuring
such aberrations in patient tumors are accumulating at a
staggering rate for multiple types of cancer [1-4]

However, tumors harbor a great number of copy num-
ber alterations and it is difficult to distinguish between
driver aberrations (functional changes vital for cancer
progression) and passenger aberrations (random and
with no selective advantage). Thus, the distinction
between driver and passenger mutations has become one
of the key challenges in cancer genomics. A very success-
ful algorithm to address this is "Genomic Identification of
Significant Targets in Cancer (GISTIC)" [1], that identi-
fies aberrant regions more likely to drive cancer patho-
genesis. GISTIC calculates the background rate of

random chromosomal aberrations and identifies those
regions that are aberrant more often than would be
expected by chance, with greater weight given to high
amplitude events that are less likely to represent random
aberrations. There are other algorithms that tackle this
task such as GLAD [5], RAE [6] and STAC [6]. However,
GISTIC is unique in its ability to combine magnitude and
frequency of the alteration into a statistical score. This
algorithm has been successfully applied to various data-
sets [2,4,7,8] and the approach is becoming widespread.

GISTIC identifies those regions of the genome that are
aberrant more often than would be expected by chance.
While successful in most scenarios, GISTIC has trouble
identifying the relevant sub-region when a very large
region is amplified or deleted. Such large chromosomal
aberrations frequently occur in cancer and this leaves the
user with two less than optimal options - consider only a
single peak within the region, or consider an entire chro-
mosomal arm. However, we have observed that in many
cases there are other small sub-regions for which the
aberration is significantly stronger than in the rest of the* Correspondence: fs2282@columbia.edu
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large region. Moreover, these regions often contain
known oncogenes.

To address this issue, we developed JISTIC, a tool that
implements all of GISTIC's capabilities, with an addi-
tional new variant of the algorithm capable of detecting
multiple significant sub-regions within large aberrant
regions.

Implementation
JISTIC is based on the GISTIC algorithm [1]. JISTIC
implements the previously published variants of GISTIC
(standard, focal and arm-peel-off ) and can also deal with
LOH in the same way that the original algorithm does.
More detailed information on GISTIC can be found in
the Supporting Information of [1].

In brief, GISTIC calculates a statistic (G-score) which
represents the strength of the aberration for each marker.
The G-score for a marker m is the summation of the copy
number across all samples. For this summation, the sam-
ples in which the copy number is less significant than an
empirical aberration threshold (ΘAMP for amplification,
ΘDEL for deletion) is set to zero. Therefore, the G-score in
the case of amplifications is:

Where I(x) is the indicator function and CN(m, i) the
copy number for marker m and sample i. The score is
defined similarly for deletions, taking into account the
change in sign. While standard GISTIC uses a fixed aber-
ration threshold for each type of aberration, focal GISTIC
uses sample-specific high-level thresholds. This thresh-
old is set for each sample by adding the standard thresh-
old to the maximum (minimum for deletions) of medians
observed for each chromosome arm.

GISTIC assesses the significance of the G-score for
each marker by comparing this score to results expected
by chance using genome-wide permutation testing. This
significance is then corrected using False Discovery Rate
(FDR) using Benjamini and Hochberg method [9], and a
q-value is obtained. All regions with a q-value below a
threshold (0.25 in previously published articles) are
deemed significant. For large aberrations, the sub-region
with a minimal q-value is identified as a peak driver
region.

To identify independent peaks within a region and dis-
card spurious peaks, GISTIC uses a peel-off algorithm.
The algorithm iteratively finds the most significant peak
and then, for each sample, if the peak is included in the
aberration, it sets to zero all markers consecutive with the
peak, thus removing all aberrations overlapping the peak.
Once a peak has been detected, the peak region is

extended by leaving each sample out in turn, and recalcu-
lating the peak boundaries.

Typical to cancer genomes is the presence of broad
copy number aberrations, defined as aberrant regions at
least as large as one half of a chromosomal arm [1]. Peel-
off on broad regions using standard GISTIC usually
results in identifying only a single peak. GISTIC also has
a focal variant of the algorithm which can potentially cap-
ture more aberrations, but misses many peaks in practice.

The crux of the matter is to distinguish between genu-
ine multiple peaks and a single peak within noisy fluctua-
tions of microarray intensities. Focal peel-off is designed
to deal with this issue, but since the focal threshold is
defined according to the highest broad aberration
genome-wide, this variant not only requires the aberra-
tion to have a strong focal behavior, but also depends on
the strength of other broad aberrations across the
genome. In Figure 1 we demonstrate how different
thresholds (determined by broad aberrations in other
chromosomes not shown in the figure) can lead to either
detection or failure to detect a second peak. In this exam-
ple, standard GISTIC only captures a single peak and
misses a second peak that seems equally significant, with
just a slight difference in G-score. In this type of situa-
tions standard GISTIC is doomed to fail. The detection of
the second peak with focal GISTIC highly depends on the
focal threshold. This threshold is set for each sample by
the highest broad aberration genome-wide and there are
cases, such as C in Figure 1, in which the focal events that
define the aberration are masked by broad aberrations in
other chromosome (not shown in Figure). In the next sec-
tion we will see that this problem is prevalent in real data-
sets.

For JISTIC, we developed a new variant called limited
peel-off, designed to tackle the problem posed in Figure
1. While GISTIC sets to zero any aberration containing
the peak, our algorithm "peels off" only part of the aber-
ration. Limited peel-off uses the global G-score to deter-
mine the extent of "peel-off. Given a single aberration, we
expect G(m) would decrease as we get further from it
until it reaches the noise level. The idea behind limited
peel-off is to decompose the G-score for a marker in two
parts, one that represents what remains from the peak
that we are peeling off (Gr(m)) and another that depicts
contribution independent of the peak (Gn(m)). We use a
threshold value (Gthres) to estimate whether Gn(m) con-
tains only noise or the aberration is likely due to an inde-
pendent peak.

Denote G(m, i) as the G-score contribution of sample i
in marker m, which can be defined as:

G m CN m i I CN m iAMP AMP

i

( ) ( , ) ( ( , ) )= × >∑ Θ

G m i CN m i I CN m i AMP( , ) ( , ) ( ( , ) )= × > Θ
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For each sample i, the algorithm iteratively calculates
on both sides of a newly discovered peak the magnitude
Gr(m, i). For the right side of the peak:

the left side of the peak is the symmetric equation:

Gr(m, i) represents the amount of aberration that
remains from the primary peak in marker m. JISTIC con-
siders any reduction in the aberration that is consistent
for at least a minimal number of markers, s. This parame-
ter was introduced after observing that transient fluctua-
tions in copy number result in a greater number of false
positives. For s = 0 a total of 147 peaks are detected with
limited peel-off. However, many of those peaks are
located next to each other in the genome and the biologi-

cal assessment suggested that those were spurious peaks.
The number of reported peaks decreases when the
parameter s increases, eliminating most of those spurious
peaks.

In order to determine whether a new peak exists, we
need the complementary component of Gr(m, i), Gn(m, i),
measuring the component of the aberration that is inde-
pendent from the primary peak, for each sample:

The condition that JISTIC checks in order to abort the
peel-off at a marker m is

The results critically depend on the threshold Gthres. If
Gthres is too high, the algorithm will obtain exactly the
same result than the standard variant of GISTIC. If the

G m i G m i G m k ir r
k s

( , ) min( ( , ), max ( ( , ))
( , )

= − +
∈

1
0

G m i G m i G m k ir r
k s

( , ) min( ( , ), max ( ( , ))
( , )

= + −
∈

1
0 G m i G m i G m in r( , ) max( ( , ) ( ( , ), )= − 0

G m i G m Gn n thres

i

( , ) ( )= >∑

Figure 1 GISTIC applied to example. Represented is a toy chromosome for 5 samples. The X axis corresponds to consecutive markers across the 
chromosome and each bar represents the G-score contribution of that marker. Two possible cut-offs determined by focal GISTIC are represented by 
dotted blue and red lines, these cut-offs are determined based on broad regions in other chromosomes (which are not shown in the Figure for the 
sake of clarity). Three results from GISTIC are contemplated: standard (A), focal based on the blue threshold (B) and focal based on the red threshold 
(C). Reported peaks are displayed as green bars at the top, Focal GISTIC's ability to capture additional peaks is dependent on the threshold determined 
by aberrations in other chromosomes.
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value is too low, the algorithm will obtain many spurious
peaks. For consistency, we use the G-score value that cor-
responds to the threshold q-value when running the focal
variant, thus using the same threshold both for a peak on
baseline copy number and a sub-peak within a broader
region.

Figure 2 shows how limited peel-off successfully detects
the second peak in the example from Figure 1. Contrary
to the focal variant, this success is independent of broad
regions in other chromosomes. It is important to note
that limited peel-off fully replaces the standard variant, as
any peak captured by the latter, will also be captured by
the former. On the other hand, focal and limited peel-off
can be considered complementary. While limited peel-off
looks at the average of the aberration across samples,
focal concentrates on the most acute aberrations for each
sample.

Results
We tested JISTIC on 178 glioblastoma samples that had
been previously used to test the latest version of GISTIC
[10]. This dataset was generated by Harvard Medical
School using Agilent 244 K Arrays.

The parameter s was tuned using the histogram of seg-
ments sizes to obtain candidate values and the optimal
value was chosen based on the distribution of minimum
distance between peaks. In the test dataset, the histogram
of segment size showed that the number of segments
decreases with the segment size, as it was expected. We
observed a stronger decrease in the number of segments
for 3 different segment sizes (3, 8 and 12); those sizes
were considered as candidate values for s. The distribu-
tion of minimum distance between peaks was used to
estimate the number of spurious peaks for each of those
values. This distribution shows a considerable change
when s was increased to 8, as the number of adjacent
peaks decreased. The distribution did not show any sig-
nificant change when s was increased to 12 and we
adopted a conservative approach by setting s = 10, which
corresponds to 126.87 kb on average. Limited peel-off
detected 124 peaks using s = 10.

Table 1 shows the peaks and genes obtained with JIS-
TIC in the three variants: standard, focal and limited
peel-off. Note that standard and focal are equivalent to
implementations of the GISTIC algorithm [10]. When
looking at peaks by chromosome (Table 2), we observe
that most of the novel peaks appear in chromosomes with
a broad region for which standard detects only a single
peak and focal detects one or no peaks.

Figure 3 demonstrates an example of such a broad peak
in chromosome 19. Standard (A) captures only a single
peak and focal (B) fails to capture any aberration. On the
other hand, limited peel-off (C) successfully captures
multiple relevant regions. The ultimate assessment is

whether the additional peaks identified are indeed driv-
ers. To evaluate this we assessed whether the new peaks
in chromosome 19 contained solid candidates for onco-
genes. Standard GISTIC identified a single peak contain-

Figure 2 Limited peel-off applied to example. Limited peel-off for 
the same example shown in Figure 1. The x axis corresponds to con-
secutive markers across the chromosome while each bar represents 
the G-score contribution of that marker. Reported peaks are displayed 
as green bars at the top. Limited peel-off successfully detects two 
peaks in the example, independently of aberrations in other chromo-
somes. The figure also illustrates how thresholds in limited peel-off are 
applied. In this example s = 1. (A) The G-score contribution for each 
sample is decomposed into the G-score for the primary peak (green), 
Gr (white) and Gn (red). (B) Each bar illustrates the total Gn of the marker. 
The threshold Gthres represents the cut-off that determines whether 
the peel-off should be aborted. In this example the peel-off is aborted 
in marker 14, allowing the detection of an additional peak.
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ing the gene (ZNF626), whose role is unknown. In
comparison, limited peel-off detected 7 additional
regions, where each includes at least one oncogene and
multiple genes related to cell replication. Examples of
oncogenes include AP1 M2 [11], Cyclin E1 [12], LYPD3
[13], see Table 3 for list of potential oncogenes in each
peak.

Figure 4 shows another example, a deletion of the entire
chromosome 22. Standard finds a single peak and focal
finds no peaks, whereas limited peel-off finds 3 additional
peaks. The peak identified by standard includes FBLN1, a
gene that has been previously selected as candidate
tumor suppressor [14]. Each additional peak identified by
limited peek-off has at least one tumor suppressor, such

as SMARCB1 [15], HIRA [16] and LARGE [17], see Table
4 for list of potential tumor suppressors in each peak.

For a systematic evaluation we designed an automated
statistical test to study the limited peel-off 's specificity
and establish that the increased number of peaks
detected by limited peel-off does not increase the false
positive rate. Our permutation based test estimates the
number of candidate cancer driver genes expected in ran-
dom regions matching in size with the regions detected
by JISTIC. We compiled a list of 1880 likely driver genes
based on two different sources:

• Genes listed in the Sanger Cancer Gene Census [18].
• Genes annotated in GO [19] for at least one of the
following processes: cell cycle, cell proliferation, cell
death and neurogenesis.

Table 1: Summary of peaks and genes for the three variants.

Amplification Deletion

Peaks Genes Peaks Genes

Standard 14 35 12 59

Focal 74 202 21 53

Standard+ Focal 75 204 28 99

Limited peel-off 64 272 60 205

Novel by limited peel-off 29 186 41 136

For each variant and type of aberration, the number of peak regions and genes contained within them are illustrated. The table also 
summarizes results for all GISTIC variants (non-overlapping peaks obtained by standard and focal GISTIC) and novel peak regions reported by 
limited peel-off. Limited peel-off detects 70 novel peaks and 322 genes.

Table 2: Peaks by chromosome.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

AMP Standard 2 0 1 4 0 0 3 0 0 0 0 2 0 0 0 0 0 0 1 1 0 0

Focal 9 6 5 6 2 3 17 1 0 0 3 16 1 1 1 0 1 0 0 1 0 1

Limited 6 0 2 4 0 0 28 0 0 0 0 13 0 0 0 0 0 0 7 4 0 0

DEL Standard 1 0 0 0 1 1 0 0 1 2 1 0 1 1 1 0 0 0 1 0 0 1

Focal 4 1 0 1 2 1 0 1 7 1 0 0 1 1 0 0 0 0 1 0 0 0

Limited 5 0 0 0 1 6 0 0 16 12 1 0 7 4 3 0 0 0 1 0 0 4
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We generated 10,000 random outputs with similar
characteristics to the real output. A random output is
generated by iterating over all detected peaks and shifting
the peak's location to a random position in the genome.
For each output, we count the number of regions contain-
ing at least one gene in the list of driver candidates above.
This provides us with a distribution for the number of
potential driver genes expected in the null model.

To compare focal and limited peel-off, we tested three
sets of peaks: the peaks that are exclusive to each of the

two methods and the peaks that are common to both.
Note that all the peaks obtained by standard GISTIC are
also obtained by limited peel-off. The results of the
10,000 iterations for each of the three sets are shown in
Table 5.

As expected, the p-value obtained for the overlapping
peaks is more significant than the p-value for the exclu-
sive peaks for each method.

For the 78 peaks obtained exclusively by limited peel-
off, 25 contained likely driver genes, only 23/10,000 per-
mutations reached the value obtained by the true output,
giving a p-value of 0.0023. In comparison, for exclusive
peaks for the focal variant, 9 of the 49 peaks contained
likely driver genes. In 73/10,000 permutations the test
obtained as many peaks with likely driver genes, giving a
p-value of 0.0073.

Table 3: Novel amplification peaks in chrom. 19 reported 
by limited peel-off.

Location Candidate driver genes

265456-781585 (19p13:3) PTBP1 [21], BSG [22]

4105670-4353981 (19p13:3) CHAF1A [23], SH3GL1 [24]

10539157-10628316 (19p13:2) AP1 M2 [11], ILF3 [25]

34895742-35531840 (19q12) Cyclin E1 [12]

48658163-48753325 (19q13:31) LYPD3 [13]

61586503-63564951 (19q13:43) BMZF3 [26]

For each novel peak region of amplification detected by limited 
peel-off in chromosome 19 its location in the genome and suspected 
driver genes are shown. Each driver gene is accompanied by a 
reference that supports its oncogenic nature. All novel peaks contain 
at least one candidate driver gene.

Table 4: Novel deletion peaks in chrom. 22 reported by 
limited peel-off.

Location Candidate driver genes

17482013-17787269 (22q11:21) HIRA [16]

22370186-22476593 (22q11:23) SMARCB1 [15]

32114340-33392384 (22q12:3) LARGE [17]

For each novel peak region of deletion detected by limited peel-off in 
chromosome 22 its location in the genome and suspected driver 
genes are shown. Each driver gene is accompanied by a reference 
that supports its behavior as tumor suppressor. All novel peaks 
contain at least one candidate driver gene.

Figure 3 Amplification aberrations for chromosome 19. Represented are standard (A), focal (B) and limited peel-off (C) results for amplifications 
in the whole chromosome 19. The x axis corresponds to consecutive markers across the chromosome and the y axis corresponds to the q-value in 
logarithmic scale. The significance threshold for aberrations (q-value = 0.25) is represented by a blue line. Reported peak regions are illustrated in 
green. Limited peel-off detects 6 novel peaks.
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Conclusions
The analysis performed on limited peel-off against stan-
dard and focal GISTIC demonstrates the superiority of
limited peel-off to achieve both better specificity and dra-
matically increase recall by obtaining a large number of
novel peaks.

In conclusion, JISTIC is a significantly improved algo-
rithm to distinguish between driver and passenger copy
number aberrations in cancer genomes. Importantly, it
detects a significant number of additional driver regions
while maintaining a similar false positive rate. We con-
clude that both limited peel-off and focal GISTIC should
be used together as they provide complementary and sig-
nificant results.

The tool is implemented in Java, has been tested on
Linux and Windows. It can be downloaded from http://
www.c2b2.columbia.edu/danapeerlab/html/soft-
ware.html. It does not have dependencies to external
libraries and can be downloaded as a single Java JAR file.
The execution time for the glioblastoma dataset on a

standard desktop computer (Intel Xeon W3505 @ 2.53
GHz, 3GB of RAM) was 8 minutes for all variants.

Matlab scripts are provided in order to visualize the
output and obtain different statistics. The tool can also
convert to the format used by the open-source visualiza-
tion tool IGV [20], used to display cancer genomic data
using a user-friendly interface, demonstrated in Figure 5.

Availability and Requirements
• Project name: JISTIC
• Project home page: http://www.c2b2.colum-
bia.edu/danapeerlab/html/software.html
• Operating system(s): Platform independent
• Programming language: Java
• Other requirements: Java 1.5 or higher
• License: LGPL
• Any restrictions to use by non-academics: None

Conflict of interests
The authors declare that they have no competing inter-
ests.

Table 5: Results for permutation test for focal and limited peel-off peaks.

Peaks Driver Peaks P-value

Focal exclusive 49 9 7.3E-3

Limited peel-off exclusive 78 25 2.3E-3

Overlapping between both 46 14 3.5E-6

The p-value for the permutation test estimates the probability of detecting as many peaks containing candidate driver genes if random 
regions of the same size across genome are selected. The table shows results for mutually exclusive peaks between focal GISTIC and limited 
peel-off and for overlapping peaks between both variants.

Figure 4 Deletion aberrations for chromosome 22. Represented are standard (A), focal (B) and limited peel-off (C) results for deletions in the whole 
chromosome 22. The x axis corresponds to consecutive markers across the chromosome and the y axis corresponds to the q-value in logarithmic scale. 
Note that only markers for which data is available are plotted. The significance threshold for aberrations (q-value = 0.25) is represented by a blue line. 
Reported peak regions are illustrated in green. Limited peel-off detects 3 novel peaks.

http://www.c2b2.columbia.edu/danapeerlab/html/software.html
http://www.c2b2.columbia.edu/danapeerlab/html/software.html
http://www.c2b2.columbia.edu/danapeerlab/html/software.html
http://www.c2b2.columbia.edu/danapeerlab/html/software.html
http://www.c2b2.columbia.edu/danapeerlab/html/software.html
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Figure 5 IGV display of JISTIC results. Segmented copy number and JISTIC results can be simultaneously displayed using the visualization tool IGV 
[20]. The main window displays the segmented copy number data used as JISTIC input. Two tracks at the bottom show JISTIC's output (G-score and 
peak regions respectively).
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