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Abstract
Background: Previous studies on insect DNA barcoding provide contradictory results and suggest not consistent 
performances across orders. This work aims at providing a general evaluation of insect DNA barcoding and "mini-
barcoding" by performing simulations on a large database of 15,948 DNA barcodes. We compared the proportions of 
correctly identified queries across a) six insect orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera and 
Orthoptera), b) four identification criteria (Best Match: BM; Best Close Match: BCM; All Species Barcodes: ASB; tree-based 
identification: NJT), and c) reference databases with different taxon coverage (100, 500, 1,000, 1,500 and 1,995 insect 
species).

Results: Analysis of variance revealed highly significant differences among ID criteria and insect orders. A posteriori 
comparisons of means showed that NJT had always a significantly lower identification success (NJT = 0.656, S.D. = 
0.118) compared to both BM and BCM (BM = 0.948, S.D. = 0.026; BCM = 0.946, S.D. = 0.031). NJT showed significant 
variations among orders, with the highest proportion of correctly identified queries in Hymenoptera and Orthoptera 
and the lowest in Diptera. Conversely, the proportions of correct matches of BM and BCM were consistent across orders 
but a progressive increase in false identification was observed when larger reference databases were used.

Conclusions: Regardless the relatively low proportion of Type I errors (misidentification of queries which are 
represented in the reference database) of BM and BCM, the lack of reference DNA barcodes for 98% of the known 
insect species implies that insect DNA barcoding is heavily biased by Type II errors (misidentification of queries without 
conspecifics in the database). The detrimental effects of Type II errors could be circumvented if insect DNA barcoding is 
used to verify the lack of correspondence between a query and a list of properly referenced target species (e.g. insect 
pests). This "negative identification" would only be subjected to Type I errors and could be profitably adopted in insect 
quarantine procedures.

Background
DNA barcoding aims at identifying organisms by assess-
ing their degree of DNA sequence similarity to a set of
reference taxa. The standard sequence used for this pur-
pose is the mitochondrial COI gene fragment amplified
by the "universal primers" of Folmer et al. [1]. Sequence
similarities are then interpreted using numerical methods
such as hierarchical clustering of genetic distances and
statistical evaluations of genetic distance thresholds [2].
Recently, DNA barcoding has been explicitly defined as
the molecular identification of a species based on the ref-
erence sequence with the lowest genetic distance [3]. Yet,

other numerical methods have been proposed to improve
this approach [4-7].

DNA barcoding is generally considered as a reliable,
cost-effective and easy molecular identification tool with
a wide applicability across metazoan taxa [8-12]. As such
it could be very useful to routinely identify difficult taxa
of economic and medical importance. This particularly
holds for many insect taxa that comprise large numbers
of notorious pest species or disease vectors, whose identi-
fication often requires highly specialised taxonomic
skills. In addition, DNA barcoding could be pivotal for
the identification of certain life stages (e.g. eggs, larvae,
nymphs or pupae), which are often impossible to identify
otherwise. However, despite these highly positive claims,
DNA barcoding also seems to suffer from a number of
potential limitations when used for the identification of
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insects [4]. The recent speciation, the prevalence of para-
phyly and the regular interspecific hybridisation in many
insect taxa, as well as their often poorly-established tax-
onomy and their high degree of infection by endosymbi-
otic bacteria such as Wolbachia [11,13-15] may all
negatively affect the performance of insect DNA barcod-
ing. Even more importantly, the reliability of insect DNA
barcoding may be questioned because insects include
>1,000,000 described species and probably millions of
still undescribed taxa [15]. This exuberant species rich-
ness may, indeed, severely constrain the ability of the
DNA barcode reference databases to adequately repre-
sent the overwhelming insect taxonomic diversity.

Not surprisingly, insect DNA barcoding has hitherto
produced contradictory results. Several studies showed
that it is a reliable tool for the molecular identification of
Lepidoptera [8,12,16], Hymenoptera [11,17], Coleoptera
[18] and Diptera species [19,20]. Yet, other studies ques-
tioned the adequacy of DNA barcoding in Lepidoptera
[21] and Orthoptera [22], while Meier et al. [4] reported a
remarkably low identification success for Diptera (<70%
in simulations based on >400 taxa). The limited success
of DNA barcoding evidenced by Meier et al. [4] was
attributed to the use of GenBank sequences, which sup-
posedly include a high proportion of misidentified
sequences [23]. A closer look at the data of Meier et al. [4]
shows that 322 out of 449 species in their dataset (corre-
sponding to approximately 72% of taxa and 24% of
sequences) are represented by single DNA barcodes.
When these DNA barcodes are used as queries in simula-
tions, they necessarily generate incorrect identifications,
because there are no other conspecific reference
sequences in the dataset with which they can match [24].
Meier et al. [4] included species represented by single
barcodes in order to better reflect real-life situations,
where it is not possible to know in advance if a query has
a conspecific match in the database. However, this
approach does not allow distinguishing the negative
effects of poor taxon coverage from other potential con-
straints on insect DNA barcoding.

An additional problem with insect DNA barcoding is
that the reference databases strongly rely on DNA
sequencing of museum material, the success of which is
often limited [25,26]. The DNA quality of museum speci-
mens is generally low as it rapidly degrades over time. For
example, less than 50% of moth and wasp museum speci-
mens that were fixed for <8 years still yielded useful DNA
barcodes [26]. The use of more efficient DNA extraction
and repair protocols, and the amplification of multiple
overlapping sections of the barcode region, generally
improves the DNA barcoding success rates, though at a
substantially higher cost [27]. Therefore, several studies
proposed to use shorter barcode fragments (mini-bar-
codes) for molecular identification. These sequences

often represent the only molecular information available
for an insect species and are considered as temporary
proxies for the complete DNA barcode. For these rea-
sons, it would be important to quantify which is the pro-
portion of correct identification guaranteed by mini-
barcodes of different lengths and verify if different
regions of the barcode fragment are equally informative
in the molecular identification of insects.

The Barcoding of Life Initiative is the main consortium
(CBOL) coordinating the collection of DNA barcodes
and building a worldwide reference database for the
molecular identification of species (BOLD, http://
www.barcodinglife.org). Currently (June 2009) the BOLD
system includes >400,000 insect DNA barcodes. The vali-
dation and/or identification of many of these are still in
progress. The "Reference Barcode Database" (RBD) of
BOLD aims to reduce the possible biases due to inade-
quately sampled or misidentified species. Therefore, the
RBD only includes validated DNA barcodes of minimally
500 bp and only contains species represented by three or
more individuals showing <2% sequence divergence [3].
The RDB currently comprises nearly 170,000 insect DNA
barcodes from approximately 15,000 species. By far, the
largest part of these taxa are lepidopterans (>75% of spe-
cies), while the remaining 25% of insect species is distrib-
uted among 32 different orders. Although the currently
barcoded taxa represent <2% of the described insect spe-
cies, (thus provoking by definition a representativity
problem), it is still important to have a first, general esti-
mate of the reliability of insect DNA barcoding in relation
to other methodological or conceptual issues. In order to
avoid possible biases due to the large proportion of Lepi-
doptera in the reference database, it would be also impor-
tant to separately assess the performance of DNA
barcoding in different insect orders. After all, if the cur-
rent DNA barcoding approaches show a low reliability in
the molecular identification of insects, then the involved
efforts in time, manpower and financial investments [27]
could better be re-directed towards complementary or
alternative identification methods. Conversely, confirm-
ing the reliability of DNA barcoding through a represen-
tative insect sample of the BOLD database would support
the efforts of all research groups actively involved in
insect DNA barcoding.

In this study we assess the reliability of insect DNA
barcoding by performing simulations under a "best case
scenario" by providing for each query one or more poten-
tial conspecific matches in the reference dataset. The
objectives of this study were to (1) verify differences in
the proportion of correct matches provided in different
insect orders by a number of identification criteria, (2)
assess if different regions of the barcode fragment are
equally informative, (3) investigate relationships between
barcode length and identification success, (4) evaluate
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how success is affected by levels of taxon coverage of the
reference database.

Results
The distribution of pairwise K2P distances inferred from
the 15,948 DNA barcodes involving 1,995 insect species
(Table 1) showed that 95% of all intraspecific distances
were in the interval 0.00 - 7.64% and that 95% of mean
interspecific, congeneric distances in the interval 2.47 -
21.00%. Both distance distributions were largely overlap-
ping (Figure 1) with 27.32% of pairwise comparisons
shared between the 95% percentiles of intra- and inter-
specific distributions (2.47%<K2P < 7.64%).

The four ID criteria (Best Match: BM; Best Close
Match: BCM; All Species Barcodes: ASB; and tree-based
identification: NJT) yielded different proportions of cor-
rect matches (NJT = 0.656, S.D. = 0.118; BM = 0.948, S.D.
= 0.026; BCM = 0.946, S.D. = 0.031; ASB = 0.796, S.D. =
0.150; Figure 2, Additional files 1, 2). ANOVA revealed
highly significant differences among ID criteria and
insect orders. A posteriori comparisons of means showed
that NJT had always a significantly lower identification
success than to both BM and BCM. Regardless the differ-
ent numbers of taxa sampled in each order, the propor-
tions of correct matches of BM and BCM were consistent
across Coleoptera (114 species), Diptera (345 species),
Hemiptera (164 species), Hymenoptera (160 species),
Lepidoptera (1.167 species) and Orthoptera (45 species),
while NJT showed significant variations among orders,
with the highest proportion of correctly identified queries
in Hymenoptera and Orthoptera and the lowest in Dip-
tera (Table 2).

For each identification criterion, regression and pair-
wise F-tests (Figure 3, Table 3 and 4) did not show signifi-
cant differences in the proportion of correct matches

provided by the three mini-barcodes (corresponding to
the first, second and last third of the full DNA barcode).
Yet, once again there were significant differences between
the regression curves obtained through NJT and both
BM and BCM. The proportions of correct identifications
obtained from the mini-barcodes of 220 bp were rela-
tively high when using BM (0.893, S.D. = 0.013) and BCM
(0.890, S.D. = 0.013), and decreased to 50% of the value of
the full barcode only when very short barcode fragments
were considered (40 bp for both BM and BCM).

The identification success of DNA barcoding through
BM and BCM was negatively affected by the numbers of
taxa included in the reference dataset, (Figure 4, Table 5),
though this effect was remarkably limited as shown by

Table 1: Summary of DNA barcodes considered in this study.

dataset A dataset B

n.
barcodes

n.
orders

n.
species

n.
barcodes

n.
orders

n.
species

Coleoptera 628 43 114 516 16 58

Diptera 4,272 75 345 4,010 51 214

Hemiptera 901 71 164 745 39 86

Hymenoptera 2,067 65 160 1,961 43 107

Lepidoptera 7,577 495 1,167 6,567 305 662

Orthoptera 503 25 45 455 12 21

total 15,948 774 1,995 14,254 466 1,148

Dataset A (including species represented by at least two DNA barcodes) was used to describe distributions of pairwise distances, to quantify 
the proportion of correct matches according to Best Match (BM), Best Close Match (BCM), Neighbor-Joining Tree (NJT) and for ANOVA and 
regression analyses. Dataset B (including species represented by at least three DNA barcodes) was used to estimate the identification success 
of All Species Barcodes (ASB).

Figure 1 Distance analysis. Distributions of interspecific (white 
squares) and intraspecific (black circles) pairwise K2P distances result-
ing from the analysis of 15,948 DNA barcodes belonging to 1,995 in-
sect species (dataset A). In grey: overlap between the 95% percentiles 
of intra- and interspecific distributions (2.47%<K2P < 7.64%).
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the slope of the regression lines (BM: b = -2.13 × 10-5,
BCM: b = -2.68 × 10-5). When passing from 100 to 1,995
species, the proportion of correct matches decreased
from 0.998 to 0.948 for BM and from 0.985 to 0.946 for
BCM (corresponding to -5.0% and -3.9%, respectively).

Discussion
The relatively high proportion of correctly identified
insect taxa by using two simple criteria (BM and BCM)
provides a general support to the DNA barcoding method
per se. These two distance based methods showed com-
parable results in terms of identification success and per-
formed considerably better than NJT and ASB, which
also showed a higher variability in the identification suc-
cess of the different insect orders (Figure 2). Meier et al.
[4] already highlighted the poorer performance of NJT,
arguing that this method relies on the topology of one of
all the possible Neighbor-Joining trees and does not con-
sider the support of the nodes that separate and define
species. Additionally, in case of "ties", NJT can be affected
by the input order of taxa [6,28,29]. Meier also remarks
that queries should be at least one node into monospe-
cific clades, while simply clustering within a clade does
not guarantee unambiguous identification [30]. Whether
alternative tree reconstruction methods do better than
NJT, remains to be decided. For example, Bayesian meth-
ods are currently computationally too intensive to be
applied to large datasets. Nevertheless, preliminary

results show that Bayesian tree reconstruction can pro-
vide considerably higher proportions of correct identifi-
cations than NJT [6]. On the other hand, the lower
identification success of ASB appears related to the more
stringent "decision rules" of this criterion (i.e. both the
threshold for genetic distances and the need for all the
conspecific barcodes of the query as best matches) which
could lower the proportion of correct identifications.

Aliabadian et al. [31] stressed that the identification
success of distance-based barcoding ultimately depends
on the difference between intra- and interspecific diver-
gence and in the ideal world for barcoding there is no
overlap between the distributions of these two distance
classes. According to Hebert et al. [9] the barcoding gap
(i.e. the difference between intra- and interspecific dis-
tances) allows to assign specimens to "categories that tax-
onomists call species" once comprehensive reference
libraries of barcodes will be available. Hebert et al. [9] and
Aliabadian et al. [31] reported that in birds there is a
barcoding gap, such that mean interspecific, congeneric
distances are about 20-24 times larger than intraspecific
ones. However, growing evidence in birds and other taxa
suggests that the overlap between mean intra- and inter-
specific genetic distances is considerably greater when
larger proportions of closely related taxa are included
[13,32]. Additionally, the extent of the barcoding gap
tends to be overestimated when mean intraspecific dis-
tances are used, while smallest intraspecific distances

Table 2: ANOVA and Student-Newman-Keuls (SNK) tests.

Source of variation df MS F denominator MS
for F ratio

Criterion = Cr 2 0.4316 34.10 *** Cr × Or

Order = Or 5 0.0300 25.70 *** Residual

Cr × Or 10 0.0168 19.09 *** Residual

Residual 36 0.0009

Total 53

Cochran's C = 0.270, not significant

SNK test Cr:

BM = BCM > NJT

SNK test Cr × Or:

BM: Coleoptera = Diptera = Hemiptera = Hymenoptera = Lepidoptera = Orthoptera

BCM: Coleoptera = Diptera = Hemiptera = Hymenoptera = Lepidoptera = Orthoptera

NJT: Hymenoptera = Orthoptera > Lepidoptera > Coleoptera > Hemiptera > Diptera

Differences in the proportion of correct matches provided by three identification criteria (BM: Best Match, BCM: Best Close Match, NJT: 
Neighbor-Joining Tree) were tested in six insect orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Orthoptera). Before 
running the analysis, the assumption of homogeneity of variances was verified using Cochran's C-test. SNK tests were used for a posteriori 
multiple comparisons of means. df: degrees of freedom, MS: mean squares estimates, *** = p < 0.001.
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yield more consistent results [5]. Our data show that the
distributions of mean intra- and interspecific congeneric
distances of 1,995 insect species are largely overlapping
and that the threshold Hebert et al. [9] proposed (mean
interspecific, congeneric divergence/mean intraspecific
divergence ≥ 10) is not valid to separate insect species.
Surprisingly, despite there is no well-defined insect
barcoding gap, distance based criteria such as BM and
BCM show a remarkable identification success in our
simulations. Hence, although there is a general trend for
identification success to decline with increasing overlap
between intra- and interspecific distances the extent of
the barcoding gap should not be considered as a predictor
of the identification success [5,24,30].

Different regions of the full barcode fragment provide
comparable information for the molecular identification
of insects. Mini-barcodes of 220 bp, though less effective
than the full barcode, still yield a reasonable insect identi-
fication success (about 89% in our simulations). Though
less encouraging than previous simulations based on
insect COI fragments of comparable lengths [25,26], our
results suggest that mini-barcodes could indeed repre-

sent a cost-effective way of building reference databases
for the molecular identification of species. However, it
would be important to carefully consider the trade offs
between mini-barcode length and proportions of cor-
rectly identified insect taxa and clearly establish thresh-
olds for the minimal lengths and features of the mini-
barcodes that will be incorporated into reference data-
bases.

Conclusions
Although, our simulations show that the probability of
false identifications of queries with conspecifics in the
reference database is relatively limited (up to 5.2% when
using BM), there remains a logical problem with insect
DNA barcoding due to the limited proportion of refer-
enced taxa in BOLD and RBD. Indeed, in a real life situa-
tion, one does not know in advance whether or not a
query is represented in BOLD [4], but one can reasonably
assume that there is a good chance that it belongs to the
98% of insect species that still have to be barcoded.
According to BM (i.e. the identification criterion cur-
rently adopted in BOLD) all queries not represented in
the reference databases will be, in the best case, assigned
to the most closely related taxon available in the database,
thus generating a considerable amount of false identifica-
tions. Accordingly, whenever the null hypothesis H0: Qx =
SpA (where Qx = a query about unknown species X and
SpA = species A) is accepted, then this may imply either
(1) a correct identification of X as species A or (2) a Type
II error (H0 = accepted when false), where species X is
wrongly identified as A because it is not represented in
the reference database and hence is associated with
another species. Conversely, if H0 is rejected (i.e. species
X is not A), then this may imply either (1) a correct deci-
sion that species X is indeed not A or (2) a Type I error
(H0 = rejected when true), where X is erroneously not
recognized as being A. The proportion of Type II errors is
hardly predictable, but we should expect higher levels of
Type II errors in reference database with poor taxon cov-
erage. Additionally, when using the reference database of
BOLD, only part of the queries without conspecifics in
the database are misidentified, as the identification pro-
cedure is aborted whenever the genetic divergence
between query and best match exceeds an arbitrary
threshold of 3% [3]. The simulations performed in this
study allowed to quantify the proportion of Type I errors
in a large database of insect DNA barcodes. We observed
a trend toward a progressive increase of false identifica-
tions in databases with larger taxon coverage. When pass-
ing from 100 to 1,995 species, the proportion of Type I
errors increases of 5.0% for BM (from 0.2% to 5.2%) and
of 3.9% for BCM (from 1.5% to 5.4%). So, the proportion
of correct identifications and the number of species in the

Figure 2 Comparisons between identification criteria for DNA 
barcoding. Proportion of correctly identified queries through Neigh-
bor-Joining Tree (NJT), Best Match (BM), Best Close Match (BCM) and 
All Species Barcodes (ASB). For each identification criterion, values 
were averaged across six insect orders (Coleoptera, Diptera, 
Hemiptera, Hymenoptera, Lepidoptera, Orthoptera; SD as error bars). 
Dataset A (including 15,948 DNA barcodes) was used to quantify the 
proportion of correct identification according to BM, BCM and NJT, 
while dataset B (including 14,254 DNA barcodes) to quantify the iden-
tification success of ASB (see text for explanations).
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reference database are inversely related, even if the slope
of the linear regression is close to zero. These results sug-
gest that the combined effects of Type I and II errors can
heavily affect the reliability of DNA barcoding in the
molecular identification of insects. However, biases
related to Type II errors and the limited taxon coverage of
the currently available databases could be circumvented
by adopting a "negative" approach, i.e. by using DNA
barcoding to verify the lack of correspondence between
an unknown query and a list of well-known referenced
target taxa. This approach would allow ruling out Type II

errors and performing a "negative identification" (H0
rejected), which is only subject to Type I errors. Given
that levels of genetic variability of a group of target spe-
cies are adequately represented in the reference database,
DNA barcoding could hence still be profitably used in
quarantine interception of insects of economical impor-
tance by indicating that a sample of interest does not
include a list of referenced pests. Species of economical
significance are generally better characterised from a
molecular perspective and are among the best repre-
sented in reference databases. Cameron et al. [27] argued

Figure 3 Relationships between barcode length and identification success. Non-linear regression of the identification success obtained by con-
sidering the full DNA barcode (550-658 bp) and three non-overlapping "mini-barcodes" (MB1: 220 bp, MB2: 219 bp, MB3: 219 bp). Each mini-barcode 
was reduced at both 5' and 3' ends in order to obtain fragments of 164 bp, 110 bp, 55 bp and 22 bp (corresponding to approximately to 75%, 50%, 
25% and 10% of the initial mini-barcode length). For each fragment the proportion of correct identifications was calculated according to three iden-
tification criteria (BM: Best Match, BCM: Best Close Match, NJT: Neighbor-Joining Tree) and averaged across six insect orders (Coleoptera, Diptera, 
Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, SD as error bars). Regression curves were fitted following a first order exponential decay model y 
= y0 + ae(-x/t), where y0 = Y offset, a = amplitude, t = exponential time constant (see Table 3).

0.00

0.25

0.50

0.75

1.00
 

 

R2=0.98

 

R2=0.96R2=0.98

 

0.00

0.25

0.50

0.75

1.00

 

 

 

R2=0.98 R2=0.98

 

N
JT

B
C

M

pr
op

or
tio

n 
of

 c
or

re
ct

 ID

number of base pairs

MB 1 MB 2 MB 3
B

M

R2=0.96

60
0

45
0

30
0

15
0 0

0.00

0.25

0.50

0.75

1.00

 

 

R2=1.00

60
0

45
0

30
0

15
0 0

 

R2=0.98
60

0

45
0

30
0

15
0 0

 

R2=1.00



Virgilio et al. BMC Bioinformatics 2010, 11:206
http://www.biomedcentral.com/1471-2105/11/206

Page 7 of 10
that the relatively small number of species that need to be
identified for quarantine purposes makes the assembly of
a high quality reference database much easier than for all
of life and suggested it would be more practical to use
barcoding as an entirely DNA based quarantine system.
However, it is of crucial importance to understand how
the proportion of Type I and Type II errors will change
once hundreds of thousands of insect taxa will be
included in the reference databases. The lower identifica-
tion success observed in this study for larger databases
should be considered only as a very preliminary indica-
tion as the simulations could only include a limited frac-
tion of the global taxonomic diversity of insects (from 100
to 1,995 species). Hence, a major challenge for insect
DNA barcoding will be to understand if the error levels
associated to the currently adopted distance-based iden-
tification criteria will still be acceptable once reference
databases will have a more representative coverage of
insect taxonomic diversity.

Methods
We used the DNA barcodes available in June 2009 in
BOLD http://www.barcodinglife.org and downloaded all
the publicly available sequences belonging to the orders

Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepi-
doptera and Orthoptera. The dataset was extended with
324 Tephritid (Insecta: Diptera) DNA barcodes collected
by the Royal Museum for Central Africa in the frame-
work of the Tephritid Barcoding Initiative, a demonstra-
tor project, initiated by CBOL. DNA barcodes were
trimmed in order to include only the barcode region,
namely the 658 bp COI fragment amplified by the "uni-
versal primers" of Folmer et al. [1]. Sequences shorter
than 550 bp and DNA barcodes with incomplete species
information (e.g. sequence names including sp., cf., nr.
etc.) were discarded. Nucleotide sequences were aligned
using the default parameters of the IUB scoring matrix of
ClustalW, as implemented in Bioedit 7.0 [33]. Sequences
were aligned in blocks of 800 and all the blocks were
aligned to a single, haphazardly chosen, profile sequence
(accession GQ154187). The blocks were visually
inspected to check for possible incongruence (i.e. the
occurrence of gaps which were not multiples of 3 bp).
Each block was then pasted into the data matrix until all
sequences were aligned. In order to allow comparisons
between our results and large part of the current litera-
ture on DNA barcoding, we used pairwise Kimura's two
parameter (K2P) distances [34] and plotted the frequency

Table 3: Relationships between barcode length and identification success.

y0 A t R2

MB1 0.919
(0.022)

1.209
(0.124)

53.551
(6.935)

0.98

BM MB2 0.923
(0.019)

1.745
(0.377)

26.167
(5.663)

0.98

MB3 0.922
(0.019)

-1.468
(0.486)

26.444
(8.277)

0.96

MB1 0.913
(0.025)

-1.234
(0.133)

51.135
(7.286)

0.98

BCM MB2 0.917
(0.022)

-1.772
(0.398)

26.455
(5.716)

0.98

MB3 0.915
(0.020)

-1.510
(0.525)

25.378
(8.234)

0.96

MB1 0.671
(0.145)

-0.716
(0.138)

176.099
(107.271)

1.00

NJT MB2 0.630
(0.116)

-0.725
(0.112)

108.431
(55.143)

0.98

MB3 0.670
(0.136)

-0.687
(0.138)

160.360
(88.530)

1.00

Details of regression analyses of Figure 4. Regression curves were fitted following a first order exponential decay model y = y0 + ae(-x/t), where 
y0 = Y offset, a = amplitude, t = exponential time constant. The Goodness-of-fit to the non-linear model is indicated by values of R2 close to 
1.00.
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distributions of intraspecific and mean interspecific, con-
generic distances.

We estimated the proportion of correct matches pro-
vided by the four identification criteria described by
Meier et al. [4]. These included three distance-based cri-
teria (Best Match: BM; Best Close Match: BCM; All Spe-
cies Barcodes: ASB) and the tree-based identification
(tree-identification: NJT). According to BM, each query
was assigned the species name of its best-matching bar-
code regardless of how similar the query and barcode
sequences were. In our simulation, identification was
considered successful when both sequences were from
the same species. BCM relies on a threshold value of
sequence similarity. The threshold was estimated from
dataset A (see below) by establishing a frequency distri-
bution of pairwise intraspecific distances and determin-
ing the distance below which 95% of all intraspecific
distances are found. BCM first identified the best barcode
match of a query and then assigned the species name of
that barcode only if the distance between query and bar-
code was below the threshold. The simulation of ASB

proceeded as for BM but assigned a species name only
when all the conspecifics of the query topped the list of
best matches. NJT considered an identification to be cor-
rect if the query and all its conspecific sequences formed
a monospecific clade. We evaluated the identification
success (i.e. the proportion of correct matches) of the
four criteria by using two separate datasets (Table 1): (1)
species of which a query would find at least one conspe-
cific match in the reference database (dataset A, 15,948
DNA barcodes, 1,995 species, Additional file 3) and (2)
species of which a query would find at least two conspe-
cific matches in the reference database (dataset B, 14,254
DNA barcodes, 1,148 species, Additional file 4). Dataset
A was used to evaluate the proportion of correct matches
according to BM, BCM and NJT, while dataset B to evalu-
ate the identification success of ASB. SpeciesIdentifier1.5
[4] was used to calculate pairwise K2P distances and to
quantify the proportion of correct matches according to
BM, BCM and ASB. The identification success of NJT
was quantified using PAUP* [35] to reconstruct a Neigh-
bor-Joining tree (K2P distance, ties randomly broken)

Table 4: Pairwise comparisons among non-linear regression plots of Figure 2.

BM BCM NJT

MB1 MB2 MB3 MB1 MB2 MB3 MB1 MB2 MB3

MB1 2.348 4.307 0.001 2.307 4.423 43.972 7.433 44.186

BM MB2 n.s. 0.831 2.476 0.003 0.864 80.475 11.491 91.195

MB3 n.s. n.s. 4.477 0.838 0.001 72.996 12.405 78.593

MB1 n.s. n.s. n.s. 2.430 4.600 44.745 7.375 45.241

BCM MB2 n.s. n.s. n.s. n.s. 0.867 79.447 11.344 89.818

MB3 n.s. n.s. n.s. n.s. n.s. 75.877 12.440 82.774

MB1 ** *** *** ** *** *** 0.628 1.089

NJT MB2 * * * * * * n.s. 0.190

MB3 ** *** *** ** *** *** n.s. n.s.

Above the diagonal: F-values. Below the diagonal: probability values of F-tests. n.s.: not significant, *: p < 0.05, **: p < 0.01; ***: p < 0.001. In 
grey: p < 0.05 after the False Discovery Rate correction.

Table 5: Relationships between taxon coverage of the reference database and identification success.

BM BCM

R2 = 1.00 R2 = 0.99

F = 651.91*** F = 236.178***

a = 0.986(0.001) t = 961.4747*** a = 0.999(0.002) t = 465.262***

b = -2.13 × 10-5 (1.74 × 10-6) t = -25.53262*** b = -2.68 × 10-5 (1.06 × 10-6) t = -15.368***

Details of regression analyses of Figure 3. Regression lines were fitted according to the linear model y = a + bx (where a = y-intercept, b = 
slope). Goodness-of-fit is indicated by values of R2 close to 1.00 and by the statistical significance of (1) F-test of the overall fit, (2) t-tests of 
individual parameters. ***: p < 0.001.
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and calculating the NJT identification success by using a
Perl script developed for this purpose (TreeCode.v1,
Additional file 5).

Differences in the identification success of (1) BM,
BCM and NJT and (2) Coleoptera, Diptera, Hemiptera,
Hymenoptera, Lepidoptera, Orthoptera were tested by a
2-way model of analysis of variance (ANOVA). ANOVA
was based on three independent replicates, sensu Under-
wood [36], which were obtained by (1) randomly assign-
ing the DNA barcodes of each order to three groups (each
corresponding to an identification criterion) and (2)
dividing each group in three sub-groups. Each replicate
was represented by the proportion of correct matches
calculated in each sub-group, according to the identifica-
tion criterion of each group. Identification criterion (Cr, 3
levels, fixed) and insect order (Or, 6 levels, random) were
considered as orthogonal variables. The assumption of
homogeneity of variances was verified through Cochran's
C-test. Student-Newman-Keuls (SNK) tests were used for
a posteriori multiple comparisons of means [36]. The
identification success of ASB (calculated from dataset B)
was qualitatively compared with the proportion of cor-
rect matches obtained for BM, BCM and NJT (calculated
from dataset A).

Relationships between barcode length and identifica-
tion success were analysed through non-linear regression.
The DNA barcodes of dataset A were divided in three
non-overlapping "mini-barcodes" of 220, 219 and 219 bp
corresponding to the first, second and last third of the
barcode region (hereafter MB1, MB2, MB3). The number
of bp of each mini-barcode was further reduced at both 5'
and 3' ends in order to obtain fragments of approximately
75%, 50%, 25% and 10% of the initial mini-barcode length
(164 bp, 110 bp, 55 bp and 22 bp, respectively). For each
fragment the proportion of correct identifications was
calculated according to three identification criteria (BM,
BCM, NJT) and averaged across the six insect orders
(Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepi-
doptera, Orthoptera). Non-linear regression fitting was
implemented for each combination of identification crite-
rion and barcode fragment following the first order expo-
nential decay model y = y0 + ae(-x/t), where y0 = Y offset, a
= amplitude, t = exponential time constant [37]. Differ-
ences among regression curves were verified through
pairwise F-tests. Probability values of repeated compari-
sons were corrected for Type I errors using the False Dis-
covery Rate procedure [38]. Relationships between levels
of taxon coverage in the reference database and identifi-
cation success were investigated through linear regres-
sion. The DNA barcodes of dataset A were randomly
sampled in order to obtain reference databases including
subsets of 100, 500, 1000 and 1,500 insect species. Three
independent replicates were obtained for each subset.
The identification success of BM and BCM was averaged
across the three replicates of each subset and regressions
were fitted after including the proportion of correct
matches resulting from the analysis of the whole dataset
(1,995 species). Regression analyses were implemented in
OriginPro v7 http://www.originlab.com after comparing
the Goodness-of-fit of alternative models.

Additional material
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