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Abstract
Background: We analysed 48 non-redundant antibiotic target proteins from all bacteria, 22 antibiotic target proteins 
from E. coli only and 4243 non-drug targets from E. coli to identify differences in their properties and to predict new 
potential drug targets.

Results: When compared to non-targets, bacterial antibiotic targets tend to be long, have high β-sheet and low α-helix 
contents, are polar, are found in the cytoplasm rather than in membranes, and are usually enzymes, with ligases 
particularly favoured. Sequence features were used to build a support vector machine model for E. coli proteins, 
allowing the assignment of any sequence to the drug target or non-target classes, with an accuracy in the training set 
of 94%. We identified 319 proteins (7%) in the non-target set that have target-like properties, many of which have 
unknown function. 63 of these proteins have significant and undesirable similarity to a human protein, leaving 256 
target like proteins that are not present in humans.

Conclusions: We suggest that antibiotic discovery programs would be more likely to succeed if new targets are 
chosen from this set of target like proteins or their homologues. In particular, 64 are essential genes where the cell is 
not able to recover from a random insertion disruption.

Background
Infectious and parasitic diseases caused by pathogenic
microorganisms, including bacteria, viruses and fungi,
are major threats to human health. In particular, diseases
commonly result from exposure to gram positive bacte-
ria, such as Staphylococcus aureus, Streptococcus pneu-
moniae and group A Streptococcus, and gram negative
bacteria, such as E. coli and Helicobacter pylori. Antibac-
terial drugs are the major weapons to kill bacteria or sup-
press their activity. Due to the inevitable evolution of
antibiotic resistance, the development of novel antibiotics
is essential.

Antibiotics work either by stopping bacterial growth or
by killing the bacteria, without harming the human host.
The following are the most common modes-of-action of
antibiotics:

(1) Inhibit synthesis of peptidoglycan. These antibiotics
work by interfering with the synthesis of bacterial cell
walls by either: blocking the transport of peptidoglycan

monomers synthesized in the cytosol across the cytoplas-
mic membrane, inhibiting a transpeptidase and hence the
formation of the peptide cross-links, or blocking both the
transglycosidase and transpeptidase enzymes. The trans-
glycosidases are essential for the formation of glycosidic
bonds between sugars and transpeptidases are essential
for the formation of peptide cross-links [1].

(2) Alter the microbial cytoplasmic membrane. The
polymixins are cationic peptides consisting of a cyclic
peptide with a fatty acid chain. The interaction between
the cationic peptide and the membrane causes disruption
of the bacterial cell membrane and increases the permea-
bility of cell components [2].

(3) Alter translation. Many antibiotics work by binding
to bacterial ribosomes. Examples of antibiotics that work
by binding to the 30S ribosomal subunit are aminoglyco-
sides and tetracyclines, which prevent the binding of
tRNA [3,4]. Other macrolide antibiotics, such as erythro-
mycin, bind to the 50S ribosomal subunit and block the
exit tunnel of the bacterial ribosome [5].

(4) Inhibit nucleic acid replication by blocking topoi-
somerases that are essential for supercoiling, bacterial
DNA replication and separation of circular bacterial
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DNA. The fluoroquinolone antibiotic class contains
potent inhibitors for topoisomerases or DNA gyrase [6].

(5) Inhibit transcription. Some antibiotics, such as
rifampin or rifampicin, work by binding to RNA poly-
merase and inhibiting the transcription of DNA to
mRNA [7].

After the first widespread use of antibacterial drugs in
the 1940s, bacterial pathogens started to develop resis-
tance to existing drugs, particularly after excessive antibi-
otic use. The three basic mechanisms of bacterial
resistance to antibiotics are: (1) Production of an enzyme
to inactivate the antibiotic, such as a β-lactamase to
hydrolyse penicillin. (2) Mutation in the target site recep-
tor of the enzyme or the ribosomal subunit that leads to
ineffective drug binding. (3) Alteration in transport pro-
teins to prevent antibiotic entry or promote active efflux
from the cell [8]. There is thus an urgent need to discover
new strategies to discover and develop effective antibiotic
drugs to overcome widespread and growing antibiotic
resistance. One way in which this may be achieved is by
identifying bacterial proteins that may be the targets for
new classes of antibiotics. Sakharkar et al. addressed this
problem by identifying essential bacterial genes (i.e.
essential for the growth, replication, viability, or survival
of the microorganism) that have no human homo-
logues[9].

Here, we determine key properties of antibiotic target
proteins and use machine learning to identify new poten-
tial targets.

Results
Primary Sequence, Secondary Structure and Post-
translational Properties
All the proteins in the targets and non-targets data sets
were analysed for their primary sequence properties and
post-translational modifications. As all features showed a
non-normal distribution using the Kolmogorov-Smirnov
test, p-values were calculated using the Mann-Whitney
test. Table 1 shows the differences between the mean val-
ues of length, hydrophobicity, secondary structure, trans-
membrane helices (TMHMM), SignalP, low complexity
regions (LCR), pI, amino acid preferences and post-trans-
lational properties for targets and non-targets. Targets
tend to be larger proteins with mean lengths of 420 and
515 amino acids for bacteria and E. coli respectively com-
pared to 316 for non-targets. Bacterial targets show sig-
nificant preferences for Pro and Val and disfavour Trp,
Met, Leu and Gln. Secondary structure analysis shows
that bacterial targets have less α-helix and more β-Sheet.
The percentage of target helices is 32% compared to 42%
for non-targets with significant p-values (all bacterial p-
value = 0.00027; E. coli p-value = 0.015). The prediction
of transmembrane helices shows that targets tend to have
fewer helices (0.3 for all bacterial and 0.5 for E. coli) com-

pared to 1.4 for non-targets. Antibiotic and E. coli targets
are less hydrophobic (-93 for E. coli and -85 for all bacte-
rial) compared to non-targets (-21) with significant p-val-
ues (all bacterial p-value = 0.049 E. coli p-value = 0.067).
No statistically significant differences were observed for
pI, SignalP, NetNGlyc and NetOGlyc and LCR between
the bacterial or E. coli targets and non-targets. This indi-
cates that these features do not contribute to the drugga-
bility of a bacterial protein. This is expected for
glycosylation, as the glycosylation site prediction pro-
grams are optimised for use in metazoa; indeed the pre-
dicted frequencies for this property are low. Nevertheless,
it is possible to use any sequence feature (including these)
for machine learning.

Targets were found to contain more polar, charged,
basic and acidic amino acids. The mean frequency of pos-
itively charged amino acids was greater in E. coli (14.3%)
and in all targets (14%) compared to non-targets (12.5%)
(p-value = 0.01 for all targets). The mean frequency of
polar amino acids in E. coli (45.1%) and all targets (45.3%)
was higher compared to non-targets (42.8%) with a sig-
nificant p-value of 0.0251 for all targets; similarly, there
was a higher proportion of non-polar amino acids in non-
targets compared to all targets (54.9% in E. coli, 57.1% in
non-targets, and 54.6% in targets) with a p-value of
0.0281 for all targets. The frequencies of negative amino
acids were greater for E. coli (11.9%) and all targets
(11.9%) compared to non-targets (10.8%) (p-value = 0.070
for all targets).

Enzyme Class
The percentage of enzymes was found to be 33% (1420/
4243) in non-targets compared to 81% (18/22) for E. coli
and 71% (34/48) for bacterial targets. Figure 1 shows high
preferences for ligases in bacterial targets (12%) and for E.
coli (17%), compared to 5% for non-targets. Ligases are
common antibacterial drug targets as they are involved in
the formation of the cell wall. Lyases were not found in
either the bacterial or E. coli target sets.

Subcellular Location
43% (1829/4243) of the non-targets, 40% (9/22) of the E.
coli targets and 47% (23/48) of the bacterial targets have
subcellular location annotations in SwissProt. These per-
centages might be misleading due to bias of annotated
sequences to a specific family or incomplete annotation.
Figure 2a shows that the majority of non-drug targets are
localised to the bacterial cell membrane. The membrane
location includes all entries that contain the word mem-
brane such as membrane single-pass type II, peripheral
membrane protein, peripheral membrane protein, multi-
pass membrane, cell membrane and cell inner membrane
(potential/by similarity). The next highest preferences for
drug targets are in the cytoplasm and periplasm.
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A prediction method (PSORTb) [10] was used to vali-
date the results of subcellular location. A localization
score is calculated for each protein, where the threshold
is 7.5 or greater. If two locations have high scores, the
prediction is set to unknown. Figure 2b shows the subcel-
lular location results found using PSORTb. The predic-
tion program performs a different analysis depending on
whether the organism is gram-positive or gram-negative.

Hence the analysis was performed between the two
gram-negative datasets of E. coli targets and non-targets.
Non-targets are localised in the cytoplasmic membrane
more than the cytoplasm, and vice versa for E. coli tar-
gets. Unknown assignments, where the program is unable
to make a prediction, are frequent for both E. coli targets
(50%) and non-targets (65%).

Table 1: Mean amino sequence features and p-values for all bacterial targets, E. coli targets and non-targets.

Feature Non-targets Bacterial targets p-value 
comparing all 
targets to non-
targets

E. coli targets p-value comparing 
E. coli targets to 
non-targets

Length 316 420 0.032 515 0.001

% Trp 1.52 0.98 0.005 0.74 6 × 10-5

% Met 2.95 2.54 0.099 2.26 0.015

% Val 7.11 7.85 0.0002 7.94 0.017

% Pro 4.67 5.52 0.007 5.45 0.042

% Leu 10.63 8.91 4 × 10-6 9.36 0.046

% Gln 3.92 3.43 0.049 3.19 0.078

% Gly 7.1 7.70 0.099 7.75 0.12

% Glu 5.83 6.46 0.32 6.41 0.22

% Lys 4.31 4.33 0.40 4.54 0.29

% Arg 5.58 5.31 0.58 6.51 0.33

% Asp 5.05 5.89 0.008 5.39 0.38

% Thr 5.35 5.80 0.074 5.58 0.38

% Cys 1.3 0.96 0.01 1.07 0.39

% Tyr 2.79 2.97 0.87 2.83 0.6

% His 2.31 2.12 0.78 2.23 0.62

% Phe 6.12 5.79 0.24 5.75 0.66

% Ala 5.82 5.87 0.92 5.6 0.69

% Asn 3.87 3.98 0.99 3.65 0.93

% Ser 9.37 9.39 0.49 9.29 0.96

% Ile 4.4 4.18 0.54 4.46 0.99

Hydrophobicity -21 -85 0.049 -93 0.067

SignalP 0.2 * * 0.2 0.83

NetNGlyc 1.1 1.3 0.52 1.1 0.75

NetOGlyc-S 0.1 0.00 0.57 0 0.29

NetOGlyc-T 0.6 0.7 0.15 0.5 0.97

LCR 0.9 0.9 0.80 0.9 0.84

% α-Helix 42 32 3 × 10-4 32 0.015

% β-Sheet 15 21 1.5 × 10-4 22 0.002

THMM 1.4 0.3 0.023 0.5 0.009

pI 7.1 7.0 0.67 6.9 0.4

* Not applied as the prediction program as bacterial targets are both gram positive and gram negative.
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Gene Ontology
Additional file 1: Supplemental Figures S1a-f show that
molecular functions at level 1 and level 2 are similar for
bacterial targets, E. coli targets and non-targets.

The distribution of biological process at level 1 (Addi-
tional file 1: Supplemental Figures S1g-i) shows that
terms such as metabolic process and cellular process are
found with similar percentages in bacterial targets, E. coli
targets and non-targets. Response to antibiotic is unsur-
prisingly found in bacterial targets and E. coli targets, but
not non-targets. Terms including localization and estab-
lishment of localization are common for non-targets, but

they are not associated with bacterial or E. coli targets.
The distribution of biological process at level 2 (Addi-
tional file 1: Supplemental Figures S1j-l) shows that pri-
mary metabolic process and cellular metabolic process
have similar frequencies for both targets and non-targets.
The regulation of cell shape term is present in both E. coli
(14%) and in all bacterial targets (6%), but no proteins are
associated with this process in the non-targets. Other
processes favoured for bacterial and E. coli targets are
biosynthetic process and cell wall organization. Transport
proteins are more prevalent for non-targets.

Within the cellular component class, the organelle and
cell part terms are present with similar frequencies at
level 1 for bacterial targets, E. coli targets and non-targets
(graph not shown). At level 2, more bacterial and E. coli
targets are localised in the intracellular part compared to
non-targets (Additional file 1: Supplemental Figures
S1m-o). This class includes cytoplasm and cytoplasmic
part. Intracellular organelle and intracellular non-mem-

Figure 1 Distribution of enzyme classes. a - Distribution of enzyme 
classes for the E. coli targets dataset. b - Distribution of enzyme classes 
for all bacterial targets dataset. c - Distribution of the enzyme class for 
the non-targets dataset.
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Figure 2 Subcellular locations. a - Subcellular locations for targets 
and non-targets from SwissProt annotations. b - The distribution of 
subcellular locations for E. coli targets and non-targets using the pre-
diction program (PSORTb).
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brane bound organelle terms are strongly favoured for
bacterial and E. coli targets compared to non-targets.

Prediction of New Antibiotic Targets
The features described above were used with the support
vector machine algorithm to develop a model that is able
to assign any sequence to the E. coli target or non-target
classes solely from protein sequence. We only used E. coli
targets versus E. coli non-targets, rather than training all
targets versus E. coli non-targets because differences to
all targets may reflect species differences instead of dif-
ferences between targets and non-targets. Two parame-
ters were varied to maximise the accuracy, namely the
error penalty (C) for an incorrect prediction and the
radial basis function parameter (γ) which controls how
smooth the boundary is in hyperspace between the target
and non-target areas. The accuracy is defined as the over-
all probability that the prediction is correct. A PERL pro-
gram was coded to search for the optimal C and γ values
by performing a coarse grid and a fine grid search. The
optimal parameters for C and γ were found to be 0.9 and
0.1, respectively. This model had an accuracy of 94.2%
using 32 features including 20 amino acids, length, hydro-
phobicity, signalP, netNglyc, netOlgyc-S, netOglyc-T,
LCR, secondary structure (α and β), TMHMM and pI.
This accuracy is based on 5-fold cross validation using 22
E. coli targets as the positive training dataset and 200 pro-
teins for the E. coli non-targets. The area under curve in a
ROC plot was 0.996, confirming the high accuracy of the
model.

The optimised Support Vector Machine (SVM) algo-
rithm was used to classify 4243 E. coli non-target
sequences. 319 of them were assigned as targets, suggest-
ing that 7% of bacterial proteins have target-like proper-
ties (Additional File 2). Of these predicted E. coli targets,
35% (113/319) are annotated as uncharacterised proteins
and 8% (28/319) as 50S or 30S ribosomal proteins. 8%
(26/319) of the new predicted targets are transferases and
5% (16/319) are hydrolases, in broad agreement with
annotation data (Figure 1a-b). Other EC classes were less
abundant, with four isomerases, three oxidoreductases,
two lyases and one ligase.

The 319 predicted E. coli target proteins were further
analysed to check for similarity to human proteins. If any
similarity is found, the predicted antibiotic targets may
well be problematic, as their inhibition could lead to toxic
effects in the patient. 63 proteins were found to have
maximal sequence similarities to a human protein of 25%
to 63% using BLAST (Additional File 3). Removal of these
63 proteins leaves 256 potential new targets with no sig-
nificant similarity to any human protein.

The distance of a protein from the SVM hyperplane
boundary between the two sets (Additional File 2) gives a
measure of the accuracy of the distribution of the data

about the decision surface. The further the score is from
zero, the more reliable is the prediction. Figure 3 illus-
trates the calculated distance of the E. coli targets and
non-targets from the hyperplane, in 0.25 intervals. A pro-
tein with a positive distance is classified as a target and
vice versa. Excellent separation between the two sets is
achieved, with all targets classified correctly. The 319
false negatives are the non-targets with a positive score.
These are the most interesting proteins, as they are
potential new antibiotic targets.

The list of 319 proteins was subjected to a BLAST
search against the E. coli essential genes. 20% (64/319) of
the new predicted targets showed a high similarity to an
essential gene where 11 proteins had a sequence identity
of 50% to 70% and 53 proteins had a sequence identity >
70%. Additional File 4 shows the matching essential gene
for each protein along with their p-values, identities and
BLAST scores for each protein. These 64 proteins are
more likely to be successful antibiotic targets since their
loss of function is likely to lead to cellular growth arrest
or death. We do note, however, that there are beneficial E.
coli colonies in humans, so targeting E. coli may have
unwanted effects.

Hu et al. recently performed a detailed and thorough
analysis of orphan E. coli proteins, giving many new func-
tional assignments [11]. In particular, they were able to
assign 92 orphans to translation and 99 to bacterial cell
envelope biogenesis, pathways that are known to be asso-
ciated with antibiotic modes-of-action. When these are
compared to our predicted targets, we find 40 common
proteins that are particularly promising targets, specifi-
cally: 14 orphan and 9 annotated proteins responsible for
cell envelope biogenesis, and 12 orphan and 5 annotated
proteins responsible for translation (Additional File 5).

Discussion
Even though we have only a fairly small number of dis-
tinct targets in our data set, we still find many properties
that are significantly different between antibiotic targets
and non-targets. (The Mann-Whitney U test that we
used to determine p-values take the data set sizes into
account.) There was little difference between E. coli tar-
gets and those from all bacteria. Targets are more likely to
be enzymes than non-targets. Major antibiotic mecha-
nisms include inhibiting enzymes responsible for transla-
tion, transcription, replication and bacterial cell wall
biosynthesis. Inhibition of such mechanisms usually
results in cell growth inhibition or bacterial death. The
molecular function analyses of Gene Ontology and
enzyme class data show a preference for ligases as targets,
such as those involved in peptidoglycan biosynthesis. The
biological process analysis shows that response to antibi-
otic, regulation of cell shape and cell wall organization
terms are favoured for targets. The cellular components
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data showed a high preference for intracellular part tar-
gets, with the cytoplasm subdivision favoured in particu-
lar, perhaps because enzymes are abundant in the
cytoplasm and despite the difficulty of a drug crossing the
membrane. The membrane distribution for targets was
lower that non-targets, supporting the predicted subcel-
lular locations. While the annotated results had a higher
preference for targets to be localised in the membrane,
the predicted results had a higher preference for the cyto-
plasm. There are fewer predicted transmembrane helices
in targets, supporting the subcellular location data.

Bacterial targets tend to be larger and more polar than
non-targets. Larger proteins have more potential surface
of interaction between the drug and the target and may
participate in more protein-protein interactions, thus
having a larger effect when a drug binds. The presence of
charged amino acids might facilitate the interaction
between the drug and the target, as bonds to charged
amino acids from target groups are common [12-14].
Positively charged proteins are more likely to be ribo-
somal, since they interact with strongly negatively
charged rRNA.

Studies on E. coli showed that 35% of metabolic
enzymes, including amino acid, purine and pyrimidine

biosynthesis, are non-essential genes for cell growth [15].
This means that if one enzyme is knocked out from the
pathway, the cell is able to function through alternative
routes, including using isoenzymes and multifunction
enzymes that can substitute for the missing enzymes.
Non-targets favour pathways such as amino acid and
macromolecule biosynthesis, while targets show a prefer-
ence for transcription and DNA replication Gene Ontol-
ogy (GO) terms. Hence, metabolic enzymes are
disfavoured as antibacterial drug targets.

An ideal drug should have no similar protein in the host
cell, as the drug might interact with it and lead to adverse
effects in the patient. There exist some exceptions for this
rule: Trimethoprim is such an example of an antibiotic
used to treat urinary tract infections. It works on inhibit-
ing dihydrofolate reductase, despite the presence of a
close human homologue [16]. On the other hand, there
are no guarantees that if there is no homology, toxicity is
not observed. An example of that is the large ribosomal
subunit which is targeted by chloremphenicol. In spite of
the difference in the structure of the prokaryotic and
eukaryotic ribosomes, a functionally conserved area is
found in the ribosomes of mitochondria and bacteria
resulting in side effects in patients [17].

Figure 3 Prediction confidence distributions of E. colitargets and non-targets datasets.
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Our previous work analysed desirable properties in
human drug target proteins [18], so we can now compare
target proteins in humans and bacteria. The properties
differ greatly, reflecting entirely different modes-of-
action (e.g. a bacterial drug should ideally kill the host,
while this is generally to be avoided in humans, with pos-
sible exceptions, e.g. for tumour cells), as well as differ-
ences between prokaryotes and eukaryotes. Membrane
proteins are common targets in humans, while they are
rare as bacterial targets. N-glycosylation is more common
in human targets sites, which implies that human targets
proteins have a relative longer lifetime than bacterial tar-
gets and human non-targets. Human targets are fre-
quently enzymes involved with binding and signaling;
bacterial targets are often enzymes, involved in protein
binding or ribosomal proteins. The most targeted bacte-
rial biological processes are peptidoglycan biosynthesis
and cell wall synthesis, compared to cell communication
and regulation of biological process for human targets.

In summary, the following seem to be desirable features
for an antibiotic drug target:

• Essential for the survival of the bacterial cell
• No close human homologue
• Must be present in a number of pathogens if broad-
spectrum action is required. Narrow spectrum antibi-
otics target specific pathogens
• The most targeted biological processes are peptido-
glycan biosynthesis, cell wall synthesis, transcription
and translation
• Capable of binding to a small molecule, implying the
presence of a binding site
• Favoured to be localized in the cytoplasm and less
frequent in membranes
• Favoured to be ribosomal proteins
• More likely to be enzymes, transferases, hydrolases
or ligase, but not lyases. Although enzymes are highly
targeted, metabolic enzymes are disfavoured for anti-
bacterial drug targets.

While many of the above properties have been reported
in qualitative terms, they have not been previously quan-
tified, to our knowledge. In addition, some of the prefer-
ences we find appear to be new, such as EC class, length,
amino acid frequencies, post-translational modifications,
secondary structure contents, pI, SignalP and transmem-
brane helices.

The machine learning work can accurately assign an E.
coli protein to the target or non-target classes. The use of
cross-validation and the generalisation parameter in the
SVM ensures to a certain extent that the model can gen-
eralise to data not used in the training process. After clas-
sifying the entire E. coli proteome to identify novel target-
like proteins and pruning it to remove those that are sim-
ilar to a human protein, we find 256 proteins that may be
potential antibiotic targets, especially those 64 proteins

highly similar to essential genes. While 40 previously
identified orphan genes can now be assigned to cell enve-
lope biogenesis or translation, many are currently of
unknown function and thus deserve further investigation.
The rules listed above and our list of potential new antibi-
otic targets may help in the identification of new antibiot-
ics drug target.

Conclusions
Comparison of antibiotic protein targets with non-target
proteins from E. coli has allowed the identification of a
number of properties that are desirable in drug targets.
Even though the number of unique known targets is not
large, statistically significant differences in property fre-
quencies were found. Using sequence features for
machine learning allows accurate identification of tar-
gets, as shown by a cross-validation accuracy of 94%.
Applying the optimised support vector machine to the E.
coli proteome identifies hundreds of proteins that have
similar properties to known antibiotic drug targets.
These proteins may therefore be considered as potential
new targets for novel antibiotics.

Methods
Data sets
The bacterial target dataset was downloaded from Drug-
Bank [19] in February 2008. The bacterial dataset consists
of 66 bacterial targets from different species and strains.
The set was culled with the PISCES program [20] so that
no two proteins had more than 20% sequence identity to
give a list of 48 non-redundant bacterial targets. By far
the most common species within which antibiotic targets
are found is E. coli (strain K-12). This E. coli targets data-
set consists of 22 proteins. The non-targets dataset was
downloaded from the High-quality Automated and Man-
ual Annotation of microbial Proteomes (HAMAP) at
Expasy http://www.expasy.ch/sprot/hamap/. It is not
obvious what a bacterial non-target protein data set
should be, as it is always arbitrary which species are
included. We therefore picked just one species, namely E.
coli strain K-12, as this is the most common species for
targets. As of 2006, the E. coli proteome contains highly
accurate and complete sequences for the K-12 strain with
4338 entries. This set was culled with a 20% sequence
identity cut-off to leave 4265 entries for the non-redun-
dant dataset. Known antibiotic drug targets were
removed from the set to give a non-redundant non-tar-
gets dataset of 4243 entries. Full lists of bacterial targets
and non-targets data sets are found in Additional File 6.

When comparing all targets to non-targets, differences
between the sets may arise since the targets are taken
from a wide range of bacteria and they are compared only
to one E. coli strain. Hence, we may be picking up differ-
ences in protein features arising from differences

http://www.expasy.ch/sprot/hamap/
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between species, rather than between targets and non-
targets. Comparing targets with non-targets entirely
within the E. coli K-12 strain avoids this problem, though
the number of targets is considerably fewer. We therefore
analysed three data sets, namely all antibiotic targets, E.
coli K-12 strain targets and E. coli K-12 strain non-tar-
gets. The non-drug target dataset may contain proteins
that could be drug targets, making it less well defined.
However, as it is doubtful whether more than a small
fraction of the bacterial proteome will ever be a target,
this error should not be large.

Properties were tested for normality using the Kolmog-
orov-Smirnov test. As all the distributions were not nor-
mal, the Mann-Whitney U test was used to test for
statistically significant differences between the sets using
SPSS (Statistical Package for Social Sciences).

SWISS-PROT annotations were used for some
sequence properties, such as sub-cellular locations. We
were concerned, however, that variations in the fre-
quency of annotation may bias the results. For example,
one would expect that drug target proteins are better
studied than non-targets, leading to a possible increase in
annotation of targets compared to non-targets. We there-
fore also often used predicted properties, as well as anno-
tations, where possible.

Simple sequence properties
The frequency of each amino acid in each protein is
divided by protein length to give percentage frequencies.
Amino acids were grouped as follows: non-polar (A, C, F,
G, I, L, M, P, V, W, Y); polar (D, E, H, K, N, Q, R, S, T, Z);
positive (H, K, R) and negative (D, E). Hydrophobicity
was calculated as the sum of hydrophobicity values using
the Kyte & Doolittle index [21], divided by the number of
residues in each of the protein sequences. The Pepstats
program http://emboss.cbr.nrc.ca/cgi-bin/emboss/pep-
stats was used to output protein sequence information
statistics including isoelectric points (pI values), and
numbers of positively charged and negatively charged
amino acids. A PERL script was written to extract protein
sequence features and calculate the mean frequencies.

EC number
Primary EC numbers were taken from the description
line "DE", as this line contains the EC numbers corre-
sponding to an entry, where primary EC numbers 1-6 are
oxidoreductase, transferase, hydrolase, lyase, isomerase
and ligase, respectively.

Gene Ontology terms
Gene Ontology (GO) provides a controlled vocabulary to
describe gene function [22], using the following three
organising principles: (a) biological process; (b) molecu-
lar function; (c) cellular component. The GO database
was downloaded from http://www.geneontology.org/

GO.downloads.shtml, dated September 2006. GO ID
annotations are in SWISS-PROT in the database refer-
ence line "DR". A PERL program was coded to extract the
Gene Ontology IDs for each datasets and to parse a GO
file and write child/parent relationship as a full path for
every GO term and to output the highest level and next
highest level for every path as levels 1 and 2. If a GO term
id was present more than once at level 1 or 2, it was only
counted once at that level.

Predicted Sequence Features
The NetOglyc program http://www.cbs.dtu.dk/services/
NetOGlyc/ was used for identification of O-glycosylation
sites using neural networks [23]. The NetNglyc program
http://www.cbs.dtu.dk/services/NetNGlyc/ was used for
identification of N-glycosylation sites [24]. The WoLF
PSORTB program http://wolfpsort.seq.cbrc.jp/[25] was
used to predict protein subcellular localization. It makes
predictions based on known sorting signal motifs and
sequence features, such as amino acid content. The out-
put report of WoLF PSORTB was analysed by extracting
the location of the highest predicted location. The Sig-
nalP program http://www.cbs.dtu.dk/services/SignalP/
was used to perform signal peptide prediction [26]. The
TMHMM method http://www.cbs.dtu.dk/services/
TMHMM/[27] was used to predict the location and ori-
entation of α-helices in membrane-spanning proteins.
The SEG program [28] was downloaded from ftp://
ftp.ncbi.nih.gov/pub/seg/seg/ to detect low complexity
regions. It is used to mask composition-biased regions in
the query, based on a statistical approach. The JPred pro-
gram http://www.compbio.dundee.ac.uk/~www-jpred/
[29] was used to predict the percentages of α-helix and β-
sheet. Accurate secondary structure could have been
found from crystal structures. However, most proteins do
not have structures, particularly if they are membrane
proteins. We therefore used a secondary structure predic-
tion program, rather than using structures.

Machine Learning
Support vector machines [30], using a radial basis func-
tion, were used to make a classifier that can distinguish E.
coli targets from non-targets, using features that can be
calculated from any protein sequence. The features we
used were: amino acid compositions, length, hydropho-
bicity, SignalP, NetOglyc Ser, NetOglyc Thr, low complex-
ity regions, α-helix, β-sheet, transmembrane helices and
pI. A scaling scheme was used for every vector by
restricting all entries to be between 0 and 1, by calculat-
ing for every feature (X - Min)/(Max - Min) where X is
the feature score, and Min and Max are the minimum and
maximum values of X in the set.

The SVM was assessed using 5-fold cross validation
using the following training set splits: 22 E. coli targets

http://emboss.cbr.nrc.ca/cgi-bin/emboss/pepstats
http://emboss.cbr.nrc.ca/cgi-bin/emboss/pepstats
http://www.geneontology.org/GO.downloads.shtml
http://www.geneontology.org/GO.downloads.shtml
http://www.cbs.dtu.dk/services/NetOGlyc/
http://www.cbs.dtu.dk/services/NetOGlyc/
http://www.cbs.dtu.dk/services/NetNGlyc/
http://wolfpsort.seq.cbrc.jp/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
ftp://ftp.ncbi.nih.gov/pub/seg/seg/
ftp://ftp.ncbi.nih.gov/pub/seg/seg/
http://www.compbio.dundee.ac.uk/~www-jpred/
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were used as the positive training dataset and 200 pro-
teins were randomly selected from the E. coli non-targets
dataset to represent the negative set. This model is there-
fore based on training E. coli targets versus non-targets,
rather than training all targets versus non-targets because
differences to all targets may reflect species differences
instead of differences between targets and non-targets.
As the target and non-target sets have different sizes, an
error penalty parameter (C) is introduced to ensure gen-
eralization of the classifier. The ratio of the error penalty
for targets:non-targets is set to 9:1, in proportion to the
data set sizes of 200:22 and applied in the LIBSVM pro-
gram using the weight parameter (wi) for both classes (1,-
1). The program (svm-predict-margins) was downloaded
from http://www.work.caltech.edu/~htlin/program/lib-
svm/#margin[31]. This tool calculates the unnormalised
distance from the SVM hyperplane.

Essentiality
Essential genes are those that play an important and
essential functional role in a specific pathway. The pres-
ence of these genes is vital to the cell, as their inhibition
would lead to cellular growth arrest or death of the patho-
gen. Essential genes are those that are not able to recover
from a random insertion disruption [32]. E. coli essential
genes were downloaded from the National Microbial
Pathogen Data resource (NMPDR) http://
www.nmpdr.org/FIG/wiki/view.cgi/Main/Essential-
Genes. The database consists of 603 non-redundant puta-
tive essential genes, updated in September 2008. The list
is checked for any redundancy using BLASTCLUST[33],
so that no pairs of sequences had a sequence identity of
more than a strict cut-off of 20%. The resulting list can be
found in Additional File 7.
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