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Abstract
Background: Quantitative proteomics technologies have been developed to comprehensively identify and quantify 
proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one 
of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often 
noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate 
peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and 
Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often 
result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for 
better or alternative MS-based proteomic quantification.

Results: We developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise 
and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We 
then incorporated the WaveletQuant program in the Trans-Proteomic Pipeline (TPP), a commonly used open source 
proteomics analysis pipeline.

Conclusions: We showed that WaveletQuant was able to quantify more proteins and to quantify them more 
accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed 
ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation 
can be downloaded from our website at http://systemsbiozju.org/data/WaveletQuant.

Background
Quantitative proteomics technologies have been devel-
oped to comprehensively identify and quantify proteins
in two or more complex samples [1-4]. There are three
ways to perform quantitative proteomic analysis: a) the

spectral counting method that counts the number of frag-
ment ion spectra for a particular peptide [5]; b) differen-
tial stable isotope labeling, in which quantified peptides
differ by the mass shifts introduced by the stable isotopes
used [6]; and c) label-free quantification that quantifies
the precursor ion signal intensities across different LC-
MS runs [7-9].

Quantification using the differential stable isotope
labeling method is one of the methods for quantification
of two or more samples within a single experiment. The
technique is based on use of stable isotopes to differen-
tially label proteins or peptides, and on use of mass spec-
trometry to compare the relative abundance of the
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proteins in different samples. Over the years, many stable
isotope tagging approaches have been developed, which
include the ICAT [6], ITRAQ [10], and SILAC [11]
approaches. In addition, numerous quantification soft-
ware were developed, including XPRESS [6], ASAPRatio
[12], MSQuant http://msquant.sourceforge.net/,
ZoomQuant [13], STEM [14], Multi-Q [15], i-tracker
[16], Libra [17], maxQuant [18], muxQuant [19], HTAPP
(high-throughput autonomous proteomic pipeline) [20],
msInspect [21], the APEX Quantitative Proteomics Tool
[22], MASIC [23], and Census [24].

In our quantitative proteomics analysis, we found that
errors associated with ratios calculated by the ASAPRatio
increased proportionally with the relative abundance
ratios of the two isotopic partners. Several factors might
have contributed to the increase of relative errors. We
found one of the factors to be background noise that was
not completely removed by the Savitzky-Golay smooth
filtering method.

Wavelets are mathematical functions that divide a given
function or a continuous-time signal into different fre-
quency components, and then study each component
with a resolution matched to its scale [25,26]. They have
advantages over traditional Fourier transforms in analyz-
ing data for which signals have discontinuities and sharp
peaks, and in deconstructing and reconstructing signals
more accurately [27].

Various programs integrating wavelet transforms have
been developed for analyzing various types of proteomics
data, such as MALDI, SELDI-TOF and LC/MS. Yang et
al. compared five smoothing methods used in peak detec-
tion algorithms for MALDI mass spectrometry data anal-
ysis [28]. They found that the wavelet smoothing
performed best among the five smoothing methods:
moving average filter, Savitzky-Golay filter, Gaussian fil-
ter, Kaiser window, and wavelet based filters [28]. Du et
al. showed that a continuous wavelet transform (CWT)-
based peak detection algorithm enhances the effective
signal-to-noise ratio in SELDI-TOF spectra; it could iden-
tify both strong and weak peaks while keeping false posi-
tive rates low [29]. Randolph and Yasui applied a
translation-invariant wavelet analysis to perform multi-
scale decomposition, feature extraction and quantifica-
tion for MALDI-TOF spectra [30]. Alexandrov et al.
developed the MALDIDWT program for analyzing
serum protein profiles for biomarker discovery [31].
Lange et al. used wavelet techniques to develop a mass
spectrometer-independent peak-picking algorithm as an
alternative to vendors' peak-picking software bundled
with mass spectrometers [32]. Schulz-Trieglaff et al.
developed an algorithm that uses a mother wavelet to
mimic the distribution of isotopic peak intensities [33].
The latter two algorithms by Lange et al. and Schulz-

Trieglaff et al. were further implemented in OpenMS
software [34]. Zhang et al. used an undecimated wavelet
transform to remove random noise for prOTOF MS data,
which does not require a priori knowledge of protein
masses[35]. Using metabolomics data as examples, Taut-
enhahn et al. developed a new feature detection algo-
rithm centWave for high-resolution LC/MS data sets
applying continuous wavelet transformation and optional
Gauss-fitting in the chromatographic domain[36].

Wavelet theory has also been applied to MS data to
reduce data dimension or to reduce computation time.
For example, Hussong et al. implemented a feature find-
ing algorithm based on a hand-tailored adaptive wavelet
transform that drastically reduces the computation time
in mass spectrometry data analysis [37]. Liu et al. used
the wavelet detail coefficients to characterize features and
reduce the dimensionality of MS data [38].

In this manuscript, we report development of a new
wavelet transform algorithm for improved quantitative
proteomics analysis. We demonstrate that our approach
has an improved ability to smooth isotopic peaks and
remove background noise when compared with
approaches using other smoothing methods.

Implementation
Technical details of the development of the WaveletQuant 
program
The wavelet transform is an excellent tool for signal pro-
cessing because of its de-noising ability; one can obtain
multi-resolution decomposition of signals, while retain-
ing their local characteristic details.

The first step in the wavelet transform method is to
choose a proper threshold to de-noise signals. The princi-
ple of wavelet-based de-noising is to recognize the noise
from the high frequency part of wavelet coefficients.
Those coefficients that are less than the threshold are set
to zero. Other coefficients are preserved. Then we recon-
struct the de-noised signals using the new coefficients. As
indicated in the Results presented below, setting the
wavelet coefficients of noise to zero while at the same
time preserving the wavelet coefficients of signals is criti-
cal for a successful wavelet transform. Choosing an opti-
mal threshold is the key to retaining maximal true signals
while reducing as much noise as possible.

Given a measured signal x(t) with a Gaussian white
noise n(t) can be presented by the following formula:

The method is composed of three components: (i) the
discrete wavelet transform (DWT) of signal x(t); (ii) set-
ting the threshold for the wavelet coefficients on each
scale; and (iii) obtaining de-noised signals by inverse

x t S t n t t N( ) ( ) ( ) , ,= + = 1� (1)
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wavelet transform based on the threshold wavelet coeffi-
cients. A more detailed description of the wavelet trans-
form process is shown in Additional file 1.

We then adopted the universal threshold T proposed by
Donoho and Johnstone [39] to remove Gaussian white
noise, described as follows:

where N is the length of signal x(t), σ is the noise level,
and MAD is the median absolute deviation estimated in
the first scale. The factor 0.6745 in the denominator res-
cales the numerator so that is a suitable estimator for the
standard deviation for Gaussian white noise. Significant
wavelet coefficients could be derived by setting a thresh-
old rule. There are hard and soft threshold rules, each
with its advantages and disadvantages.

The hard threshold can preserve local characteristics,
but the reconstructed signals are not very smooth. The
soft threshold can obtain a smoothed curve, but it always
distorts the signal. In this paper, we combined the
strengths of the two methods, and developed a new rule:

where 0 <λ < 1. When λ is zero, it returns to the hard
threshold. When λ is one, it returns to the soft threshold.
We set λ = [0.1, 0.4]. The procedure of wavelet-based de-
noising is given as:

Xu et al. [40] proposed a spatially selective noise filtra-
tion technique. They declared that the singularity of a sig-
nal should have a large peak value in different scales,
while noise should have fading energy with increasing
scales. Inspired by their work, we developed a 'Spatial
Adaptive Algorithm' to identify true peaks (a more
detailed description of the method is presented in Addi-
tional file 1).

Assuming the largest scale of decomposition is J, Wf(j,
n)denotes DWT coefficient of signal f at position n in
scale j. We denoted the correlation of bordered scales as
follows:

where l represents the scale and j <J - l + 1. As the sin-
gularity of signals increases along with increasing scales,
bordered points affect each other in detailed scales. We
chose l = 2 to compute the correlation:

where Corr2(j, n) is denoted as correlation coefficient of
the position n in scale j.

To make correlation coefficient and wavelet coefficient
more comparable, we defined the correlation coefficient
uniformly:

And:

Then we compared NewCorr2(j, n) with Wf(j, n) to
obtain the edges of important signals. In summary, by
multiplying wavelet coefficients of bordered scales, we
computed a correlation coefficient to suppress the noise
and to strengthen the signal. Our algorithm improved the
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identification of real signals and the orientational preci-
sion of the identified signals.
Software implementation
We programmed and compiled WaveletQuant using
Visual C++ 2005 Express Edition. A program flow chart is
shown in Figure 1. We evaluated peptide abundances by
reconstructing a raw single-ion chromatogram over a
chromatographic elution period. Then the wavelet algo-
rithms we described in the previous sections were applied
to obtain an adjusted chromatogram peak area. Signals
inside the peak region were decomposed into four levels
and correlation coefficients of bordered points in each
scale were calculated. Next, we recursively computed new
correlation coefficients and modified them by comparing
them with Wf(j, n). According to these new values, a

noise threshold was re-calculated. If the wavelet coeffi-
cients were less than the noise threshold, they were set to
zero. The remaining wavelet coefficients were considered
signals. Finally, we reconstructed the de-noised signals
and used the de-noised peak areas to calculate peptide
abundance. Because the Trans-Proteomic Pipeline (TPP)
http://tools.proteomecenter.org/software.php is a com-
monly used open source proteomics analysis pipeline, we
decided to build our program into the TPP. We compiled
a new TPP package by replacing the ASAPRatio program
with the WaveletQuant program. The package and its
documentation can be downloaded from our website at
http://www.zcni.zju.edu.cn/en/
WaveletQuant_for_Quantitative_Proteomics/

Figure 1 WaveletQuant program flow chart. Equations 10 and 11 are shown in additional file 1.

http://tools.proteomecenter.org/software.php
http://www.zcni.zju.edu.cn/en/WaveletQuant_for_Quantitative_Proteomics/waveletquant.html
http://www.zcni.zju.edu.cn/en/WaveletQuant_for_Quantitative_Proteomics/waveletquant.html
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waveletquant.html or http://systemsbiozju.org/data/
WaveletQuant.

Result
Application of the WaveletQuant program to data 
generated using yeast extracts mixed in known ratios
We compared the performance of our WaveletQuant
program with the ASAPRatio program using a dataset
generated by mixing different ratios of yeast cell extract
grown in heavy vs. light isotopic media. Proteins were
mixed in the following ratio 1:2, 1:1.5, 1:1, 1.5:1, 2:1, and
then analyzed by LTQ-MS.

We found that the WaveletQuant program was able to
perform curve fitting for respective chromatogram pairs
and to quantify more accurately the difference of mixed
yeast extracts than the original ASAPRatio program. Fig-
ures 2 and 3 show several examples where the
WaveletQuant program performed better than the
ASAPRatio program, which uses the Savitzky-Golay filter
for denoising. The WaveletQuant program achieved
more accurate quantification. An advantage of our pro-
gram is the ability to separate a high peak from an over-
lapping low peak. The ASAPRatio program tends to
merge the two peaks into one and quantified it. However,
the low peak can be noise or a signal from another pep-
tide that eluted immediately following the peptide being
analyzed. The most obvious examples are those shown in
Figures 2 and 3. In Figure 2A and 3B, the two peaks in the
heavy peptide (bottom panel) were regarded as one peak
by ASAPRatio program. However, the WaveletQuant
program was able to separate the two peaks. For the pep-
tide shown in Figure 2B, ASAPRatio failed to quantify it,
but WaveletQuant did find the correct peaks and was
able to quantify it. Figure 3A showed a subtle example
where the 2nd peak could often be mistaken as from the
first peak. In Figure 3A, for the heavy labeled peptide
(bottom half of the two panels), our program was able to
separate two overlapped peaks, while the ASAPRatio
regarded it as one peak. The ASAPRatio therefore over
quantified the heavy labeled peptides. Additional exam-
ples were shown in Additional file 2, 3 and 4.

The protein abundance ratios for all proteins obtained
by the new algorithm and old algorithm of yeast extract
mixtures are summarized in Table 1. The ratios were cal-
culated by averaging all unique peptides' ratios after
recursively eliminating outliers by calculating the average
number A and +- √A's (square root of A) range (except in
the first round, they were eliminated by choosing the
median m and +- √m's range). We found that relative
errors of the ratios obtained by the WaveletQuant
method were much less (from 1 to 27% for different
known mixed ratios) than those obtained from the
ASAPRatio program (from 20 to 52%) (Table 1), suggest-
ing that wavelet-based signal threshold de-noising is

more efficient and more precise than the ASAPRatio pro-
gram.

Application of the WaveletQuant program to data 
generated by ICAT for ovarian cancer cell lines
We have previously conducted quantitative proteomics
studies comparing cisplatin-resistant ovarian cancer cells
with cisplatin-sensitive cancer cells [41]. Using the RAW
data of the cytosolic fractions, we compared TPP with
ASAPRatio and TPP with WaveletQuant implementa-
tion. We found that TPP with the ASAPRatio was able to
quantify the protein expression of 226 proteins, while
TPP with WaveletQuant quantified 222 proteins, and 204
proteins were quantified by both algorithms. The total
number of proteins quantified combining both programs
is 245, which is about 10% more than using either pro-
gram alone. We found that the average standard deviation
for the ratios of quantification were 0.57 for TPP with
ASARatio and 0.47 for TPP with WaveletQuant. Thus
WaveletQuant appears to have better accuracy for quan-
tification than the ASAPRatio.

Discussion
We developed a new software for quantitative proteomics
using the wavelet transform. Mass spectrometry data are
usually noisy. In order to better quantify mass spectrome-
try data, smoothing filters, such as the moving average fil-
ter, Gaussian filter Butterworth low-pass filter, and
Savitzky-Golay filter can be used to reduce the noise in
MS peaks. The moving average filter was used in the
MZmine program [42]. The Gaussian filter was used by
the local maximum search (LMS) program, which was
developed for SELDI MS data analysis [43]. The smooth-
ing used in the XPRESS program was performed with the
Butterworth low-pass filter http://www.qsl.net/kp4md/
butrwrth.htm, for which low-frequency excitation signal
components down to and including the current ones are
transmitted, while high-frequency components, up to
and including infinite ones, are blocked. The ASAPRatio
program uses the Savitzky-Golay method [12], which
performs a least squares fit of a small set of consecutive
data points to a polynomial and then takes the central
point of the fitted polynomial curve as the output. The
Savitzky-Golay smoothing tends to preserve features of
the distribution such as relative maxima, minima, and
width; this is its main advantage as these features are
often 'flattened' by other smoothing methods (e.g. mov-
ing averages). However, as we showed in Results, a disad-
vantage of the Savitzky-Golay filter is that it smoothes
signals by increasing window sizes and lowering filter fre-
quencies; thus, the smoothed shape could create poor
representations of true signals and generate inaccurate
quantification. We found that wavelet smoothing is better
than the Savitzky-Golay filter used with ASAPRatio. Yang

http://www.zcni.zju.edu.cn/en/WaveletQuant_for_Quantitative_Proteomics/waveletquant.html
http://systemsbiozju.org/data/WaveletQuant
http://systemsbiozju.org/data/WaveletQuant
http://www.qsl.net/kp4md/butrwrth.htm
http://www.qsl.net/kp4md/butrwrth.htm
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et al. similarly found that wavelet smoothing performed
better than moving average filter, Savitzky-Golay filter,
Gaussian filter, and Kaiser window [28].

In addition, we implemented orthogonal wavelets to
decompose signals in our WaveletQuant program. The
wavelet transform is different from that used by Lange et
al. and Schulz-Trieglaff et al. [32,33]. Many wavelets
could be chosen to perform wavelet transform, including
Daubechies' orthogonal and bi-orthogonal wavelets,

Gaussian wavelets and coiflets [25]. Each wavelet has its
own advantage depending on wavelet shapes and wavelet
widths. The orthogonal wavelet can keep the energy (i.e.
sum of squares of coefficients, usually referred to as
"energy" in the signal processing field) of a signal
unchanged. We have therefore selected the orthogonal
wavelet transform for our MS data analysis.

We implemented two methods. First, by combining the
advantage of hard threshold and soft threshold, we devel-

Figure 2 Comparison of the quantification performance of the WaveletQuant and the ASAPRatio for yeast extracts mixed in 1:1 ratio. A: 
Comparison of the quantification performance of yeast extracts mixed in 1:1 ratio between the WaveletQuant (right) and the ASAPRatio (left). The MS 
spectra OR20070625_HS_L-H-1-1_12.03299.03299.3 (+3 charge state) are illustrated. LC-MS chromatograms of the isotopically light and heavy pep-
tide partners are shown. Raw chromatograms are plotted in red, smoothed chromatograms in blue, areas used for calculating abundance ratio of the 
charge state in green, and backgrounds in cyan. On the top is peptide abundance ratio. On the right are start and end scan numbers, background, 
elution time of the isotopically light and heavy peptide partners, acceptance, abundance ratio, and weight of the charge states. Users may change 
scan numbers, background levels, and acceptance of the charge state. B: Comparison of the quantification performance of yeast extracts mixed in 1:1 
ratio between the WaveletQuant (right) and the ASAPRatio (left). MS spectra OR20070625_HS_L-H-1-1_12.10969.10969.2 (+2 charge state) are illus-
trated.
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Figure 3 Comparison of the quantification performance of the WaveletQuant and the ASAPRatio for yeast extracts mixed in 2:1 ratio. A: 
Comparison of the quantification performance of yeast extracts mixed in 2:1 ratio between the WaveletQuant (right) and the ASAPRatio (left). MS spec-
tra OR20070625_HS_L-H-4-1_15.10440.10440.3 (+2 charge state) are illustrated. B: Comparison of the quantification performance of yeast extracts 
mixed in 1:2 ratio between the WaveletQuant (right) and the ASAPRatio (left). MS spectra OR20070625_HS_L-H-1-2_10.06981.06981.4 (+3 charge 
state) are illustrated.

Table 1: Comparison of quantification results between the ASAPRatio and the WaveletQuant programs.

Light/Heavy
ratio

Mixed
ratio

ASAPRatio
ratio

ASAPRatio
Relative error 

(%)

WaveletQuant
ratio

WaveletQuant
Relative error 

(%)

L/H 0.5 0.73 47 0.39 21

L/H 0.67 0.85 27 0.64 3

L/H 1 1.51 50 1.09 9

L/H 1.5 1.2 20 1.48 1

L/H 2 0.95 52 2.15 7
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oped the wavelet-based signal threshold de-noising algo-
rithm to distinguish signals from noise in MS data.
Second, we developed the spatial adaptive algorithm,
which not only was effective in removing high frequency
noise but also was effective for low frequency de-noising.
Combining these two algorithms, our WaveletQuant pro-
gram performs better than the ASAPRatio program on
the datasets from yeast that we tested (Figures 2 and 3).
Finally, in a test using high throughput proteomics data
generated from cell lysates in an ovarian cancer study, we
found that the ratios obtained by our program have lower
overall standard deviation than that obtained by the
ASAPRatio.

Of note, we also mixed proteins in 1:4 and 4:1 ratios
and analyzed them by LTQ-MS. However, due to the lim-
ited dynamic range of the routine LC/MS that we per-
formed, the average ratios calculated by both the
ASAPRatio and the WaveletQuant programs were far-off
from the original mixed ratios, with large standard devia-
tion. This is not surprising as the mixed ratios are outside
the dynamic range of a routine LC/MS analysis, which
Canterbury et al. estimated to be 0.5 to 2.5 in a systematic
analysis [44]. This result also suggests that our
WaveletQuant program did not improve the dynamic
range of the quantification. Another possibility is that the
experiment failed due to unknown reasons. Therefore, we
have not included the data in this report.

Finally, we have implemented our wavelet transform
algorithm and developed the WaveletQuant program. As
the TPP pipeline is widely used in proteomic data analy-
sis, we incorporated WaveletQuant software into the TPP
pipeline http://tools.proteomecenter.org/TPP.php. Users
can employ the WaveletQuant- implemented TPP pipe-
line as an alternative to the standard TPP pipeline.

Conclusions
We have developed an improved and/or alternative pro-
gram for quantitative proteomics analysis, which is
implemented in the standard TPP pipeline for the conve-
nience of users.

Availability and requirements
• Project name: WaveletQuant

• Project home page: http://www.zcni.zju.edu.cn/en/
WaveletQuant_for_Quantitative_Proteomics/
waveletquant.html or http://systemsbiozju.org/data/
WaveletQuant.

• Operating systems: Windows 2000, Windows XP or
higher

• Programming languages: MSVC++ 7.1 or higher
• Other requirements: None
• License: This is a free software. You can redistribute

it and/or modify it under the terms of the GNU Lesser

General Public License as published by the Free Software
Foundation.

Additional material

Abbreviations
LC: Liquid Chromatography; MS: Mass Spectrometry; LTQ: Linear ion Trap Qua-
drupole; MALDI: Matrix Assisted Laser Desorption/Ionization; SELDI: Surface
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Additional file 4 Comparisons of the quantification performance of 
BSA in a 4:1 ratio. Comparisons of the quantification performance of BSA 
mixed at 4:1 ratio between our program (Panels B) and ASAPRatio program 
(Panels A). Panel A and B are spectra: OR20070625_HS_L-H-4-
1.15.10440.10440.3; ions with +2 charge state.
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