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Abstract
Background: Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is an assay used for 
investigating DNA-protein-binding or post-translational chromatin/histone modifications. As with all high-throughput 
technologies, it requires thorough bioinformatic processing of the data for which there is no standard yet. The primary 
goal is to reliably identify and localize genomic regions that bind a specific protein. Further investigation compares 
binding profiles of functionally related proteins, or binding profiles of the same proteins in different genetic 
backgrounds or experimental conditions. Ultimately, the goal is to gain a mechanistic understanding of the effects of 
DNA binding events on gene expression.

Results: We present a free, open-source R/Bioconductor package Starr that facilitates comparative analysis of ChIP-
chip data across experiments and across different microarray platforms. The package provides functions for data 
import, quality assessment, data visualization and exploration. Starr includes high-level analysis tools such as the 
alignment of ChIP signals along annotated features, correlation analysis of ChIP signals with complementary genomic 
data, peak-finding and comparative display of multiple clusters of binding profiles. It uses standard Bioconductor 
classes for maximum compatibility with other software. Moreover, Starr automatically updates microarray probe 
annotation files by a highly efficient remapping of microarray probe sequences to an arbitrary genome.

Conclusion: Starr is an R package that covers the complete ChIP-chip workflow from data processing to binding 
pattern detection. It focuses on the high-level data analysis, e.g., it provides methods for the integration and combined 
statistical analysis of binding profiles and complementary functional genomics data. Starr enables systematic 
assessment of binding behaviour for groups of genes that are alingned along arbitrary genomic features.

Background
Chromatin-ImmunoPrecipitation on chip (ChIP-chip) is
a technique for identifying Protein-DNA interactions. For
this purpose, the chromatin is bound to the protein of
interest, then trimmed to yield a protein-bound fraction
of DNA. The protein-bound fraction of DNA is then
immunoprecipitated with a protein-specific antibody and
hybridized to tiling microarrays [1]. The complex experi-
mental procedure and the high dimensionality of the out-
put data require thorough bioinformatical analyses which
assess the quality of the experiments and ensures the reli-
ability of the results [2,3]. The practical need for a ChIP-
chip analysis tool has led to the development of either

GUI-based or command line-oriented software (see [4,5],
and [6,7], respectively). We favor the command line solu-
tion, which has been realized in our software, because
virtually every ChIP-chip experiment requires flexible
adaptations to its individual design as well as customized
methods to test the hypotheses under investigation.

Implementation
We present the open-source software package Starr,
which is available as part of the open source Bioconduc-
tor project [8]. It is an extension package for the program-
ming language and statistical environment R [9]. Starr
facilitates analysis of ChIP-chip data, with particular but
not exclusive support of the Affymetrix™ microarray plat-
form. Its functionality comprises remapping of probe
sequences to the genome, data import, quality assess-
ment, and visual data exploration. Starr provides new
high level analysis tools, e.g., the alignment of ChIP sig-
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nals along annotated gene features, and combined analy-
sis of the ChIP signals and complementary gene
expression measurements. It uses the standard microar-
ray data structures of Bioconductor, thus building on and
fully exploiting the package Ringo [6]. The sequence map-
ping algorithm and some functions for peak finding are
implemented in C to increase computation speed. The
mapping of the probes to the position of the genome are
stored in an object of the Bioconductor class probeAnno.
Intensity measurements from the ChIP experiments are
stored in an ExpressionSet object, which makes the
results of Starr accessible to all other R packages that
operate on these common classes.

Results
Figure 1 shows the typical workflow of a ChIP-chip analy-
sis in Starr, together with the utilized input resp. output
files and data structures. Our results description runs
along the lines of this workflow, highlighting the novel
features provided by Starr.

Preparation
Sometimes a remapping of reporters to the genome may
be necessary. This prevents probe sequences matching to
either none or multiple sites of a current genome
sequence, which might happen in the case of a probe
annotation file being built upon an outdated version of
the target species' genome sequence. Mending these false

matches is mandatory, because all subsequent steps rely
on correct probe annotation. Until now, this task
required external programs like xMAN [10] or Mummer
[11], which can be inconvenient and time-consuming.
Starr contains a novel update function for microarray
probe annotation (bpmap) files. It implements the Aho-
Corasick algorithm [12], which is designed for efficient
string matching. Remapping all probe sequences with
Starr takes only seconds for small genomes like yeast and
minutes for larger genomes like human (see Table 1,
Results were calculated on an Intel Core Duo E8600 3.33
GHz machine). The result is a corrected, ready-to-use
bpmap file.

Preprocessing
We facilitated data import as much as possible, since in
our experience, this is a major obstacle for the widespread
use of R packages in the field of ChIP-chip analysis. Data
import from the microarray manufacturers Nimblegen
and Agilent has already been implemented in Ringo, the
Affymetrix array platform is covered by Starr. There are
two kinds of files that must be known to Starr: the
.bpmap file which contains the mapping of the reporter
sequences to their physical position on the array, and the
.cel files which contain the actual measurement values.
All data, no matter from which platform, are stored in the
common Bioconductor object ExpressionSet, which
makes them accessible to a number of R packages operat-
ing on that data structure. The built-in import procedure
of Starr furthermore automatically creates R objects con-
taining additional annotation (probeAnno, phenoData,
sequence information), which is indespensible for our
purposes. There exist alternative import functions, e.g.,
in the packages AffyTiling, oligo or rMAT [13], but these
do not extract all the information we need, and often they
use a different format. Genomic annotation can either be
read directly from a gff file or obtained via the biomaRt
package [14].

It would be desirable to discuss the structure of cel and
gff files and of the ExpressionSet/probeAnno classes at
greater length, but this is beyond the scope of this paper.
We refer to the vignette of the Starr package, which
addresses these more technical aspects in detail.

The obligatory second step in the analysis protocol is
quality control. The complex experimental procedures of

Table 1: Time for remapping of Affymetrix reporter sequences to a genome

array time #sequences genome size (bp)

S. cerevisiae Tiling 1.0R 34 s 2 697 594 12 495 682

Drosophila Tiling 2.0R 1 min 16 s 2 907 359 122 653 977

Human Promoter 1.0R 14 min 22 s 4 315 643 3.3 * 109

Figure 1 Workflow. Typical workflow of a ChIP-chip analysis in Starr, 
together with the utilized input resp. output files and data structures.
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a ChIP-chip assay make errors almost inevitable. A spe-
cial issue of Affymetrix oligo arrays is the intensity bias
caused by the sequence-specific GC-content of the oli-
gomer probes [2]. Sometimes this bias is not appropri-
ately corrected due to improper normalization. Thus we
included a new quality control plot routine for examining
measurement bias and variation before and after normal-
ization. Starr displays the average expression of probes as
a function of their GC-content, and it calculates a posi-
tion-specific bias of every nucleotide in each of the 25
positions within the probe (Figure 2). We used this visuli-
zation to check whether the MAT normalization method
[15] does accurately correct for sequence-specific hybrid-
ization bias. We used the R implementation rMAT [13] of
the algorithm for normalization. As is shown in Figure 2,
it partly removes the systematic errors in the unnormal-
ized data, yet the diagnostic plot reveals a strong residual
bias in the processed data. We compared the perfor-
mance of MAT to that of a normalization by a reference
experiment. Such control measurements are obtained by
either performing a mock immunoprecipitation, i.e. an
immunoprecipitation which is designed to reflect unspe-
cific antibody binding, or by simply digesting and pro-
cessing genomic DNA of that organism. It turns out that a
rank percentile normalization of experiment and refer-
ence, followed by a simple subtraction of the reference
from the experiment measurements yields substantially
better results than rMAT (bottom row of Figure 2). We
therefore advise experimentalists to perform at least one
control immunoprecipitation for normalization pur-
poses. Moreover, Starr provides many other quality con-
trol plots like an in silico reconstruction of the physical
array image to identify flawed regions on the array, or
pairwise MA-plots, boxplots and heat-scatter plots to
visualize pairwise dependencies within the dataset. For
the purpose of bias removal (normalization), Starr inter-
faces the package limma. It also contains standard nor-
malization methods like the loess normalization, or the
median-rank-percentile normalization proposed by Buck
and Lieb in 2004 [16]. For a comparison of ChIP-chip
normalization methods, see recent publications [17-21].

High-level analysis
We demonstrate the utility of Starr by applying it to a
yeast RNA-Polymerase II (PolII for short) ChIP experi-
ment. One of the most prominent purposes of ChIP
experiments is the identification and localization of
peaked binding events on the genome. Although, by vir-
tue of compatibility, we can draw on the facilities of other
peak detection algorithms like Ringo [6], ACME [22] or
BAC [23], we implemented a novel algorithm - CMARRT
- which was developed by P.F. Kuan [24] and performs
well in practice. For further postprocessing of ChIP-
enriched regions, we suggest the R package ChIP-
peakAnno.

Starr provides functions for the visualization of a set of
"profiles" (e.g. time series, or signal levels) along genomic
positions. Our profileplot function relates to the conven-
tional mean value plot like a box plot relates to an individ-
ual sample mean: Let the profiles be given as the rows of a
samples × positions matrix that contains the respective
signal of a sample at a given position. Instead of plotting a
line for each profile (row of the matrix), the q-quantiles
for each position (column of the matrix) are calculated,
where q runs through a set of representative quantiles.
Then for each q, the profile line of the q-quantiles is plot-
ted. Color coding of the quantile profiles further aids the
interpretation of the plot.

Figure 3 shows a PolII ChIP experiment in which bind-
ing profiles have been aligned along the transcription
start site for two different gene groups. The groups con-
sist of the genes whose mRNA expression according to
[25] ranges in the least 20% resp. the top 10% of all yeast
genes (the cutoffs were chosen such that the number of
genes having an annotated transcription start site was
roughly the same within both groups). The common way
of looking at the intensity profiles is to calculate and plot
the mean intensity at each available position along the
region of concern. Such an illustration however may be
misleading, since it fails to capture the variability at each
position. It is desirable to display this variability in order
to assess whether a seemingly obvious alteration in DNA
binding is significant or not. An instructive example is
illustrated in Figure 3. The mean profile for genes with a
low expression value shows an enrichment of PolII in the
promotor region relative to the transcribed region. This
could lead to interpretation that PolII is paused at the
TSS of low expressed genes. However, the profileplot
reveals that only very few genes with high binding inten-
sities at the TSS determine the averaged profile.

Another useful high-level plot in Starr is the correla-
tionPlot, which displays the correlation of a gene-related
binding signal to its corresponding gene expression. Fig-
ure 4 shows a plot in which the mean PolII occupancy in
various transcript regions of 2526 genes is compared to
the corresponding mRNA expression. Each region is
defined by its begin and end position relative to the tran-
scription start and termination site (taken from [26]). The
regions are plotted in the lower panel of Figure 4. For
each region, the correlation between the vector of mean
occupancies and the vector of gene expression values is
calculated and shown in the upper panel. The correlation
plot reveals that PolII occcupancy at the transcription
start is not a good predictor of mRNA expression, but the
mean occupancy of PolII in the elongation phase (region
4 in Figure 4) is. We expect that a more detailed analysis
of particular gene groups, and a comparison of PolII pro-
files under different environmental conditions will yield
valuable new insights.
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Figure 2 Hybridization bias. Sequence-specific dependency of reporter intensities before (top), after normalization using rMAT (middle) resp. after 
rank-percentile normalization and reference subtraction (bottom). Left column: Boxplots of probe intensity distributions. Probes are grouped accord-
ing to the GC-content in their sequence. The median intensity increases with rising GC-content. Right column: Position-dependent mean probe in-
tensity. Each letter corresponds to the mean intensity of all probes that contain the corresponding nucleotide in the respective position.
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Conclusions
Apart from covering the standard processes of data
acquisition and preprocessing, Starr is a Bioconductor
package that offers a range of novel high-level tools that
greatly enhance the exploration of ChIP-chip experi-
ments. Those include functions like peak finding, sum-
mary visualization of gene groups, and correlation
analysis with expression data. On the side of the low-level

analysis, we implemented a convenient probe remapping
algorithm that helps to keep annotation standards high.
By relying on standard Bioconductor object classes, Starr
can easily interface other Bioconductor packages. It
therefore makes the full functionality of Ringo amenable
to the analysis of Affymetrix tiling arrays. All functions
and methods in the Starr package are well documented in
help pages and in a vignette, which also contains a sample

Figure 3 PolII along the transcriptional start site. Profiles of PolII occupancy of genes with low (least 20%) resp. high (top 10%) transcription rates 
(cluster 1 resp. cluster 2). The upper graphs show the mean occupancy calculated over each position along the transcription start site. The lower plots 
illustrate the same data, yet including the variance in the two clusters. The black line indicates the median profile of all features. The color gradient 
corresponds to quantiles (from 0.05 to 0.95), and the first and third quartiles are shown as grey lines. The light grey lines in the background show the 
profiles of individual "outlier" features.
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workflow in R. Altogether, Starr constitutes a powerful
and comprehensive tool for tiling array analysis across
established one- and two-color technologies like Affyme-
trix, Agilent and Nimblegen.

Availability and requirements
The R-package Starr is available from the Bioconductor
web site at http://www.bioconductor.org and runs on
Linux, Mac OS and MS-Windows. It requires an installed
version of R (version > = 2.10.0), which is freely available
from the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org, and other Bioconductor pack-
ages, namely Ringo, affy, affxparser, and vsn plus the
CRAN package pspline and MASS. The easiest way to
obtain the most recent version of the software, with all its
dependencies, is to follow the instructions at http://
www.bioconductor.org/download. Support is provided by
the Bioconductor mailing list and the package maintainer.
Starr is distributed under the terms of the Artistic
License 2.0. An R script reproducing the entire results of
this paper, together with the data files can be found in the
supplements as Additional file 1, and on the website
http://www.lmb.uni-muenchen.de/tresch/starr.html.
ChIP-chip data of yeast PolII binding was published by
Venters and Pugh in 2009 [27] and is available on array
express under the accession number E-MEXP-1676. The
gene expression data used here is available under acces-

sion number E-MEXP-2123. Transcription start and ter-
mination sites were obtained from David et al. [26].

Additional material
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Figure 4 Investigation of PolII-binding associated gene expres-
sion. The upper panel shows the Pearson correlations of the mean PolII 
occupancy along different transcript regions and the corresponding 
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relative to the transcription start site (TSS) and the transcription termi-
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