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Abstract
Background: Structural variations caused by a wide range of physico-chemical and biological sources directly 
influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic binding site 
residues can be loosely defined as a substructure of the protein. Comparative analysis of drug-receptor substructures 
across and within species has been used for lead evaluation. Substructure-level similarity between the binding sites of 
functionally similar proteins has also been used to identify instances of convergent evolution among proteins. In 
functionally homologous protein families, shared chemistry and geometry at catalytic sites provide a common, local 
point of comparison among proteins that may differ significantly at the sequence, fold, or domain topology levels.

Results: This paper describes two key results that can be used separately or in combination for protein function 
analysis. The Family-wise Analysis of SubStructural Templates (FASST) method uses all-against-all substructure 
comparison to determine Substructural Clusters (SCs). SCs characterize the binding site substructural variation within a 
protein family. In this paper we focus on examples of automatically determined SCs that can be linked to phylogenetic 
distance between family members, segregation by conformation, and organization by homology among convergent 
protein lineages. The Motif Ensemble Statistical Hypothesis (MESH) framework constructs a representative motif for 
each protein cluster among the SCs determined by FASST to build motif ensembles that are shown through a series of 
function prediction experiments to improve the function prediction power of existing motifs.

Conclusions: FASST contributes a critical feedback and assessment step to existing binding site substructure 
identification methods and can be used for the thorough investigation of structure-function relationships. The 
application of MESH allows for an automated, statistically rigorous procedure for incorporating structural variation data 
into protein function prediction pipelines. Our work provides an unbiased, automated assessment of the structural 
variability of identified binding site substructures among protein structure families and a technique for exploring the 
relation of substructural variation to protein function. As available proteomic data continues to expand, the techniques 
proposed will be indispensable for the large-scale analysis and interpretation of structural data.

Background
Understanding the link between protein structure and
protein function is a fundamental problem that underlies
diverse application areas including drug target identifica-
tion, protein function prediction, and structure-based
evolutionary analysis. The specific few amino acids that
mediate the drug-binding affinity of targeted binding
sites are an example of a substructure within a protein.
The catalytic substructures of enzymatic proteins are

intrinsically linked to enzyme function [1-4], and estab-
lishing a mechanistic understanding of how specific
structural features affect protein function is a central
problem in structural genomics [5]. The analysis of the
physico-chemical properties of the few amino acids con-
stituting these substructures, common to families of
functionally related proteins, can provide direct insight to
the structural features that dictate a particular enzymatic
function [2]. For example, the family of serine proteases is
a well-established case of a common functional substruc-
ture, the HIS-ASP-SER catalytic triad, dictating a common
function in the absence of sequence or fold similarity
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between chymotrypsins, subtilisins, and lipases [6,7].
Conversely, in the case of TIM barrel proteins which
share fold similarity, differing functional substructures
within the catalytic site confer differing functions [8].
Therefore, because these functional substructures are
essential determinants of protein function, computa-
tional approaches to analyze and compare substructures
among proteins can provide fundamental insight to the
molecular mechanisms that mediate protein function
[1,9].

Protein substructures can be represented as motifs
(templates) that abstract the functionally import residues
of binding sites. Comparing conserved binding site sub-
structures among all proteins within an enzymatic family
can reveal high-level structural trends that may not be
apparent if only considering pairs of proteins. The Fam-
ily-wise Analysis of SubStructural Templates (FASST)
method introduced in this work identifies Substructural
Clusters (SCs) by comparing the binding site substruc-
tures among all proteins within a family. The SCs identi-
fied by FASST are demonstrated to reveal substructural
patterns that can be associated with phylogeny, confor-
mation change, and homology. Motif Ensemble Statistical
Hypothesis testing (MESH), the second method intro-
duced here, exploits the SCs output by FASST to con-
struct multi-structure ensembles of motifs that are shown
to have increased function prediction power compared to
single-structure motifs. Together, FASST-MESH provides
an automated approach for identifying patterns of sub-
structure variation among large numbers of proteins and
a method for enriching existing substructure motifs.

Substructure analysis is of practical importance for
identifying proteomic drug targets, finding potential drug
side-effects, predicting protein function, and evolution-
ary analysis. Binding site substructures have been consid-
ered "receptor-based pharmacophores" [10], allowing a
specific few amino acids to indicate likely interaction
with a specific ligand-based pharmacophore. Substruc-
tural similarity at ligand-binding sites among proteins is
indicative of similarity in ligand- and drug-binding prop-
erties [3,4]. Exploitation of this property has been applied
recently to identify new targets for existing drugs [11] and
to computationally analyze potential drug side-effects
[10,12]. Specifically, cross-species substructure analysis
of binding sites among families of functionally homolo-
gous proteins can play an important role in lead evalua-
tion [10,13], and therefore computational approaches to
analyze family-wise substructural variation are particu-
larly relevant for modern drug development.

Furthermore, substructure comparison of catalytic sites
among proteins has been shown to be a powerful tech-
nique for predicting the function of protein structures
[7,14,15] and is an important component of structural
genomics initiatives that seek to map and functionally

annotate the space of protein structures [5,16]. Finally,
enzymes evolve under selective pressure to maintain bio-
logically necessary functions [17], and functional sub-
structure conservation in the absence of sequence of fold
conservation has been established [18,19]; substructure
comparison may be the only way to establish homology
between proteins that have significantly diverged in both
sequence and fold [20]. This work contributes two new
computational methods for family-wise substructure
analysis that contribute novel approaches to examining
protein substructures. Given the biological relevance of
substructure analysis and the proliferation of available
structures in the Protein Data Bank (PDB) [21], computa-
tional approaches to substructure analysis can make
meaningful contributions to our understanding of pro-
teomics.

Computational methods for finding functionally signif-
icant substructures and methods for comparing substruc-
tures to identify biologically relevant proteins with
matching substructures are two complementary compo-
nents of substructure analysis. As far as approaches capa-
ble of finding substructures are concerned, earlier work
includes ligand-binding cavity identification (CavBase
[22], CASTp [23]), structural pattern recognition (GASPS
[9], FEATURE [24], FLORA [25]), computational scan-
ning mutagenesis (SNAP [26]), evolutionary analysis (ET
[27], ConSurf [28]), expert knowledge (CSA [29]), and
automatically curated databases (LigBase [30], SFLD [2],
LigASite [31]). Substructures identified by these methods
can be computationally represented, either in full or in
part, by motifs that model both the geometric and phys-
ico-chemical properties of a given substructure. Compu-
tationally identifying substructure matches in other
proteins with statistically significant similarity to a motif
can indicate that a matched protein may share functional
characteristics with the motif [7]. Diverse approaches to
motif search and/or comparison have been developed
and include: SPASM [32], ASSAM [33], PINTS [34], Jess
[15], SiteEngine [35], Query3D [36], ProFunc [37,38],
ProKnow [39], SitesBase [40], GIRAF [41], MASH [42],
LabelHash [43], SOIPPA [20], FEATURE [24], and pevo-
SOAR [44] to name a few. In general, designing high-
quality motifs that accurately capture the functional
essence of a substructure is critical and the (successful)
performance of motif-driven substructure comparison
methods depends directly on the biological relevance of
input motifs. The described work complements both the
identification and comparison of motifs in novel ways.
This paper departs both from finding functionally signifi-
cant substructures and from comparing substructures to
identify biologically relevant matching proteins. The
approach presented here combines substructure compar-
ison, unsupervised learning, dimensionality reduction
and non-parametric statistical analysis to partition func-
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tionally homologous protein families into SCs based
upon substructural similarity. This work demonstrates an
automated approach that could be used to augment exist-
ing substructure motifs already available in repositories
such as the Catalytic Site Atlas [29] by geometrically
enriching motifs for families that exhibit high structural
variability. As both the number and diversity of available
structures for a given protein family continue to increase,
the enhancement of substructure-based functional anno-
tation methods to accommodate large families is neces-
sary. The automated enrichment of available motifs
strengthens the function prediction power of these motifs
and facilitates the use of substructure-based analysis
methods for large-scale, automated annotation of novel
structures.

The biological relevance of the functional substructures
modeled by motifs can be exploited for exploratory inves-
tigations of the role and structural conservation/variation
of a substructure within a large protein family; we dem-
onstrate the utility of this approach using FASST by com-
paring the SCs output by FASST to biological ontologies
such as phylogeny. Furthermore, selecting a single-struc-
ture motif as a consensus model of a family-wide func-
tional substructure can prove difficult [1] when
functionally conserved protein families become large and
species-diverse. The MESH framework transforms sin-
gle-structure motifs into motif ensembles to account for
increasing family-wide substructural diversity and pro-
vides a robust procedure for identifying statistically sig-
nificant matches to the motif ensemble as a whole.
FASST and MESH directly contribute to substructure-
based analysis by providing a motif assessment and
refinement procedure. FASST provides an additional ave-
nue of exploratory investigation for selected substruc-
tures within a family of interest.

FASST proceeds as follows. For a given enzyme family,
a substructure motif of the catalytic site is first defined
from a literature reference or other source of substruc-
ture motifs [9,22,23,26,29-31,40]. Instances of the motif
are then identified in each family member structure by a
substructure search algorithm--LabelHash in this paper
[43]. Next, all-against-all pairwise Least Root Mean
Square Deviation (LRMSD) distance comparisons are
computed between family members. The LRMSD of the
catalytic site substructure from a given protein to the
remainder of the family then encodes the family-wise
relationship of the family members to one another as vec-
tors of geometric features. Each geometric feature vector
can then be interpreted as a point in a high-dimensional
geometric feature space, where nearby points in this space
indicate similar family-wise relationships for the corre-
sponding substructures. FASST then uses a Gaussian
Mixture Model (GMM) clustering approach for unsuper-
vised learning of the SCs. The SCs can then be compared

to a biological ontology by mapping meta-data to each
substructure for exploratory data analysis.

We demonstrate with FASST that SCs can suggest bio-
logical sources of structural variation within a protein
family. For the heme-dependent peroxidase family (EC
1.11.1.7) and the xylose isomerases (EC 5.3.1.5), we show
that the observed SCs can be explained by the phyloge-
netic distance between members of the family. Structures
of the thermolysin family of bacterial proteases are
observed to have catalytic sites with both discrete and
continuous modes of flexibility, and structures are known
to transition between discrete structural conformation
states upon ligation. Analysis of the family-wise struc-
tural variety of the serine protease catalytic triad, incor-
porating over 700 structures from 52 different species
and 7 EC classes, demonstrates the ability of FASST to
detect substructure variation among convergently related
families where the motif substructure resides in many
configurations, including some spanning peptide chains.
The substructural variation present within each family is
automatically identified from the SCs output by FASST.

The FASST method presented here directly comple-
ments the k-partite [45], bipartite [46,47] and product-
graph-max-clique [48] approaches to all-against-all com-
mon substructure identification, because these methods
can successfully identify common substructures between
two [46-48] or more [45] binding sites. The common sub-
structural elements identified by these approaches can
serve as a source of new motifs for further substructure
analysis. Several of these all-against-all methods have
been used to construct "similarity networks" of known
ligand binding sites by using pairwise similarity between
binding sites in combination with linkage-based [46-48]
clustering to build graphs of related sites. However, edges
in these "similarity networks" correspond to maximal
matches between any given pair of binding sites, causing
both the specific subset and number of amino acids com-
pared between a given site and all other sites to vary due
to differing levels of maximal matches between each
binding site pair. Our approach uses a single substructure
as a consistent point of comparison in every pairwise
comparison made within a protein family; hence, the
resulting SCs output by FASST can be further utilized, by
MESH, to construct a per-cluster representative consen-
sus motif that is guaranteed to be found in every cluster
member. The substructure-based all-against-all compari-
son implemented by FASST is most analogous to the
seminal work of Holm and Sander [49] on mapping pro-
tein fold space via all-against-all Dali comparisons [50].
MESH utilizes the SCs identified by FASST to construct
refined substructure motifs that have improved sensitiv-
ity, and we demonstrate this procedure in a series of pro-
tein function prediction experiments. MESH constructs a
representative motif for each identified cluster. The col-
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lection of representative motifs, for the family, constitutes
a single motif ensemble. To provide a statistically rigor-
ous framework for calculating the statistical significance
of substructure matches identified by motif ensembles,
we introduce a non-parametric model of substructural
similarity for multi-structure motifs. When compared to
single structure motifs, we demonstrate that the FASST-
MESH framework can significantly improve functional
annotation sensitivity for structurally diverse families of
proteins, while maintaining annotation specificity, for the
15 protein families included in the study.

Results
The families of proteins included in our study were ana-
lyzed with FASST to construct SCs that model the sub-
structural diversity of each family. The underlying source
of substructural variation could be clearly attributed to
phylogenetic distance, conformation, or protein homol-
ogy in many cases. The families of proteins we highlight
here have a source of substructural variation that can be
concretely linked to a single biological factor, in order to
better demonstrate the role of each variation source inde-
pendently. Each structure family was defined by Enzyme
Commission (EC) numbers and preference for inclusion
into the data set was given to families with a large number
of structures. A catalytic site motif was defined for each
family from a literature reference (see Table 1) using Cα
positions. FASST then takes as input the family and motif
and outputs SCs for the family in order to identify the
substructural variation within a family. We analyze the
SCs of highlighted families in detail below.

Phylogenetic-based clusters (FASST)
Heme-dependent peroxidases
Heme-dependent peroxidases (EC 1.11.1.7) are ubiqui-
tous enzymes responsible for moderating reactions with
reactive oxygen species. The lactoperoxidases and
myeloperoxidases found in animal leukocytes produce
potent antibacterial agents and have been shown to play a
role in inflammatory responses [51]. The non-animal
class II peroxidases, found in fungi, and class III peroxi-
dases, found in plants, are both secreted enzymes that are
thought to play multiple roles including organism devel-
opment and pathogen defense [52]. The catalytic site
region of the Arthromyces ramosus class II peroxidase
enzyme [PDB:1ARU] includes the proximal (His-184)
and distal (His-56) histidines coordinated to the heme
group as well as the distal catalytic residues (Arg-52 and
Asn-93) and the hydrogen-bonded Asp-57 [53]. Superpo-
sition of all of the heme-dependent peroxidase catalytic
site structures, identified through motif propagation as
outlined in Methods, is shown in Figure 1(a). Although
the catalytic site motif can be identified within both ani-
mal and non-animal peroxidases, geometric variability of

the catalytic residues is evident from the alignment. The
peroxidase SCs constructed by FASST (see Figure 1(c))
reveal that the peroxidase structures segregate into four
main clusters that can be explained well by the phyloge-
netic ontology of the structures as shown in the corre-
sponding Figure 1(d) plot. The lactoperoxidase structures
from Capra hircus (goat), Bos taurus (cow), Ovis aries
(sheep), and Bubalus bubalis (water buffalo) form a single
cluster in the SCs nearby the distinct myeloperoxidase
cluster from Homo sapiens. The class III plant peroxi-
dases from the Brassicaceaa Family form a tight cluster
along with the class III plant peroxidases of the Fabaceae
Family which are near the perimeter, but outside the
main cluster. Finally, the class II fungal peroxidases form
a fourth distinct cluster most distant from the other three
clusters.

The locations of the peroxidase catalytic site substruc-
tures in the SCs appear to be highly correlated with the
evolutionary history of the enzyme. The animal and non-
animal peroxidases are theorized to have originated from
two separate endosymbiotic events predating modern
plant and animal cells [52]. The sequence identity
between the human [PDB:1CXP] and fungal [PDB:1ARU]
versions of the enzyme is 9% making a sequence-based
approach to analyzing this family as a whole impossible.
Pairwise sequence identity between the labeled positions
in Figure 1(c) is consistently very low as seen in Table 2.
As shown in Figure 1(b), the overall fold topology of the
animal and non-animal peroxidases differ greatly and
belong to separate fold classes within the CATH struc-
tural ontology [54]. However, the catalytic substructure
represented by the motif provides a common point of
comparison between these peroxidases and allows FASST
to identify the significant family-wise catalytic site varia-
tion and underlying clusters within the larger protein
family. By mapping the SCs to the Family-level phyloge-
netic ontology, FASST is able to propose a hypothetical
explanation for the pattern of substructural conservation
and variation within the family of peroxidases.
Xylose isomerases
Metabolic engineering approaches to creating organisms
capable of producing biofuels, such as ethanol, from pre-
viously unrecoverable plant biomass are being actively
studied in the search for renewable energy sources [55].
Xylose isomerase is a key enzyme in many engineered
biosynthetic pathways because of its ability to intercon-
vert sugar isomers, allowing novel carbohydrate sources,
such as plant biomass, to be utilized over more traditional
sugar substrates such as glucose [56]. While members of
the peroxidase family demonstrate topological diversity,
the family of xylose isomerases (EC 5.3.1.5) are more
topologically homogenous, and provide another clear
example of SCs that can be linked to the corresponding
phylogenetic ontology of the structures.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ARU
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CXP
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ARU
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Applying FASST to the catalytic sites of 71 structures of
xylose isomerase from 12 different species, including
thermophilic archaea and several species of mesophilic
bacteria, reveals that variation in catalytic site geometry
within the family can be well-explained by the Family-
level phylogenetic ontology of the family. As shown in
Figure 2, the closely-packed, but well-defined clusters of
structures clearly map to the phylogenetic labeling at the
Family-level of taxonomic classification. While the xylose
isomerase family exhibits high structural conservation,
understanding the substructural relationship between
related members of enzymatic families, capable of cata-
lyzing the same reaction under different environmental
conditions, is an important step towards rational design
of biosynthetic pathways.

Conformation-based clusters (FASST)
Many proteins are known to undergo structural rear-
rangements and hinge-bending motions upon binding
ligands or other proteins. Induced fit via amino acid rear-
rangements are a common feature of many catalytic sites,
and the state of the catalytic site at a given time can often
be partitioned into two states: apo, an open confirmation
with no ligand, and holo, a closed confirmation with
bound ligand. The thermolysins (EC 3.4.24.27) are a fam-
ily of bacterial heat-stable metalloproteases that cleave
peptide bonds at hydrophobic residue positions and have

been shown to change confirmations upon ligand-bind-
ing [57]. The family of available thermolysins contains 59
structures of the protein from Bacillus thermoproteolyti-
cus and a single structure from both Staphylococcus
aureus and Bacillus cereus, all of which are gram-positive
bacteria species (Bacillales). Because there are roughly
equal numbers of apo (non-ligated) and holo (ligated)
structures within the family, and all but two of the struc-
tures are repetitions of the same protein from the same
species, the effect of ligation state on the substructural
variation of the catalytic site can be analyzed in isolation
from other possible contributing factors such as phyloge-
netic distance. Applying FASST to the thermolysins
results in the SCs shown in Figure 3(b).

Mapping ligation-state data to the SCs reveals that the
clusters determined can largely be explained by the pres-
ence/absence of a bound ligand. Outliers revealed by
FASST were further investigated to understand why they
deviate from the remainder of structures sharing a liga-
tion state. A closer examination of the seemingly misclas-
sified structures reveals that not all ligands binding
thermolysin induce conformational change in the binding
site substructure (e.g., [PDB:1FJT] and [PDB:1FJW]
labeled in Figure 3(b)).

Closer examination of the five holo outlier structures
residing within the apo region reveals that either lysine or

Table 1: Full protein family dataset used for function prediction experiments.

EC class PDB ID (Chain) Amino acid numberLabels EC class size

1.1.1.1 1HET (A) 46C, 48S, 67H, 174C 82

1.1.1.21 1US0 (A) 43D, 48Y, 76S, 77K, 110H 89

1.11.1.7 1ARU (A) 52RQ, 56H, 57D, 93NR, 184H 83

1.14.13.39 1DWW (A) 194C, 346V, 363F, 366W, 367Y 126

2.5.1.18 2A2R (A) 7Y, 13FLR, 47ACFLM, 108CFLY 190

2.6.1.1 2QA3 (A) 32G, 34G, 183N, 374R 105

2.7.4.6 1NHK (R) 51Y, 117H, 119S, 128K 60

3.1.1.7 1H23 (A) 84W, 117G, 130Y, 279W, 330F 110

3.1.3.1 1ANI (A) 51D, 101D, 102S, 331H, 412H, 44

3.1.3.48 2CM2 (A) 181DE, 182FHMY, 216S, 221R, 
266Q

248

3.2.1.1 1HT6 (A) 52G, 178R, 180D, 205E, 291D 133

3.5.2.6 1YLJ (A) 70S, 73K, 130S, 132N 254

4.2.1.1 1HCB (A) 94H, 96H, 106E, 119H, 199T 282

5.3.1.1 1YPI (A) 12K, 95H, 96S, 165A 95

5.3.1.5 1DID (A) 53H, 56D, 93F, 136W, 182K 71

For each EC class family, a single PDB structure was used to define an input motif. The list of amino acid numbers are documented functional 
residues found within the primary PDB http://www.pdb.org reference corresponding to each PDB structure. The superscript labels above 
each amino acid number are the possible amino acid types that can match at each motif point; further details of alternate amino acid label 
use can be found here [43]. Where multiple amino acid labels per motif point appear, they were determined using ConSurf [28].

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HET
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1US0
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ARU
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1DWW
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2A2R
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2QA3
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1NHK
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1H23
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ANI
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2CM2
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HT6
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1YLJ
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HCB
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1YPI
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1DID
http://www.pdb.org
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FJT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FJW
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phenol is bound to the structurally rigid side-chain recog-
nition pocket of these structures in all five cases. In Fig-
ure 3(c), the catalytic site of one of the five holo outliers
[PDB:1FJT], where a valine-lysine dipeptide is bound
near, but not within the catalytic site, is compared to a
holo structure with a ligand bound for catalysis in Figure

3(e, f, g). The ligand in Figure 3(e, f, g) can be clearly seen
to interact with the catalytic residues as well as the coor-
dinated catalytic metal (Zn2+) but the ligand of
[PDB:1FJT] is bound just outside of the catalytic site.
Binding of the valine-lysine/phenol ligands to the side-
chain recognition pocket of thermolysin in the five holo

Figure 1 Substructural Clusters (SCs) for the heme-dependent peroxidases. (a) Superposition of the propagated motifs for the animal and non-
animal heme-dependent peroxidases of EC 1.11.1.7 demonstrates geometric diversity. The color of each aligned substructure corresponds to its clus-
ter assignment in (c), and it can be seen that closely aligned substructures in (a) correspond to co-located points in the SCs shown in (c). (b) When the 
backbones of a class II fungal peroxidase [PDB:1ARU] and human myeloperoxidase [PDB:1CXP] are compared, substructural similarity within the heme-
binding catalytic site region is evident, but the remainder of the enzyme structures can be seen to have significant topological differences and are 
assigned to separate topological classes within the CATH structural ontology [54]. (c) Applying FASST to the family of peroxidases yields a family-wise 
geometric feature vector for each catalytic substructure in the family, reducing each substructure shown in (a) to a point in the SCs. Gaussian mixture 
model (GMM) clustering of geometric feature vectors, projected onto a space of reduced dimension, identifies four clusters denoted by color. The 
gray isocontours show the smoothed density of substructures in each part of the SCs. (d) Substructure positions in the SCs colored by Family-level 
taxanomic classification reveal that phylogenetic distance between proteins is the main source of substructural diversity among the heme-dependent 
peroxidase binding sites. The open/closed plot characters correspond to apo/holo structures, respectively.

Table 2: Pairwise sequence identity between the labeled positions in Figure 1(c) is consistently very low.

1ARU 1BGP 1H58

1CXP 9% 7% 6%

1ARU - 14% 7%

1BGP - - 40%

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FJT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FJT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ARU
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CXP
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outliers does not induce the catalytic site to alter its
geometry, explaining the presence of these holo outliers
in the apo region of the plot in Figure 3(b).

Further investigation into the two apo outlier struc-
tures, shown to reside in the holo region of Figure 3(b),
reveals that these two proteins were artificially modified
to coordinate Co2+ and Fe3+metals within their catalytic
sites, instead of the normal Zn2+ metal found in nature.
The substitution of Co2+ and Fe3+ for Zn2+alters the
geometry of the catalytic site, effectively converting ther-
molysin into the "closed," ligand-bound holo state [58].
This fact explains why these two artificially substituted
apo outliers have higher substructural similarity to the
holo structures and are co-located with the holo struc-
tures in the SCs shown in Figure 3(b). Therefore, the con-
formational state of the binding site is a more complete
explanation for the SCs determined by FASST, which is
highly correlated with, but not completely determined by,
the presence/absence of a ligand.

While the presence/absence of a bound ligand is easily
determined by examining a protein structure, FASST
incorporates only knowledge of the binding site geometry
in order to automatically identify each conformation
state. As demonstrated by examination of the holo outli-
ers, not all ligands were capable of inducing conforma-
tional change in the binding site of thermolysin. The
effect of ligation-state within phylogenetic-based clusters
was also analyzed for the heme-dependent peroxidases
and xylose isomerases to ensure that ligation-state was
not influencing the result; open/closed plot characters

are used to denote apo/holo structures, respectively, in
Figures 1, 2, 3 and 4. When multiple conformations exist
within a family of structures, FASST is able to automati-
cally identify the separate conformations as SCs. The
conformation-based SCs can then be used as input to
MESH to construct a multi-conformation motif ensemble
for comparison to non-family structures.

Homology-based clusters (FASST)
Some protein substructures have proven themselves,
throughout the course of evolution, to be so well-suited at
catalyzing particular reactions, that they have arisen
independently in different kingdoms of life. One such
example of convergent evolution in protein substructures
is the HIS-ASP-SER catalytic triad which catalyzes the
hydrolysis of peptide bonds in many serine proteases [6].
The HIS-ASP-SER catalytic triad is a common substruc-
ture among many families of proteases and the geometry
of the triad residues across protease families has been
shown to be highly conserved [7]. To demonstrate the
ability of FASST to detect substructure variation among
non-divergently related families where the triad substruc-
ture resides in many configurations, including spanning
peptide chains, we have considered all of the non-mutant
protein structures from the families listed in Table 3 in an
analysis of the serine protease catalytic triad. The
mutant-filtered family of serine protease structures
included 730 protein structures spanning 7 EC classifica-
tions and 52 species; the total number of structures in the
table is 989 of which 259 are mutant structures. The input

Figure 2 SCs for the xylose isomerases. Xylose isomerase structures from 12 different species of bacteria and thermophilic archaea form clusters 
that can be mapped to the Family-level of taxonomic classification. Light gray ellipses denote automatically identified clusters. The open/closed plot 
characters correspond to apo/holo structures, respectively.
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Figure 3 Ligation-state conformational changes in thermolysin. (a) Backbone of thermolysin structure [PDB:1FJT] with coordinated valine-lysine 
dipeptide in red and motif residues shown in blue. Side-chains of the motif residues are shown for reference, but only Cα coordinates are used by La-
belHash in this paper. The yellow, semi-transparent volume corresponds to the superimposed benzylsuccinic acid ligand of [PDB:1HYT]. The coordi-
nated Zn2+ ion is depicted as a small green sphere in the center of the motif residues. The binding positions of the two ligands are superimposed to 
illustrate where the occupied regions of the thermolysin binding site differ between the two ligands. (b) Applying FASST to the family of thermolysin 
structures reveals that apo and holo structures segregate into different regions of the SCs. The segregation of structures seen indicates that the motif 
residues undergo conformational change upon binding a ligand. The location of particular structures in the SCs are labeled for reference. Light gray 
ellipses denote automatically identified clusters. The open/closed plot characters correspond to apo/holo structures, respectively. (c), (d) Holo outlier 
structures [PDB:1FJT] and [PDB:1FJW] with bound valine-lysine dipeptide and phenol ligands, respectively; the ligand of both structures sits in the side-
chain recognition pocket but does not induce conformation change of the motif residues. (e), (f), (g) Ligated inhibitors from [PDB:5TLN], [PDB:1PE5], 
and [PDB:1HYT], respectively, in semi-transparent yellow superimposed with the [PDB:1FJT] binding site. These 3 inhibitors interact directly with the 
coordinated Zn2+ ion and induce conformational change in the binding site.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FJT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HYT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FJT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FJW
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=5TLN
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1PE5
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1HYT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FJT
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motif consisted of the Cα coordinates of the triad residues
and was geometrically based upon the [PDB:1ACB] chy-
motrypsin structure; this motif was able to accurately
identify triad residues in all serine protease families,
including cases where the triad residues span peptide
chains. Correct identification of triad residues for all
propagated motifs was subsequently confirmed prior to
applying FASST.

The chymotrypsin, trypsin, elastase, thrombin, and α-
lytic protease families are all divergently evolved pro-
teases of the "chymotrypsin clan" (clan SA) [6] and share a
common fold that differs from the convergently evolved
subtilisin family of proteases. The triacylglycerol lipases
have also convergently evolved the serine-based triad and
form a third distinct evolutionary group [59]. Application
of FASST to the families of serine proteases, as shown in
Figure 4, reveals that proteins of the chymotrypsin clan
overwhelmingly cluster together with high degrees of
overlap in the SCs; the subtilisin structures form a dis-
tinct cluster outside of the chymotrypsin clan cluster.
Within the chymotrypsin clan, the different families of
serine proteases show only subtle variations in triad
geometry and are nearly inseparable from one another. It
is evident from analysis of the SCs shown in Figure 4 that
the lipases exhibit much more catalytic triad geometric
variability, overall, than either the subtilisins or chy-
motrypsins, as they can be seen in many different regions
of the space.

Outlier structures within the SCs output by FASST,
labeled in Figure 4, were further investigated. One of the
most extreme outliers in Figure 4 corresponds to a pan-
creatic elastase structure [PDB:2D26] complexed with α-
1 antitrypsin, and this complex was documented to intro-
duce extensive distortion to the catalytic site [60], well-
explaining the distant position of this structure from
other proteins in the SCs. Similarly, two trypsin outlier
structures ([PDB:2TLD] and [PDB:1EZX]) denoted in
Figure 4 are complexed with a protein inhibitor that was
documented to cause distortion of the catalytic site. Two
trypsin structures ([PDB:1PQA] and [PDB:1PPZ]), crys-
tallized with sub-atomic resolution, are also distant from
the main chymotrypsin cluster in the SCs [61]. Apo and
holo structures are denoted in Figure 4 using open and
closed plot characters, respectively, and both apo and
holo structures can be found in each cluster identified.
The single non-mutant Tk-subtilisin structure, from the
archaeon Pyrococcus kodakaraensis, is found to be distant
from both the chymotrypsin clan cluster and main subtil-
isin cluster, which suggests a mode of geometric variation

Figure 4 SCs illustrate catalytic triad diversity among serine pro-
teases. Comparing the geometry of the ubiquitous HIS-ASP-SER catalyt-
ic triad across 730 structures, 52 species, and 7 EC families 
demonstrates the scalability of FASST to large numbers of structures 
and the ability of FASST to detect substructure variation among non-
divergently related families. All of the divergently-related families of 
the chymotrypsin clan cluster into a dense sub-group while the con-
vergently-related subtilisin family forms a separate cluster within the 
SCs. The highly diverse family of lipases form several smaller clusters 
distinct from both the chymotrypsin-like and subtilisin-like structures. 
Several trypsin outlier structures are labeled and the references corre-
sponding to each PDB entry document sources of catalytic site devia-
tion. Light gray ellipses denote automatically identified clusters. The 
open/closed plot characters correspond to apo/holo structures, re-
spectively.

Table 3: Families of serine proteases, containing the catalytic triad, that were analyzed by FASST.

Family EC Class # Structures

Chymotrypsin 3.4.21.1 57

Trypsin 3.4.21.4 355

Thrombin 3.4.21.5 247

α-lytic protease 3.4.21.12 39

Elastase 3.4.21.36 90

Triacylglycerol lipase 3.1.1.3 107

Subtilisin 3.4.21.62 94

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ACB
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2D26
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2TLD
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1EZX
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1PQA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1PPZ
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different from that of prokaryotic subtilisins and chy-
motrypsin-like triads. Application of FASST to the serine
proteases clearly demonstrates the extremely high degree
of both chemical and structural conservation of the cata-
lytic triad across very diverse species and proteins with
diverse ligand specificities. Surprisingly, modeling only
the triad Cα positions, as was done here, is sufficient to
recover the super-family organization of the serine pro-
teases.

Protein function prediction (FASST-MESH)
FASST provides a method to expose the underlying SCs
of a protein family and the MESH framework utilizes the
SCs to enhance the function prediction power of sub-
structure motifs. Instead of representing an entire protein
family with a single motif, FASST-MESH uses an ensem-
ble of motifs, where each motif within the ensemble is
used to represent a cluster within the SCs. MESH auto-
matically constructs a representative consensus motif for
each cluster of geometrically related family members out-
put by FASST (see Methods). Collectively, the set of con-
sensus motifs for all clusters composes a motif ensemble.
Earlier work investigated the performance of averaging all
substructures within a family to identify a single family
consensus motif [62]. However, it was found that for large
geometrically diverse families, a single representative
motif, based on any family member substructure or a
substructure average of all members, could not suffi-
ciently represent the entire family, just as building a single
profile HMM for a large number of distantly related
sequences can be difficult. Transitioning to the multiple-
model motif ensemble, however, requires that the statis-
tics employed by MESH to distinguish statistically signifi-
cant matches take into account the presence of multiple
tests for significance, one test for each consensus motif in
the ensemble (see Methods).

FASST-MESH was used to construct motif ensembles
for 15 families of enzymes (see Table 1), as defined by
Enzyme Commission (EC) number, and the performance
of these motif ensembles was compared to single-struc-
ture motifs in a set of function prediction experiments
(see Table 4). Function prediction performance can be
quantified by sensitivity, the percent of True Positives
(TP) correctly identified (# TP/(# TP + # FN)), and speci-
ficity, the percent of True Negatives (TN) correctly iden-
tified (# TN/(# TN + # FP)). Because the process of
constructing a motif ensemble can be considered unsu-
pervised learning of the family substructure space, 5-fold
cross-validation was implemented, where the motif
ensemble was built from 4/5 of the data and then the last
1/5 was used for performance assessment. The robust-
ness of the SCs identified during cross-fold validation (as
shown in Figure 5) can be seen by the stability of the clus-
ters during each of the 5 cross-fold validation steps. Two
EC families included in the function prediction experi-

ments are discussed below, and each demonstrates a dif-
ferent extreme of sensitivity/specificity improvement
after applying FASST-MESH.

The diverse family of β-lactamases (EC 3.5.2.6) includes
structures from 26 different bacterial species. Using the
13 clusters identified from the SCs output by FASST as
shown in Figure 6, MESH constructs a consensus motif
for each cluster, resulting in an ensemble of 13 consensus
motifs. The β-lactamase motif ensemble, constructed by
FASST-MESH, identified 81.2% of functionally homolo-
gous proteins (as defined by the EC class) with statisti-
cally significant substructure matches. The
corresponding single-structure β-lactamase motif only
identified 35.0% of functional homologs, and therefore
FASST-MESH improved the functional annotation sensi-
tivity of the single-structure motif by 2.3-fold while main-
taining the high specificity of the single-structure motif.

In the family of peroxidases (EC 1.11.1.7) analyzed in
Figure 1, a single-structure motif was capable of identify-
ing a statistically significant match for 91.6% of the EC
family, and therefore already showed high sensitivity.
After applying FASST-MESH to the single-structure per-
oxidase motif, annotation sensitivity improved only
slightly (~1% improvement) but the absolute number of
false positive matches identified decreased from 131 to 78
± 8. The decrease in false positive matches, resulting
from use of a motif ensemble, occurred because true pos-
itive matches tended to match multiple consensus motifs
within the ensemble with low LRMSD, while many false
positive matches have only marginally significant LRMSD
to a single consensus motif, and applying multiple testing
correction to the final set of matches for a given false pos-
itive often caused a single marginally significant match to
move outside of the significance threshold.

As both the number and diversity of available struc-
tures for a given protein family continue to increase, the
enhancement of substructure-based function prediction
methods to accommodate large families is necessary. This
work demonstrates an automated approach (outlined in
Methods) that could be used to augment existing sub-
structure motifs already available in repositories such as
the Catalytic Site Atlas (CSA) [29] by geometrically
enriching motifs for families that exhibit high structural
variability. The automated enrichment of available motifs
by FASST-MESH strengthens the function prediction
power of these motifs and facilitates the use of substruc-
ture-based analysis methods for large-scale, automated
annotation of novel structures.

Comparison with sequence and whole structure 
approaches
Similarity among proteins belonging to an enzymatic
family can be difficult to detect using sequence and whole
structure approaches when such families are sequentially
and topologically diverse. The heme-dependent peroxi-
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dase and xylose isomerase families differ greatly in the
amount of family-wide fold and sequence similarity. To
assess the ability of sequence and whole structure (fold)
analysis to identify the structures in each family as inter-
related, each family was combined with a set of 50 func-
tionally unrelated structures randomly selected from the
nrPDB95. Additionally, each family was combined with all
structures sharing the same SCOP [63] superfamily clas-
sification in a separate experiment from the random
nrPDB95 structures. The heme-dependent peroxidases
were combined with all structures within the heme-
dependent peroxidase superfamily (SCOP:48113) which
includes structures from EC:1.11.1.5 (cytochrome-c per-
oxidases), EC:1.11.1.6 (catalases), EC:1.11.1.7 (heme-
dependent peroxidases), and EC:1.11.1.11 (L-ascorbate
peroxidases). The xylose isomerases were combined with
all structures from the xylose isomerase-like superfamily
(SCOP:51658) which includes structures from EC:5.3.1.5
(xylose isomerases) and EC:5.3.1.14 (L-rhamnose
isomerases). Comparing the inter-cluster distance of
clusters belonging to a family relative to the distances to
functionally unrelated structures illustrates the amount
of intra-family similarity that is evident when using each
approach.

The sequence and structure comparisons were imple-
mented by using CLUSTALW [64] and Combinatorial
Extension (CE) [65], respectively, to compute the pair-
wise distances between proteins instead of LabelHash
(see Methods (Step 2)); all remaining steps of FASST were
carried out identically for each approach (Methods (Steps
3-4)). The non-substructure methods will be referred to
as FASSTCLUSTALW and FASSTCE hereafter, while FASST
will refer only to the substructure-based approach.

The results of FASST applied to the heme-dependent
peroxidase and xylose isomerase families, each in combi-
nation with the functionally unrelated structures, are
shown in Additional files 1 and 2, respectively. In both
cases, the substructure-level analysis implemented by
FASST identifies the within-family structures to be highly
similar to one another (high intra-family similarity) rela-
tive to the functionally unrelated structures. These
results demonstrate that functionally unrelated struc-
tures can be clearly identified as outliers from the
remainder of structures in a family analyzed by FASST.

Applying FASSTCLUSTALW and FASSTCE to the heme-
dependent peroxidases (see Additional file 3) results in
multiple clusters of peroxidases and a single, more scat-
tered cluster consisting of unrelated structures. In con-
trast to the FASST result (Additional file 1), the individual

Table 4: Function prediction performance of motif ensembles versus single-structure motifs at significance threshold 
of α = 0.01.

Single structure motif Motif ensemble (CV) Improvement (x-fold)

EC class

%Sens. (#TP) %Spec. (#FP) %Sens. (#TP) %Spec. (#FP) Sens. Spec.

1.1.1.1 52.4% (43) 99.2% (83) 74.3 ± 7.0% (61) 99.4 ± 0.0% (62 ± 4) 1.4 1.0

1.1.1.21 93.3% (83) 99.1% (146) 93.2 ± 4.8% (83) 99.2 ± 0.1% (136 ± 5) 1.0 1.0

1.11.1.7 91.6% (76) 99.1% (131) 92.7 ± 10.0% (77) 99.5 ± 0.0% (78 ± 8) 1.0 1.0

1.14.13.39 90.5% (114) 99.3% (87) 96.1 ± 2.7% (121) 99.4 ± 0.0% (73 ± 7) 1.1 1.0

2.5.1.18 25.3% (48) 99.1% (171) 46.3 ± 5.1% (88) 99.2 ± 0.0% (140 ± 5) 1.8 1.0

2.6.1.1 66.7% (70) 99.1% (153) 82.9 ± 5.4% (87) 99.3 ± 0.0% (121 ± 5) 1.2 1.0

2.7.4.6 81.7% (49) 99.2% (137) 88.3 ± 2.6% (52) 99.4 ± 0.1% (113 ± 5) 1.1 1.0

3.1.1.7 98.2% (108) 99.2% (82) 99.0 ± 2.0% (108) 99.4 ± 0.0% (60 ± 2) 1.0 1.0

3.1.3.1 84.1% (37) 99.1% (122) 100.0 ± 0.0% (44) 99.3 ± 0.0% (97 ± 6) 1.2 1.0

3.1.3.48 28.6% (71) 99.1% (155) 56.1 ± 3.6% (139) 99.4 ± 0.1% (109 ± 11) 2.0 1.0

3.2.1.1 83.5% (111) 99.1% (149) 88.7 ± 7.9% (117) 99.4 ± 0.1% (102 ± 17) 1.1 1.0

3.5.2.6 35.0% (89) 99.2% (144) 81.2 ± 6.3% (208) 99.4 ± 0.0% (107 ± 9) 2.3 1.0

4.2.1.1 87.9% (248) 99.1% (112) 95.3 ± 3.5% (269) 99.6 ± 0.0% (49 ± 4) 1.1 1.0

5.3.1.1 78.9% (75) 99.1% (143) 82.1 ± 10.9% (78) 99.4 ± 0.1% (100 ± 11) 1.0 1.0

5.3.1.5 97.3% (71) 99.1% (118) 98.5 ± 2.3% (71) 99.4 ± 0.1% (92 ± 11) 1.0 1.0

For each single-structure motif, a motif ensemble was constructed using FASST-MESH. Next to each % sensitivity value is the total number of 
true positive (TP) matches; next to each % specificity value is the total number of false positive (FP) matches. The performance of motif 
ensembles was assessed using 5-fold cross-validation and the sensitivity/specificity values correspond to mean ± standard deviation across 
the 5 folds. The x-fold improvement is calculated as: mean motif ensemble performance divided by single-structure performance.
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peroxidase clusters identified by FASSTCLUSTALW and
FASSTCE are as distant from one another as to the func-
tionally unrelated cluster. Using FASSTCLUSTALW and
FASSTCE to analyze the xylose isomerases (see Additional
file 4) results in the within-family structures grouping
into multiple clusters well-separated from the function-

ally unrelated structures; the thermophile xylose
isomerase structures are roughly equidistant to the func-
tionally unrelated structures and the remainder of the
family.

The average running times of FASST were 4.5 min
(FASST), 3.2 min (FASSTCLUSTALW), and 185.6 min
(FASSTCE); times reported are the wall-clock times for

Figure 5 Cross-fold validation. Robustness of clusters to data removal during 5-fold cross-validation. During each step of cross-validation, FASST-
MESH is used to identify SCs and construct a motif ensemble for the family of peroxidases seen here.

Figure 6 SCs identified by FASST within the β-lactamases. Applying FASST to expose the substructural diversity of a catalytic substructure among 
the β-lactamases reveals many distinct clusters within the family. The GMM clustering step of FASST identifies 13 sub-groups within the family and 
the colors/shapes of points in the SCs correspond to cluster assignment. MESH then constructs one consensus motif for each cluster identified, result-
ing in an ensemble of 13 motifs. Function prediction sensitivity improves from 35.0% (single-structure motif) to 81.2% when using the motif ensemble 
constructed by FASST-MESH. For the highly diverse family of β-lactamases, the SCs output by FASST shows that many distinct sub-groups exist within 
the family. MESH takes advantage of this information to more completely model the geometric diversity present, thereby improving functional anno-
tation coverage of the family. Mapping Family- and Phylum-level phylogenetic data to each of the substructures as shown in the corresponding plots 
on the right reveals that some, but not all, of the clusters identified are due to evolutionary distance between proteins. For example, the Bacillaceae 
proteins can be seen to form a single sub-group while Enterobacteriaceae proteins are distributed throughout the SCs in several clusters, indicating 
that another biological factor is working in concert with phylogenetic distance among the family of β-lactamases to produce the structural diversity 
uncovered by FASST.
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running with a single core on the following system: 2.4
GHz Intel Core 2 Duo, 4GB DDR3 memory, MacBook
Pro.

The comparison of FASST with FASSTCLUSTALW and
FASSTCE demonstrates that intra-family similarity may
be more difficult to detect by sequence and fold compari-
son in some cases. The substructure-level analysis used
by FASST can further distinguish functionally related and
unrelated structures when conserved substructures can
be identified. Therefore, FASST provides a complemen-
tary approach that can be used in combination with
sequence and fold analysis for analyzing the diversity of
functionally related enzymes.

Discussion
Understanding the significant geometric variability
among enzyme catalytic sites is an important component
of structural analysis. As the number of solved protein
structures grows, methods capable of summarizing and
analyzing large amounts of structural data will become
increasingly necessary. While whole structure alignment
and protein fold analysis can be a valuable tool for assess-
ing protein homology, in the absence of sequence similar-
ity, extremely distantly related enzymes or enzymes
which are examples of convergent evolution may be ill-
suited to whole structure comparison techniques. How-
ever, when no detectable domain or fold homology exists,
enzymes are still capable of exhibiting functional equiva-
lence through chemically and geometrically synonymous
functional substructures. Techniques capable of assessing
the family-wise similarity of these conserved substruc-
tures can reveal new insights into the relationships
among families of structures. FASST has the ability to
recognize modes of family-wise geometric variation
among substructures and knowledge of the substructural
diversity of a family can guide hypotheses about the role
of the substructure in different proteins.

Biological significance of SCs
In several families of proteins, we have identified possible
sources of geometric variation and linked these sources of
variation to the substructural clusters automatically iden-
tified by FASST. In the peroxidase family, the geometric
distance between catalytic sites appears to be correlated
with phylogenetic distance. Organisms that are more
closely related, such as the plant and fungal species, were
shown to have more geometrically similar catalytic sites
to one another than to more distantly related phyla, such
as vertebrates. With the family of thermolysin structures,
we demonstrated how FASST automatically captures
modes of catalytic site flexibility, correctly segregating
structures into clusters based upon ligation state. Using
the families of serine proteases, we demonstrated how
FASST extends naturally to very large numbers of struc-

tures and is still capable of identifying the major modes of
geometric variation across vast numbers of species and
triad configurations that include chain spanning and
non-spanning instances. Finally, FASST is able to identify
structural outliers within families, and these outliers were
shown to have biochemical causes for substructural devi-
ation from the remainder of the family, thereby guiding
further inquiry to these anomalous structures.

FASST partitions a protein family into self-similar clus-
ters of structures and in doing so, constructs SCs that can
then be linked with biological metadata to possibly
explain the family-wise diversity. Here we have high-
lighted particular protein families whose substructural
diversity can be clearly linked to a single biological ontol-
ogy, such as phylogeny, conformation, or homology. In
several families included in the function prediction
experiments, the sub-groups identified by FASST cannot
be clearly attributed to a single biological factor. The β-
lactamases are an example where some clusters clearly
correspond to a single phylogenetic branch of bacteria,
but other species of bacteria form multiple, distinct clus-
ters as shown in Figure 6. In the typical case, there are
likely multiple biological factors working in concert to
produce substructural variability. It is intriguing to com-
bine large-scale metadata analysis with FASST to auto-
matically correlate likely biological factors, such as
phylogeny, ligation state, and crystallization conditions,
with FASST-identified clusters to unravel more complex
relationships among functional substructures.

Diffierentiating sequential and structural redundancy
Using FASST to analyze a catalytic site substructure of
thermolysin among 61 sequence-similar proteins demon-
strates how latent biological trends can be identified even
within a sequentially-homogenous collection of struc-
tures. The thermolysin family examined here contained
59 different structures of the exact same enzyme from B.
thermoproteolyticus and yet FASST was able to automati-
cally uncover a structural trend where the catalytic sub-
structure modified its position only upon binding ligands
that interact directly with the coordinated zinc ion. If
only sequentially non-redundant structures were used by
FASST, this trend could not have been identified because
of the miniscule number of sequentially-distinct crystal-
lographic structures for thermolysin. This result demon-
strates the additional information that can be garnered by
researchers when all available structures are incorporated
into a structural analysis. Similarly, the Multiple Solvent
Crystal Structures (MSCS) technique utilizes repeated
crystallizations of the same enzyme under different sol-
vent conditions in order to probe for functional sites
[66,67]. Several of the available thermolysin structures
incorporated in our study were produced as part of
MSCS experiments [68,69]. Our work demonstrates that
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FASST can detect subtle trends among sequentially-simi-
lar structure collections and is an important tool for ana-
lyzing and understanding structure-function
relationships across large numbers of protein structures.

FASST-MESH improves single-structure motifs
After identifying both the existence and membership of
structurally defined clusters within a protein family via
the automated FASST-MESH framework, this substruc-
tural information can be used to enhance existing sub-
structural motifs in order to more accurately represent
large families with diverse catalytic site geometry. Our
function prediction experiments show that by represent-
ing a structurally diverse family with a motif ensemble,
we can better capture the variety of substructures present
within a given family and increase function prediction
sensitivity while maintaining specificity. In cases where
family-wide geometric diversity was found to be low, sin-
gle structure motifs alone can have high sensitivity. How-
ever, even when geometric variability is low, motif
ensembles created by FASST-MESH always maintain the
function prediction performance of single structure
motifs and demonstrate vast improvement in several
cases among the families included in our study (see
Tables 1 and 4). While LabelHash was used here as the
underlying substructure comparison tool, we are not
attempting to compare the performance of LabelHash to
other comparison tools. Rather, the purpose of the func-
tion prediction experiments presented here is to illustrate
cases where a single-structure motif insufficiently models
a large class of functionally homologous, but structurally
diverse proteins, and to demonstrate a method to
improve the function prediction sensitivity of motifs in
general by using motif ensembles.

Automated motif definition
In this paper, the substructure motifs given as input to
FASST (see Table 1) were constructed only from residues
that have been experimentally confirmed to play a role in
enzyme function in order to separate the subproblem of
motif definition from motif analysis. While the input sin-
gle-structure motifs used here were manually defined, a
multitude of automated approaches to motif definition
are possible. Our previous work successfully used evolu-
tionarily conserved residues, as determined by Evolution-
ary Trace [27], for automated motif definition [42].

Because motifs are an input parameter to FASST, dif-
ferent methods of identifying the residues constituting
functional substructures can be used in conjunction with
FASST, and by doing so, FASST provides an automated
approach to further analyze and understand the role of
these substructures. In future work, several substructure
selection methods and databases, such as CASTp, ET
[27], ConSurf [28], CSA [29], SNAP [26], and LigBase

[30], will be used as sources for large numbers of motifs.
This work used only residues deemed to be functionally
important by experimentalists, as defined by literature
references, in order to isolate the performance of FASST-
MESH from methods that automate substructure selec-
tion.

Conclusions
FASST has been shown to be a powerful technique for
assessing family-wise structural variability among analo-
gous protein substructures. We have demonstrated
examples of substructural clusters that can be linked to
phylogenetic distance, ligation state, and protein homol-
ogy. The complementary MESH framework provides a
systematic approach to create concise motif ensembles
that represent the structural variability within a protein
family. Such ensembles can be used to improve function
prediction for families with significant structural variabil-
ity.

Many proteins are known to have structurally con-
served, but non-catalytic substructures, such as steric
recognition sites, metal/ligand sequestering sites, phos-
phorylation sites, cofactor binding sites, or immunologi-
cally important substructural epitopes. Using the FASST-
MESH approach for these non-catalytic substructures
can be done without modification to the method because
FASST-MESH makes no assumptions about the types of
substructures modeled by motifs nor underlying sources
of structural variation. Our future, application-specific
work will focus on understanding particular structure-
function relationships among both catalytic and non-cat-
alytic substructures. As the available number of protein
structures continues to rapidly grow, methods for auto-
mated, large-scale analysis of structures such as FASST-
MESH will be critical for identifying high-level structural
trends among proteins and placing newly solved struc-
tures in the larger context of existing structural data.

Methods
The family-wise substructure analysis method developed
here (FASST) takes as input a user-defined substructure
motif and a family of protein structures, as defined by EC
classification here, and outputs Substructural Clusters
(SCs) that identify sub-groups of proteins within the
larger family. Subsequent application of MESH to the
sub-groups identified by FASST constructs a set of con-
sensus motifs, collectively referred to as a motif ensemble,
that can be used to represent the structural variety of the
family for function prediction experiments. The com-
bined FASST-MESH procedure is as follows: (FASST:
Step 1) using LabelHash [43] (available online at http://
labelhash.kavrakilab.org), or another substructure search
method (FASST is not tied to a particular search
method), compute matches of the user-defined motif to

http://labelhash.kavrakilab.org
http://labelhash.kavrakilab.org
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identify analogous substructures in all family members,
thereby creating one propagated motif per member;
(FASST: Step 2) compute an all-against-all LRMSD
alignment of each propagated motif, yielding a vector of
substructure distances for each family member which we
call a geometric feature vector; (FASST: Step 3) perform
dimensionality reduction on the set of geometric feature
vectors via principal components analysis (PCA) [70] and
project each geometric feature vector onto the number of
PCs necessary to preserve 90% of the original variance;
(FASST: Step 4) cluster the dimensionality-reduced geo-
metric feature vectors using a Gaussian Mixture Model
(GMM) [71] to create the Substructural Clusters that
identify sub-groups within the family; (MESH: Step 5)
build a set of consensus motifs to represent the clusters of
the family by selecting an exemplar structure from each
cluster or averaging substructures within a group;
(MESH: Step 6) for function prediction, match the con-
sensus motifs against a background reference set of unre-
lated structures (e.g., nrPDB) to search for proteins with
substructural similarity to the original structure family.
Then, identify statistically significant matches using a
non-parametric hypothesis testing framework for sub-
structural similarity [42,72], which is adapted and
extended here to accommodate motif ensembles. Each of
the steps is outlined in detail below.

Step 1: motif definition and propagation
To quantify the geometric similarity between a pair of
catalytic substructures, the LRMSD distance metric is
commonly used, but to model the geometric similarity
between a given catalytic site and a family of catalytic site
substructures we introduce a simple extension to pair-
wise LRMSD that will be referred to as geometric feature
vectors.

The procedure for building geometric feature vectors
begins with a single, user-defined motif, S*, that repre-
sents the geometry and chemistry of a shared substruc-
tural element within the family. The S* for each of the
families included in this study were constructed from
documented residues in the literature reference associ-
ated with each PDB structure listed in Table 1. For exam-
ple, S* for the heme-dependent peroxidases includes the
Cα atom from each of the following residue numbers with
the alternate amino acid labels shown in superscript:
52RQ, 56H, 57D, 93NR, 184H; the 3-dimensional coordinates
of each Cα ∈ S* were taken from [PDB:1ARU] as noted in
Table 1 and the residue numbers listed are according to
[PDB:1ARU]. Care should be taken to define S* with
appropriate amino acid alternate labels; the set of amino
acid alternate labels for each motif residue defines the
allowed mutations per motif residue used when identify-
ing possible matching substructures. ConSurf [28], was
used in this work to identify alternate amino acid labels
per motif residue for several motifs in Table 1; the alter-

nate amino acid labels are identified from the per-residue
conservation and mutation data output by ConSurf.
However, when available, an expert-curated multiple
sequence alignment allows for the highest confidence in
amino acid alternate selection.

First, the user-defined motif, S*, is matched against a
family of n protein structures, F = {f1, ..., fn}, as defined by
Gene Ontology (GO) terms or Enzyme Classification
(EC) levels, for example, to yield a set of matches

. In this work, Label-

Hash [43], was used to identify substructure matches by
searching each protein in F for similar substructures to
the motif, S*. Every match,  is a bijec-
tion between S* and a substructure of fi, and defines a
unique substructural element within fi that will be

referred to as a propagated motif, . A caveat of the
propagation step is that there are limits on LRMSD at
which a pair of motifs can be confidently recognized as
functionally related. The LRMSD threshold for confident
propagation can differ significantly depending on both
the size and number of alternate amino acid labels
(allowed substitutions) contained within the motif. For a
detailed analysis of the variance of LRMSD thresholds for
different motifs, see [42]. For complete algorithmic
details of how LabelHash identifies substructure matches
to motifs see [43].

Step 2: encoding geometric features
The pairwise LRMSD between two propagated motifs

will be denoted by  and the geometric feature

vector, gi, for a given fi is defined as a vector of LRMSD

values: . The set of

geometric feature vectors representing all structures in
the family, F, will be denoted as G = {g1, ..., gn}, and G con-
stitutes an all-against-all alignment of the substructures
that correspond to each respective protein in F. Each gi ∈
G defines a point in geometric feature space that repre-
sents the corresponding fi ∈ F and it is important to note
that structures with similar family-wise distances will be
nearby in the geometric feature space. By constructing
the geometric feature space of a family, the structural
variation present within an all-against-all substructure
alignment (as shown in Figure 1(a)) is preserved, but dis-
tilled into a much simpler representation that is more
amenable to common machine learning techniques such
as clustering.

Step 3: dimensionality reduction
Understanding the family-wise structural information
encoded by G will lead to the motivation for the following

M S F S f S fM M
n* * *, ,→ → →= { }1

…
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step-dimensionality reduction. Let, for example, n = 100
and consider that the geometric feature vectors, gi ∈ G,
will be 100-dimensional, making analysis of the feature
space difficult. It is often the case that many structures in
a homologous family, as defined by EC or GO for exam-
ple, will contain several crystallizations of the same pro-
tein, from the same species, causing some of the
propagated motifs to be nearly identical in geometry.
Because of these similar structures, a given gi will have
some very highly correlated features that increase the
dimensionality of the feature vector representation, but
do not each provide orthogonal information about the
family-wise relationship of fi to F . Removing similar
structures via sequence-identity thresholds requires that
a representative structure from the sequence-similar set
to be selected. However, sequence-identity removal tech-
niques do not consider the geometric diversity of avail-
able structures when selecting a representative structure.
The method presented here allows all available structures
for a family to be included without filtering for sequence
identity specifically because of the dimensionality reduc-
tion step. By including all available structures in the anal-
ysis, the method presented here does not make a priori
assumptions about the sequential or structural diversity
of a family of proteins. While reducing the dimensionality
of G, it is important to preserve the distances between
substructures in feature space, since the purpose of geo-
metric feature encoding is to find sub-groups of related
substructures within F. We begin by finding the Principle
Components (PCs) of G and then project G into a sub-
space of the PCs that captures at least 90% of the original
variance in G; we denote the lower-dimensional projec-
tion of G as G'. The choice of a variance threshold directly
impacts the dimensionality of G', but it is interesting to
note that the conservative choice of 90% typically results
in G' being 1- to 5-dimensional, even for large families of
more than 1000 structures. PCA [70] was selected for
simplicity, but many other dimensionality reduction
methods, both linear and non-linear (for example Sci-
MAP [73,74]), could be substituted and would possibly
further improve the dimensionality reduction step. Figure
1(c) shows the geometric feature vector encoded proteins
for the 83-structure heme-dependent peroxidase family
as points in the first and second principal components of
G' which capture 94% of the original variance in G; the
total number of principal components to reach the mini-
mum 90% variance threshold was 2-components for the
peroxidases, so G' was 2-dimensional in this case. Thus,
PCA is able to drastically reduce the dimensionality of the
geometric feature space, which is vital to the performance
of most clustering algorithms.

Step 4: identifying substructural clusters (SCs)
One approach to investigating the membership, types,
and numbers of structurally related sub-groups within a

larger family of proteins is to find clusters of geometri-
cally related structures. Geometric feature vector encod-
ing allows us to represent each protein in a family of
structures as a point in feature space, and the process of
finding groups or clusters of similar points in feature
space can be delegated to an assortment of standard clus-
tering methods.

To choose a clustering method, several key features
were deemed important: the method should be able to
identify the number of clusters, k, automatically; to avoid
bias, no meta-data, such as species information, should
be taken into account during clustering-unsupervised
learning; the method should be able to identify instances
where only a single cluster is sufficient to explain varia-
tion; the method should be robust to the presence of out-
liers; the method should be able to accommodate the
presence of both very large, dense sub-groups and small,
diffuse sub-groups. Methods that rely on a user-defined
number of clusters, such as k-means, are difficult to apply
to the problem of identifying significant clusters within F,
because the number of clusters, k, is not known a priori.

To provide an automated, unbiased selection method
for k, a Gaussian Mixture Model (GMM) approach using
the MCLUST [71] package for the statistical language R
was selected for use in this work. MCLUST incrementally
adds multivariate Gaussians to the mixture model, fitting
them through an iterative Expectation Maximization
procedure, and assesses the Bayesian Information Crite-
ria (BIC), while regularizing for model complexity to
select a set of Gaussians that maximally explain the data,
given the model complexity constraint. The GMM
defines, for each data point, the probability that it belongs
to the ith Gaussian mixture component and then a hard
classification is performed to partition the data points
into the mixture components from which the points were
most likely to have been generated. The colors of the data
points in Figure 1(c) demonstrate the hard classification,
into 4 clusters, made by the GMM for the peroxidase
family of proteins (EC 1.11.1.7). The final organization of
clusters based upon substructural similarity shown in
Figure 1(c) is the SCs output by FASST.

Step 5: constructing consensus motifs
As a family of protein structures grows both in numbers
and structural diversity, building substructural motifs for
the family, as a whole becomes increasingly difficult, just
as constructing HMM profiles [75] for a large set of
diverse sequences is difficult. By representing each clus-
ter identified by GMM clustering with a distinct consen-
sus motif, the entire family can then be represented as a
collection of consensus motifs which we call a motif
ensemble. To build a consensus motif for a given cluster,
the propagated motifs belonging to proteins within that
cluster were geometrically averaged to construct an artifi-
cial consensus structure by the method used in [76].
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However, if a non-artificial consensus structure is
desired, picking the structure nearest the cluster centroid
would also be an effective strategy for finding a represen-
tative motif for the cluster. The consensus motif con-
struction process is repeated for each of the k clusters
identified during Step 4, resulting in a motif ensemble
that contains k consensus motifs. For example, four clus-
ters were identified within the family of peroxidases (as
shown in Figure 1(c)), and therefore the motif ensemble
for the family consisted of four consensus motifs, one for
each cluster.

Step 6: estimating statistical significance
Comparing a motif to target protein structures results in
a set of substructure matches of varying quality. To dis-
tinguish erroneous matches that are likely to have
occurred by chance alone and therefore not functionally
related to the motif from those matches which have sig-
nificant similarity to the motif requires a statistical model
of substructure similarity. The non-parametric statistical
framework for matching single-substructure motifs used
in previous work [42,43,72] is extended in this work to
address multiple-structure motif ensembles. A detailed
discussion of the single-structure statistical model can be
found in [42,72] but is outlined briefly here to motivate
the extension to motif ensemble statistical hypothesis
testing.
Single-structure motif hypothesis testing
The structural uniqueness of a match of motif S to a tar-
get structure T, MS→T can only be evaluated with respect
to a background structure reference set. A reference set
should be selected such that is structurally diverse and
contains protein structures functionally unrelated to the
motif; a detailed analysis of the choice of reference sets
can be found in [42] but in this work the 95% sequence
identity non-redundant PDB (nrPDB95) was used as a
structural reference set. Given a background reference
set, we can quantify whether the similarity between MS→T
and S is low, relative to the background, and could have
occurred by chance, or that it is high, with respect to the
background, and is statistically significant.

The question of whether or not a match of motif S to a
target structure T, MS→T is significantly similar to S can
be formulated as a hypothesis test: the null hypothesis
(H0) states that S and T are structurally dissimilar and
that MS→T occurred by chance; the alternative hypothesis
(HA) states that S and T are structurally similar and MS→T
defines a sub-structural element in T that is analogous to
S. Given our definition of a background structural refer-
ence set, the p-value of MS→T, pS →T, is a measure of the
structurally uniqueness of MS→T with respect to the
defined background reference set. By selecting a p-value
threshold for statistical significance, α, we can reject H0

for all pS→T ≤ α and instead accept HA and declare MS→T to
be statistically significant. Matching S versus all of the
structures defined by the background reference set will
yield a distribution of matches with varying levels of
structural similarity to S, given by the LRMSD of each
match to S. By smoothing the LRMSD distribution using
the Sheather-Jones optimal bandwidth [77] we obtain a
probability density function pdf(r) over LRMSD, r, for a
given motif S; we denote this pdf as pdf(r; S).

Given pdf(r; S), the p-value measure of statistical signif-
icance of MS→T can be found by calculating the probabil-
ity of observing a match with LRMSD, r, lower than the
LRMSD of MS→T, rM, which can be written as P(r ≤ rM; S)

and defined to be: . In summary, the p-

value of a given match of a motif to a target protein struc-
ture is calculated by comparing the match LRMSD to the
population of match LRMSDs that are expected to occur
by chance alone. Using this technique, matches with sta-
tistically unusual amounts of geometric similarity to a
motif can be readily identified without making assump-
tions about the structure of the match distribution.
Motif ensemble statistical hypothesis testing
The hypothesis testing framework used for quantitating
the statistical significance of matches to a standard, sin-
gle-structure motif, can be extended naturally to accom-
modate the notion of matching an ensemble of motifs.
Given a motif ensemble with k consensus motifs  = {S1,
S2, ..., Sk} we would like to know if the motif ensemble, ,
has statistically significant similarity to T. For each motif,
Si ∈ , we can calculate the p-value of matching Si to T,
psi→T, by matching Si versus the background structure
reference set and obtaining the probability density func-
tion over match LRMSD, r, for motif Si: pdf(r; Si). This
procedure produces a p-value for matching each Si to T,

 = {pS1→T, pS2→T, ..., pSk→T} and, as for normal single
structure motifs, an associated hypothesis test for each
motif: the null hypothesis (H0, i)states that Si and T are
structurally dissimilar and the match of Si to T occurred
by chance; the alternative hypothesis (HA, i) states that Si
and T are structurally similar and the match of Si to T
defines a sub-structural element in T that is analogous to
Si. The overall null hypothesis for a match to the motif
ensemble can now be stated in terms of the individual
hypothesis corresponding to each consensus motif within
the motif ensemble: H0 = {H0, 1, ..., H0, k}.

Because the overall null hypothesis, H0, incorporates
multiple hypothesis tests (H0, 1, ..., H0, k), each of which
can introduce new false positive matches, it is crucial to
use a multiple testing correction procedure to account for

pdf r S dr
rM ;( )∫0

S
S

S

pS→T
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the presence of multiple tests and control the family-wise
error rate. The Hochberg p-value correction method [78]
was selected to account for the presence of multiple tests
for significance; Hochberg correction is applicable when
the hypothesis tests are either independent or positively
correlated [79]. After Hochberg multiple testing correc-
tion has been performed on the match p-value, ,
corresponding to each hypothesis test, H0, i, each null
hypothesis can then be independently evaluated:

. If any null hypothesis, H0, i, is rejected, we
then reject the overall null hypothesis, H, and consider
the match between  and T to be statistically significant
(a positive match).
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Additional file 1 Effect of many outliers on FASST for the heme-
dependent peroxidases. (a) FASST applied to the 83 peroxidase structures 
plus 50 randomly selected, functionally unrelated structures from the 
nrPDB95. Only 37 of the 50 unrelated structures contained a possible match 
to the motif (i.e., a substructure with compatible alternate residue labels/
mutations to the motif ). The peroxidase clusters maintain almost identical 
structure (relative to Figure 1) even though 30% of the "family" analyzed by 
FASST in this case consists of unrelated proteins. Unlike the peroxidase 
structures, the unrelated structures form sparse, normally distributed scat-
ter with no well-defined clusters (orange points). The extreme peroxidase 
outlier structure [PDB:1BGP] falls at the left-most extreme of the orange 
cluster. (b) FASST applied to the heme-dependent peroxidase SCOP super-
family, including 83 structures from EC:1.11.1.7 combined with an addi-
tional 110 structures from EC:1.11.1.5 (cytochrome-c peroxidases), 
EC:1.11.1.6 (catalases), and EC:1.11.1.11 (L-ascorbate peroxidases). All 
EC:1.11.1.7 heme-dependent peroxidases reside in cluster (i) with the 
exception of [PDB:1BGP] which falls into the scattered cluster (ii) region; a 
single chloroplastic ascorbate peroxidase structure corresponding to 
[PDB:1IYN] also resides in cluster (i). The scattered cluster (ii) region consists 
almost exclusively of catalases; clusters (iii) and (iv) correspond to cyto-
chrome-c peroxidases; cluster (v) corresponds to ascorbate peroxidases. 
Heme-dependent peroxidases from EC:1.11.1.7 are well-segregated from 
the other structurally-similar peroxidase enzymes by FASST.
Additional file 2 Effects of many outliers on FASST for the xylose 
isomerases. (a) FASST applied to xylose isomerase structures plus 50 ran-
domly selected, functionally unrelated structures from the nrPDB95; points 
are colored by automated cluster assignment. Only 30 of the 50 unrelated 
structures contained a possible match. All of the xylose isomerase struc-
tures form a single, dense cluster on the left side of the figure (inside the 
boxed region) while the 30 unrelated structures form a sparse scattered 
region on the right side of the figure; a single outlier xylose isomerase struc-
ture was erroneously grouped with unrelated structures (red point within 
the boxed region). (b) Magnified view of the boxed region from (a). Each 
point is colored identically to the phylogenetic labeling shown in (c) for 
comparison. (c) FASST applied to only xylose isomerase structures. Each 
structure (point) is colored according to the corresponding Family-level tax-
onomic classification. The data in (b) is simply a different projection of the 
same data in (c). Although the points in (b) are compressed along the y-axis 
(PC 2) relative to (c), the relative positions of the phylogenetic clusters is 
preserved. The cause of the distortion in (b) is that the optimal (maximal 
data variance preserving) 2-dimensional projection for both the combined 
set of xylose and unrelated structures differs from the optimal 2-dimen-
sional projection for the xylose structures alone. (d) FASST applied to 
EC:5.3.1.5 (xylose isomerase) structures plus 3 additional EC:5.3.1.14 (L-
rhamnose isomerases) structures which all belong to the xylose isomerase-
like SCOP superfamily. Cluster (i) corresponds to all EC:5.3.1.5 structures 
while clusters (ii) and (iii) correspond to apo and holo structures, respec-
tively, from EC:5.3.1.14.

pS Ti →

pS Ti → <corrected a

S

Additional file 3 Sequence- and structure-based all-against-all analy-
sis of the heme-dependent peroxidases. The heme-dependent peroxi-
dase family was combined with 50 functionally unrelated structures to 
illustrate the degree of intra-family similarity evident using sequence and 
whole structure comparison approaches. The plant and fungal enzymes 
both have a CCP-like fold (SCOP:48114) that differs from the mammalian 
enzymes. (a) All-against-all sequence distances using CLUSTALW for pair-
wise sequence alignments. Clusters labeled (i) and (ii) correspond to the 
plant Families Brassicaceae and Fabaceae/Poaceae, respectively; cluster (iii) 
corresponds to the unrelated nrPDB structures; cluster (iv) corresponds to 
the fungal Families Psathyrellaceae/Tricholomataceae; clusters (v) and (vi) 
correspond to the mammalian Families Hominidae and Bovidae, respec-
tively. (b) All-against-all structure distances using Combinatorial Extension 
(CE) for whole-structure alignment. Clusters (i) and (ii) correspond to the 
plant and fungal structures, respectively; cluster (iii) consists of plant 
[PDB:1BGP] and fungal [PDB:1MNP] outliers in addition to four functionally 
unrelated structures; the several clusters in region (v) correspond to func-
tionally unrelated protein; clusters in region (iv) correspond to mammalian 
peroxidases. (c) All-against-all sequence distances using CLUSTALW for pair-
wise alignment of all heme-dependent peroxidase SCOP superfamily struc-
tures. Cluster (i) corresponds to lactoperoxidases (EC:1.11.1.7); cluster (ii) 
consists of both catalases (EC:1.11.1.6) and cytochrome-c peroxidases 
(EC:1.11.1.5); clusters (iii) and (iv) contain plant heme-dependent peroxi-
dases (EC:1.11.1.7); cluster (v) contains both catalases (EC:1.11.1.6) and L-
ascorbate peroxidases (EC:1.11.1.11); and cluster (vi) includes only 
myeloperoxidases (EC:1.11.1.7). (d) All-against-all structure distances using 
CE for heme-dependent peroxidase SCOP superfamily structures. Cluster (i) 
corresponds to plant heme-dependent peroxidases (EC:1.11.1.7); cluster (ii) 
contains cytochrome-c peroxidases (EC:1.11.1.5); cluster (iii) contains L-
ascorbate peroxidases (EC:1.11.1.11); cluster (iv) contains fungal heme-
dependent peroxidases (EC:1.11.1.7); clusters (v) and (vi) contain catalases 
(EC:1.11.1.6); cluster (vii) includes catalases (EC:1.11.1.6) and cytochrome-c 
peroxidases (EC:1.11.1.5); and cluster (viii) consists of mammalian heme-
dependent peroxidases (EC:1.11.1.7) including lactoperoxidases and 
myeloperoxidases.
Additional file 4 Sequence- and structure-based all-against-all analy-
sis of the xylose isomerases. The xylose isomerase family was combined 
with 50 functionally unrelated structures to illustrate the degree of intra-
family similarity evident using sequence and whole structure comparison 
approaches. The xylose isomerase structures all share a common TIM-barrel 
fold. (a) All-against-all sequence distances using CLUSTALW for pairwise 
sequence alignments. Clusters (i), (ii), and (iii) correspond to mesophile 
structures from the Streptomycetaceae, Micromonosporaceae, Micrococca-
ceae Families, respectively; cluster (iv) and the 3 left-most cluster (v) points 
correspond to thermophile structures (Families: Thermaceae, Thermo-
togaceae, Thermoanaerobacterales, Bacillaceae); the remainder of cluster (v) 
consists of functionally unrelated structures. (b) All-against-all structure dis-
tances using Combinatorial Extension (CE) for whole-structure alignment. 
Cluster (i) is composed of the mesophile structures; the boxed region con-
tains the thermophile structures. the remainder of cluster (ii) consists of 
functionally unrelated structures. (c) All-against-all sequence distances via 
CLUSTALW for xylose isomerase-like SCOP superfamily structures including 
EC:5.3.1.14 (L-rhamnose isomerase) and EC:5.3.1.5 (xylose isomerase) struc-
tures. Cluster (vi) corresponds to EC:5.3.1.14 structures while xylose 
isomerases make up the remaining clusters. (d) All-against-all structure dis-
tances calculated with CE for xylose isomerase-like SCOP superfamily struc-
tures. Cluster (vii) corresponds to EC:5.3.1.14 structures while xylose 
isomerases make up the remaining clusters.

http://www.biomedcentral.com/content/supplementary/1471-2105-11-242-S1.PNG
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BGP
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BGP
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1IYN
http://www.biomedcentral.com/content/supplementary/1471-2105-11-242-S2.PNG
http://www.biomedcentral.com/content/supplementary/1471-2105-11-242-S3.PNG
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BGP
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1MNP
http://www.biomedcentral.com/content/supplementary/1471-2105-11-242-S4.PNG


Bryant et al. BMC Bioinformatics 2010, 11:242
http://www.biomedcentral.com/1471-2105/11/242

Page 19 of 21
Acknowledgements
We would like to thank George Bennett and Yousif Shamoo for their insightful 
comments as well as the anonymous reviewers for their suggestions. This work 
was supported in part by National Science Foundation grant DBI-0547695 
under a subcontract to Rice University, National Science Foundation Graduate 
Research Fellowship grant DGE-0237081 to DHB, and Rice University Funds. 
Equipment used was supported by National Science Foundation grants CNS-
0454333 and CNS-0421109 in partnership with Rice University, AMD and Cray. 
Molecular graphics images were produced using the UCSF Chimera package 
from the Resource for Biocomputing, Visualization, and Informatics at the Uni-
versity of California, San Francisco (supported by NIH P41 RR-01081) [80].

Author Details
1Department of Computer Science, Rice University, Houston, TX, USA, 2Center 
for Computational Biology and Bioinformatics, Howard Hughes Medical 
Institute, Columbia University, New York, NY, USA, 3Department of Statistics, 
Rice University, Houston, TX, USA, 4Department of Bioengineering, Rice 
University, Houston, TX, USA and 5Department of Structural and 
Computational Biology and Molecular Biophysics, Baylor College of Medicine, 
Houston, TX, USA

References
1. Meng EC, Polacco BJ, Babbitt PC: Superfamily active site templates.  

Proteins 2004, 55(4):962-976.
2. Pegg SCH, Brown SD, Ojha S, Seffernick J, Meng EC, Morris JH, Chang PJ, 

Huang CC, Ferrin TE, Babbitt PC: Leveraging enzyme structure-function 
relationships for functional inference and experimental design: the 
structure-function linkage database.  Biochemistry 2006, 
45(8):2545-2555.

3. Rognan D: Chemogenomic approaches to rational drug design.  British 
Journal of Pharmacology 2007, 152:38-52.

4. Klabunde T: Chemogenomic approaches to drug discovery: similar 
receptors bind similar ligands.  British Journal of Pharmacology 2007, 
152:5-7.

5. Hendrickson W: Impact of structures from the Protein Structure 
Initiative.  Structure 2007, 15(12):1528-1529.

6. Rawlings ND, Barrett AJ: Families of serine proteases.  Methods in 
Enzymology 1994, 244:19-61.

7. Wallace AC, Laskowski RA, Thornton JM: Derivation of 3D coordinate 
templates for searching structural databases: Application to Ser-His-
Asp catalytic triads in the serine proteinases and lipases.  Protein Science 
1996, 5(6):1001-1013.

8. Nagano N, Orengo CA, Thornton JM: One fold with many functions: the 
evolutionary relationships between TIM barrel families based on their 
sequences, structures and functions.  Journal of Molecular Biology 2002, 
321(5):741-765.

9. Polacco BJ, Babbitt PC: Automated discovery of 3D motifs for protein 
function annotation.  Bioinformatics 2006, 22(6):723-730.

10. Bowman AL, Lerner MG, Carlson HA: Protein flexibility and species 
specificity in structure-based drug discovery: dihydrofolate reductase 
as a test system.  Journal of the American Chemical Society 2007, 
129(12):3634-3640.

11. Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Klebe G: 
Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-
selective celecoxib: new pharmacological opportunities due to related 
binding site recognition.  Journal of Medicinal Chemistry 2004, 
47(3):550-557.

12. Xie L, Li J, Xie L, Bourne PE: Drug Discovery Using Chemical Systems 
Biology: Identification of the Protein-Ligand Binding Network To 
Explain the Side Effects of CETP Inhibitors.  PLoS Comput Biol 2009, 
5(5):e1000387.

13. Hult M, Shafqat N, Elleby B, Mitschke D, Svensson S, Forsgren M, Barf T, 
Vallgarda J, Abrahmsen L, Oppermann U: Active site variability of type 1 
11beta-hydroxysteroid dehydrogenase revealed by selective inhibitors 
and cross-species comparisons.  Molecular and Cellular Endocrinology 
2006, 248(1-2):26-33.

14. Russell RB: Detection of protein three-dimensional side-chain patterns: 
new examples of convergent evolution.  Journal of Molecular Biology 
1998, 279(5):1211-1227.

15. Barker JA, Thornton JM: An algorithm for constraint-based structural 
template matching: application to 3D templates with statistical 
analysis.  Bioinformatics 2003, 19(13):1644-1649.

16. Rigden DJ: Understanding the cell in terms of structure and function: 
insights from structural genomics.  Current Opinion in Biotechnology 
2006, 17(5):457-464.

17. Andreeva A, Murzin AG: Evolution of protein fold in the presence of 
functional constraints.  Current Opinion in Structural Biology 2006, 
16(3):399-408.

18. Russell RB, Saqi MAS, Sayle RA, Bates PA, Sternberg MJE: Recognition of 
analogous and homologous protein folds: analysis of sequence and 
structure conservation.  Journal of Molecular Biology 1997, 
269(3):423-439.

19. Grishin NV: Fold change in evolution of protein structures.  Journal of 
Structural Biology 2001, 134(2-3):167-185.

20. Xie L, Bourne P: Detecting evolutionary relationships across existing 
fold space, using sequence order-independent profile-profile 
alignments.  Proceedings of the National Academy of Sciences 2008, 
105(14):5441.

21. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, 
Bourne P: The Protein Data Bank.  Nucleic Acids Research 2000, 
28:235-242.

22. Schmitt S, Kuhn D, Klebe G: A new method to detect related function 
among proteins independent of sequence and fold homology.  Journal 
of Molecular Biology 2002, 323(2):387-406.

23. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J: CASTp: 
computed atlas of surface topography of proteins with structural and 
topographical mapping of functionally annotated residues.  Nucleic 
Acids Research 2006:W116-8.

24. Halperin I, Glazer DS, Wu S, Altman RB: The FEATURE framework for 
protein function annotation: modeling new functions, improving 
performance, and extending to novel applications.  BMC Genomics 
2008, 9(Suppl 2):S2.

25. Redfern OC, Dessailly BH, Dallman TJ, Sillitoe I, Orengo CA: FLORA: a novel 
method to predict protein function from structure in diverse 
superfamilies.  PLoS Comput Biol 2009, 5(8):e1000485.

26. Bromberg Y, Rost B: Comprehensive in silico mutagenesis highlights 
functionally important residues in proteins.  Bioinformatics 2008, 
24(16):i207-12.

27. Lichtarge O, Bourne HR, Cohen FE: An evolutionary trace method 
defines binding surfaces common to protein families.  Journal of 
Molecular Biology 1996, 257(2):342-358.

28. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N: 
ConSurf: identification of functional regions in proteins by surface-
mapping of phylogenetic information.  Bioinformatics 2003, 19:163-164.

29. Porter CT, Bartlett GJ, Thornton JM: The Catalytic Site Atlas: a resource of 
catalytic sites and residues identified in enzymes using structural data.  
Nucleic Acids Research 2004:D129-33.

30. Stuart AC, Ilyin VA, Sali A: LigBase: a database of families of aligned 
ligand binding sites in known protein sequences and structures.  
Bioinformatics 2002, 18:200-201.

31. Dessailly BH, Lensink MF, Orengo CA, Wodak SJ: LigASite-a database of 
biologically relevant binding sites in proteins with known apo-
structures.  Nucleic Acids Research 2008:D667-73.

32. Kleywegt GJ: Recognition of spatial motifs in protein structures.  Journal 
of Molecular Biology 1999, 285(4):1887-1897.

33. Spriggs RV, Artymiuk PJ, Willett P: Searching for patterns of amino acids 
in 3D protein structures.  Journal of Chemical Information and Computer 
Sciences 2003, 43(2):412-421.

34. Stark A, Russell RB: Annotation in three dimensions. PINTS: Patterns in 
Non-homologous Tertiary Structures.  Nucleic Acids Research 2003, 
31(13):3341-3344.

35. Shulman-Peleg A, Nussinov R, Wolfson HJ: Recognition of functional 
sites in protein structures.  Journal of Molecular Biology 2004, 
339(3):607-633.

36. Ausiello G, Via A, Helmer-Citterich M: Query3d: a new method for high-
throughput analysis of functional residues in protein structures.  BMC 
Bioinformatics 2005, 6(4):S5.

Received: 13 September 2009 Accepted: 11 May 2010 
Published: 11 May 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/242© 2010 Bryant et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:242

http://www.biomedcentral.com/1471-2105/11/242
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15146493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16489747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17533416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17533415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18073103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7845208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8762132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12206759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16410325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17335207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14736236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19436720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16431016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9642096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12967960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16890423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16650981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9199410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12381328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16844972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18831785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19714201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18689826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8609628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17933762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9917419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12653503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16351754


Bryant et al. BMC Bioinformatics 2010, 11:242
http://www.biomedcentral.com/1471-2105/11/242

Page 20 of 21
37. Laskowski R, Watson J, Thornton J: ProFunc: a server for predicting 
protein function from 3D structure.  Nucleic Acids Research 2005, 33:W89.

38. Laskowski RA, Watson JD, Thornton JM: Protein function prediction 
using local 3D templates.  Journal of Molecular Biology 2005, 
351(3):614-626.

39. Pal D, Eisenberg D: Inference of protein function from protein structure.  
Structure 2005, 13:121-130.

40. Gold ND, Jackson RM: Fold independent structural comparisons of 
protein-ligand binding sites for exploring functional relationships.  
Journal of Molecular Biology 2006, 355(5):1112-1124.

41. Kinjo AR, Nakamura H: Similarity search for local protein structures at 
atomic resolution by exploiting a database management system.  
Biophysics 2007, 3:75-84.

42. Chen BY, Fofanov VY, Bryant DH, Dodson BD, Kristensen DM, Lisewski AM, 
Kimmel M, Lichtarge O, Kavraki LE: The MASH pipeline for protein 
function prediction and an algorithm for the geometric refinement of 
3D motifs.  Journal of Computational Biology 2007, 14(6):791-816.

43. Moll M, Kavraki LE: Matching of structural motifs using hashing on 
residue labels and geometric filtering for protein function prediction.  
Proc. of the Seventh Annual Intl. Conf. on Computational Systems 
Bioinformatics 2008:157-168.

44. Tseng YY, Dundas J, Liang J: Predicting protein function and binding 
profile via matching of local evolutionary and geometric surface 
patterns.  Journal of Molecular Biology 2009, 387(2):451-464.

45. Shatsky M, Shulman-Peleg A, Nussinov R, Wolfson HJ: The multiple 
common point set problem and its application to molecule binding 
pattern detection.  Journal of Computational Biology 2006, 13(2):407-428.

46. Brakoulias A, Jackson R: Towards a structural classification of phosphate 
binding sites in protein-nucleotide complexes: an automated all-
against-all structural comparison using geometric matching.  Proteins: 
Structure, Function, and Bioinformatics 2004, 56(2):.

47. Kinjo AR, Nakamura H: Comprehensive structural classification of 
ligand-binding motifs in proteins.  Structure 2009, 17(2):234-246.

48. Zhang Z, Grigorov MG: Similarity networks of protein binding sites.  
Proteins 2006, 62(2):470-478.

49. Holm L, Sander C: Mapping the Protein Universe.  Science 1996, 
273(5275):595-603.

50. Holm L, Sander C: Dali: a network tool for protein structure comparison.  
Trends in Biochemical Sciences 1995, 20(11):478-480.

51. Loughran NB, O'Connor B, ÓFágáin C, O'Connell MJ: The phylogeny of 
the mammalian heme peroxidases and the evolution of their diverse 
functions.  BMC Evolutionary Biology 2008, 8:101.

52. Passardi F, Bakalovic N, Teixeira FK, Margis-Pinheiro M, Penel C, Dunand C: 
Prokaryotic origins of the non-animal peroxidase superfamily and 
organelle-mediated transmission to eukaryotes.  Genomics 2007, 
89(5):567-579.

53. Fukuyama K, Kunishima N, Amada F, Kubota T, Matsubara H: Crystal 
structures of cyanide-and triiodide-bound forms of Arthromyces 
ramosus peroxidase at different pH values.  Journal of Biological 
Chemistry 1995, 270(37):21884-21892.

54. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM: 
CATH-a hierarchic classification of protein domain structures.  Structure 
1997, 5(8):1093-1108.

55. Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund MF: 
Comparison of the xylose reductase-xylitol dehydrogenase and the 
xylose isomerase pathways for xylose fermentation by recombinant 
Saccharomyces cerevisiae.  Microbial Cell Factories 2007, 6:5.

56. Van Maris AJ, Winkler AA, Kuyper M, De Laat WT, Van Dijken JP, Pronk JT: 
Development of efficient xylose fermentation in Saccharomyces 
cerevisiae: xylose isomerase as a key component.  Advances in 
Biochemical Engineering/Biotechnology 2007, 108:179-204.

57. Holden HM, Tronrud DE, Monzingo AF, Weaver LH, Matthews BW: Slow-
and fast-binding inhibitors of thermolysin display diffierent modes of 
binding: crystallographic analysis of extended phosphonamidate 
transition-state analogs.  Biochemistry 1987, 26(26):8542-8553.

58. Holland DR, Hausrath AC, Juers D, Matthews BW: Structural analysis of 
zinc substitutions in the active site of thermolysin.  Protein Science 1995, 
4(10):1955-1965.

59. Blow D: More of the catalytic triad.  Nature 1990, 343(6260):694-695.
60. Dementiev A, Dobo J, Gettins PGW: Active site distortion is sufficient for 

proteinase inhibition by serpins: structure of the covalent complex of 

α1-proteinase inhibitor with porcine pancreatic elastase.  Journal of 
Biological Chemistry 2006, 281(6):3452-3457.

61. Schmidt A, Jelsch C, Ostergaard P, Rypniewski W, Lamzin VS: Trypsin 
revisited: crystallography at (sub) atomic resolution and quantum 
chemistry revealing details of catalysis.  Journal of Biological Chemistry 
2003, 278(44):43357-43362.

62. Chen BY, Bryant DH, Cruess AE, Bylund JH, Fofanov VY, Kristensen DM, 
Kimmel M, Lichtarge O, Kavraki LE: Composite motifs integrating 
multiple protein structures increase sensitivity for function prediction.  
Proc. of the Sixth Annual Intl. Conf. on Computational Systems Bioinformatics 
2007:343-355.

63. Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: A structural 
classification of proteins database for the investigation of sequences 
and structures.  Journal of Molecular Biology 1995, 247(4):536-540.

64. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the 
sensitivity of progressive multiple sequence alignment through 
sequence weighting, position-specific gap penalties and weight 
matrix choice.  Nucleic Acids Research 1994, 22(22):4673-4680.

65. Shindyalov I, Bourne P: Protein structure alignment by incremental 
combinatorial extension (CE) of the optimal path.  Protein Engineering 
Design and Selection 1998, 11(9):739-747.

66. Mattos C, Ringe D: Locating and characterizing binding sites on 
proteins.  Nat Biotechnol 1996, 14(5):595-599.

67. Mattos C, Bellamacina CR, Peisach E, Pereira A, Vitkup D, Petsko GA, Ringe 
D: Multiple solvent crystal structures: probing binding sites, plasticity 
and hydration.  J Mol Biol 2006, 357(5):1471-1482.

68. English AC, Done SH, Caves LS, Groom CR, Hubbard RE: Locating 
interaction sites on proteins: the crystal structure of thermolysin 
soaked in 2% to 100% isopropanol.  Proteins 1999, 37(4):628-640.

69. English AC, Groom CR, Hubbard RE: Experimental and computational 
mapping of the binding surface of a crystalline protein.  Protein Eng 
2001, 14:47-59.

70. Jolliffe IT: Principal Components Analysis New York: Springer-Verlag; 1986. 
71. Fraley C, Raftery AE: Model-based clustering, discriminant analysis and 

density estimation.  Journal of the American Statistical Association 2002, 
97:611-631.

72. Fofanov VY, Chen BY, Bryant DH, Moll M, Lichtarge O, Kavraki LE, Kimmel 
M: A statistical model to correct systematic bias introduced by 
algorithmic thresholds in protein structural comparison algorithms.  
IEEE International Conference on Bioinformatics and Biomedicine Workshop, 
2008 2008:1-8.

73. Das P, Moll M, Stamati H, Kavraki LE, Clementi C: Low-dimensional, free-
energy landscapes of protein-folding reactions by nonlinear 
dimensionality reduction.  Proceedings of the National Academy of 
Sciences 2006, 103(26):9885.

74. Plaku E, Stamati H, Clementi C, Kavraki LE: Fast and reliable analysis of 
molecular motion using proximity relations and dimensionality 
reduction.  Proteins 2007, 67(4):897-907.

75. Finn R, Tate J, Mistry J, Coggill P, Sammut S, et al.: The Pfam protein family 
database.  Nucleic Acid Research 2008:D281-88.

76. Wang X, Snoeyink J: Multiple structure alignment by optimal RMSD 
implies that the average structure is a consensus.  In Proc. of the Fifth 
Annual Intl. Conf. on Computational Systems Bioinformatics Imperial College 
Press; 2006. 

77. Sheather SJ, Jones MC: A reliable data-based bandwidth selection 
method for kernel density estimation.  Journal of the Royal Statistical 
Society. Series B. Methodological 1991, 53(3):683-690.

78. Hochberg Y: A sharper Bonferroni procedure for multiple tests of 
significance.  Biometrika 1988, 75(4):800-802.

79. Sarkar SK, Chang CK: The Simes method for multiple hypothesis testing 
with positively dependent test statistics.  Journal of the American 
Statistical Association 1997, 92(440):1601-1608.

80. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, 
Ferrin TE: UCSF Chimera-a visualization system for exploratory research 
and analysis.  Journal of Computational Chemistry 2004, 25(13):1605-1612.

doi: 10.1186/1471-2105-11-242
Cite this article as: Bryant et al., Analysis of substructural variation in families 
of enzymatic proteins with applications to protein function prediction BMC 
Bioinformatics 2010, 11:242

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16019027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16359705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17691895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19154742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16597249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19217394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16299776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8662544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8578593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18371223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17355904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7665612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9309224
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17280608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17846724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3442675
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8535232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2304545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16321984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12937176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9630949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16488429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10651278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11287678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17380507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15264254

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Phylogenetic-based clusters (FASST)
	Conformation-based clusters (FASST)
	Homology-based clusters (FASST)
	Protein function prediction (FASST-MESH)
	Comparison with sequence and whole structure approaches

	Discussion
	Biological significance of SCs
	Diffierentiating sequential and structural redundancy
	FASST-MESH improves single-structure motifs
	Automated motif definition

	Conclusions
	Methods
	Step 1: motif definition and propagation
	Step 2: encoding geometric features
	Step 3: dimensionality reduction
	Step 4: identifying substructural clusters (SCs)
	Step 5: constructing consensus motifs
	Step 6: estimating statistical significance

	Additional material
	Abbreviations
	Authors' contributions
	Acknowledgements
	Author Details
	References



