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Abstract
Background: Sensitivity analysis is an indispensable tool for the analysis of complex systems. In a recent paper, we 
have introduced a thermodynamically consistent variance-based sensitivity analysis approach for studying the 
robustness and fragility properties of biochemical reaction systems under uncertainty in the standard chemical 
potentials of the activated complexes of the reactions and the standard chemical potentials of the molecular species. 
In that approach, key sensitivity indices were estimated by Monte Carlo sampling, which is computationally very 
demanding and impractical for large biochemical reaction systems. Computationally efficient algorithms are needed 
to make variance-based sensitivity analysis applicable to realistic cellular networks, modeled by biochemical reaction 
systems that consist of a large number of reactions and molecular species.

Results: We present four techniques, derivative approximation (DA), polynomial approximation (PA), Gauss-Hermite 
integration (GHI), and orthonormal Hermite approximation (OHA), for analytically approximating the variance-based 
sensitivity indices associated with a biochemical reaction system. By using a well-known model of the mitogen-
activated protein kinase signaling cascade as a case study, we numerically compare the approximation quality of these 
techniques against traditional Monte Carlo sampling. Our results indicate that, although DA is computationally the 
most attractive technique, special care should be exercised when using it for sensitivity analysis, since it may only be 
accurate at low levels of uncertainty. On the other hand, PA, GHI, and OHA are computationally more demanding than 
DA but can work well at high levels of uncertainty. GHI results in a slightly better accuracy than PA, but it is more 
difficult to implement. OHA produces the most accurate approximation results and can be implemented in a 
straightforward manner. It turns out that the computational cost of the four approximation techniques considered in 
this paper is orders of magnitude smaller than traditional Monte Carlo estimation. Software, coded in MATLAB®, which 
implements all sensitivity analysis techniques discussed in this paper, is available free of charge.

Conclusions: Estimating variance-based sensitivity indices of a large biochemical reaction system is a computationally 
challenging task that can only be addressed via approximations. Among the methods presented in this paper, a 
technique based on orthonormal Hermite polynomials seems to be an acceptable candidate for the job, producing 
very good approximation results for a wide range of uncertainty levels in a fraction of the time required by traditional 
Monte Carlo sampling.

Background
Sensitivity analysis is an indispensable tool for the analy-
sis of complex systems [1,2]. It is routinely used to investi-
gate how uncertainty in input variables affects
uncertainty in system response and to quantify the rela-

tive importance of the input variables in influencing the
response. In addition to many other areas of science and
engineering, sensitivity analysis is used in systems biology
to investigate the robustness and fragility properties of
cellular systems, such as signaling, gene regulation, and
metabolic networks [3-11], as well as in systems pharma-
cology [12], for designing novel pharmacological inter-
vention strategies and for understanding drug action
[13,14].
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To study the sensitivity properties of a biochemical
reaction system, such as a signaling network, we must
construct a mathematical model that relates uncertainty
in key biochemical factors of interest to a biologically rel-
evant system response, and develop techniques for deter-
mining how factor uncertainty affects the system
response. Since biochemical reaction systems are subject
to physical laws, an important requirement is that sensi-
tivity analysis must satisfy important thermodynamic
constraints, such as the principle of detailed balance [15].
Bearing these in mind, we have proposed in [16] a proba-
bilistic sensitivity analysis approach for biochemical reac-
tion systems that uses the standard chemical potentials of
the activated complexes of the underlying reactions and
molecular species as the biochemical factors of interest
and propagates factor uncertainty to a given system
response in a thermodynamically consistent manner.
Moreover, we have adopted a formal statistical approach
to sensitivity analysis, known as variance-based sensitiv-
ity analysis [2,17-19], which uses a set of indices to quan-
tify the contribution of individual biochemical factors to
the variance of the system response.

Unfortunately, it is not in general possible to analyti-
cally evaluate variance-based sensitivity indices. As a
consequence, these indices are estimated by Monte Carlo
sampling [2,16,18,20], which requires evaluation of the
system response at each sample. A major drawback of this
approach is its slow rate of convergence. As a matter of
fact, the error produced by a naive Monte Carlo estima-
tion approach decreases with an error rate of O(1/ ),
where L is the number of Monte Carlo samples used [21].
Hence, accurate estimation of the sensitivity indices
requires a large number of Monte Carlo samples and,
therefore, a large number of system response evaluations.
This makes Monte Carlo estimation of variance-based
sensitivity indices computationally very expensive, espe-
cially in the case of biochemical reaction systems com-
prised of a large number of reactions and molecular
species.

To reduce the computational burden of Monte Carlo
estimation, it is imperative that we develop techniques
which can produce sufficiently accurate estimates of the
sensitivity indices in a fraction of the time required by
Monte Carlo sampling. In this paper, we present four
such techniques and apply them to a well-known bio-
chemical reaction model of the mitogen-activated protein
kinase (MAPK) signalling cascade. The first technique is
based on a second-order Taylor series expansion of the
response function and is an extension of the first-order
derivative-based approach for variance-based sensitivity
analysis discussed in [2,18,19,22] by including second-
order derivative terms. The other approximation tech-
niques are based on the high-dimensional model repre-

sentation (HDMR) schemes developed by H. Rabitz and
his coworkers [23-25]. We use analytical derivations, pro-
vided in the Additional file 1 accompanying this paper,
and sensitivity analysis results generated by the four
methods, to clarify the relative merits of each approxima-
tion technique and produce useful insights on when these
techniques can be used for sensitivity analysis of bio-
chemical reaction systems. We have coded the sensitivity
analysis techniques discussed in this paper using MAT-
LAB®. Interested readers can request a copy of the soft-
ware, and the entire set of data obtained with this
software, by contacting the corresponding author.

We should mention here that, in systems biology, the
most commonly used sensitivity analysis techniques are
based on derivatives of molecular concentrations or other
system responses, known as control coefficients [3].
These differential methods are based on a Taylor series
approximation of the response function and, as such, are
subject to several drawbacks that must be carefully con-
sidered before applying them to problems of systems
biology. For example, derivative-based sensitivity indices
assess the sensitivity properties of a biochemical reaction
system around a set of reference input values. Their per-
formance usually depends on the particular choice of
these values, due to the nonlinear nature of the response
function. For the results to be relevant, the reference val-
ues must be the true values, which are usually not known
in practice. As a consequence, derivative-based sensitiv-
ity analysis techniques are limited by the quality of the
underlying Taylor series approximation. Moreover, and
due to our difficulty in accurately evaluating high-order
derivatives, differential sensitivity analysis techniques are
usually limited in practice to assessing the effect of one
input factor on the system response, by keeping all other
factors fixed to their reference values. This is usually not
adequate, since we are most often interested in the effects
of multiple biochemical factors on the system response.
Finally, traditional differential analysis cannot cope with
probabilistic uncertainty in biochemical factor values,
unless it is combined with variance-based sensitivity
analysis (as it is done by the first approximation tech-
nique considered in this paper). It turns out that vari-
ance-based sensitivity analysis does not depend on the
additivity or linearity of the system model and can be nat-
urally used to quantify the simultaneous effect of proba-
bilistic biochemical factor uncertainty on the system
response [2,18]. For this reason, it provides a very attrac-
tive and powerful approach for sensitivity analysis of bio-
chemical reaction systems.

We should finally mention that a number of alternative
approximation techniques for variance-based sensitivity
analysis have been proposed in the literature [26-29]. In
these techniques, the original response function is
approximated by a surrogate function and the sensitivity
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indices are then estimated by Monte Carlo sampling
based on that function. Reduction in computations is
achieved by the fact that the time required for computing
the system response at each Monte Carlo iteration using
the surrogate function is much smaller than computing
the response using the original function (whose evalua-
tion requires solving a system of ordinary differential
equations). However, the computations associated with
these techniques are still substantial, since they must
employ a large number of samples to sufficiently reduce
the Monte Carlo estimation error. By contrast, the tech-
niques discussed in this paper are based on surrogate
functions that lead to analytical formulas for the sensitiv-
ity indices, thus avoiding Monte Carlo estimation. As a
matter of fact, the computational cost for calculating the
variance-based sensitivity indices using the techniques
discussed in this paper is mainly associated with the
problem of estimating the underlying parameters of the
surrogate function used, which leads to appreciable com-
putational savings over the techniques proposed in [26-
29].

Methods
Biochemical reaction systems
In this paper, we consider a well-stirred (homogeneous)
biochemical reaction system at constant temperature and
volume that consists of M coupled reactions of the form:

where κ2m-1, κ2m ≥ 0 are the normalized rate constants
of the forward and reverse reactions (measured in s-1) and
νnm,  ≥ 0 are the stoichiometry coefficients of the
reactants and products. We assume that the system con-
sists of N molecular species X1, X2, ..., XN, with concentra-
tions (measured in molecules/cell) at time t ≥ 0 given by
q1(t), q2(t), ..., qN(t), respectively. We characterize the
dynamic evolution of molecular concentrations by the
following chemical kinetic equations:

where  is the stoichiometry coefficient
of the nth molecular species associated with the mth reac-
tion and

is the flux of the mth reaction at time t.
The sensitivity analysis approach we consider here is

based on quantifying the influence of a reaction or
molecular species on an appropriately chosen response
characteristic R of a biochemical reaction system. We
employ a well-known model of the MAPK signaling cas-
cade (see Figure 1 and Additional file 2 for details on this
model) and consider three response characteristics with
established biological significance, namely the duration
D, integrated response I, and strength S of the doubly
phosphorylated extracellular signal-regulated kinase
(ERK-PP), defined by

where q(t) is the concentration profile of ERK-PP and t0
is the time at which q(t) converges to zero. If convergence
to zero does not occur within the observation time inter-
val [0, tmax], then we set t0 = tmax. We choose to work with
the duration, integrated response, and strength of ERK-
PP activity, since it has been experimentally observed that
differences in duration and strength may cause distinct
biological outcomes, such as cell differentiation, prolifer-
ation, and apoptosis [30-34], whereas, the integrated
response directly correlates with DNA synthesis [35,36].
We take the system response R to be the logarithm of the
duration, integrated response, or strength; that is, we take
R to be lnD, lnI, or lnS. This reduces the effect of outliers
and increases the efficiency of numerically evaluating the
indices associated with variance-based sensitivity analysis
[16].

Variance-based sensitivity analysis
We employ the variance-based sensitivity analysis
approach for biochemical reaction systems we recently
introduced in [16]. This method is based on a biophysi-
cally-derived probabilistic model for the rate constants of
a biochemical reaction system. According to this model,
we treat the rate constants κ2m-1 and κ2m as random vari-
ables K2m-1 and K2m, given by the Eyring-Polanyi equa-
tions [37]
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where kB is the Boltzmann constant (kB = 1.3806504 ×
10-23JK-1), T is the system temperature, h is the Planck

constant (h = 6.62606885 × 10-34Js),  is the (random)
capacity of the activated complex associated with the mth

reaction, and Cn is the (random) capacity of the nth molec-
ular species. The capacities are defined by

where ,  are the (random) standard chemical

potentials of the mth activated complex and the nth molec-

ular species, respectively, given by

In (5),  and  are the nominal standard chemical
potential values associated with the mth reaction and the

nth molecular species, whereas,  and Yn are zero-mean

Gaussian random variables with standard deviations 
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Figure 1 A biochemical reaction model of the MAPK signaling cascade, adopted from Zhang et al. [16].

Ras-GTP

RafRaf-Ras-GTP

�

1( )x

2( )x

3( )x 3 4,� �
Ras-GTP*

Raf*

23( )x

4( )x

5 6,� �

Pho1

Raf*-Pho1

5( )x

6( )x7 8,� �
Pho1 5( )x

9 10, 0� � �

MEK MEK-Raf*

7( )x 8( )x11 12,� �

Raf* 4( )x

MEK-P

9( )x

13 14, 0� � �

15 16,� �

Raf* 4( )x

MEK-P-Raf*

10( )x

Raf* 4( )x

MEK-PP

11( )x17 18, 0� � �

Pho2

12( )x

MEK-PP-Pho2

13( )x 19 20,� �

21 22, 0� � �

Pho2

12( )x

MEK-P

9( )x

Pho2

12( )x

MEK-P-Pho2

14( )x

23 24,� �

Pho2

12( )x

25 26, 0� � �

MEK

7( )x

ERK ERK-MEK-PP

15( )x
16( )x27 28,� �

MEK-PP

11( )x

ERK-P

17( )x

29 30, 0� � �
31 32,� �

ERK-P-MEK-PP

18( )x

ERK-PP 19( )x
33 34, 0� � �

Pho3

20( )x

ERK-PP-Pho3

21( )x 35 36,� �

37 38, 0� � �

Pho3

20( )x

ERK-P

17( )x

Pho3

20( )x

ERK-P-Pho3

22( )x

39 40,� �

Pho3

20( )x

41 420,� � �

ERK

15( )x

MEK-PP 11( )x MEK-PP

11( )x

1 2, 0� � �



Zhang and Goutsias BMC Bioinformatics 2010, 11:246
http://www.biomedcentral.com/1471-2105/11/246

Page 5 of 17
and λn, respectively. These random variables account for
variations in the standard chemical potentials about their
nominal values caused by unpredictable biological vari-
ability and uncertainty regarding their exact values. Simi-

larly to [16], we assume that the random variables , m
= 1, 2, ..., M, and Yn, n = 1, 2, ..., N, are statistically inde-
pendent.

Our variance-based sensitivity analysis technique
assesses how uncertainty in the rate constants of a bio-
chemical reaction system affect the system response. As a
consequence of (3), (4), and (5), we have that

where

are the nominal values of the rate constants, with

Equation (6) suggests that uncertainty in the forward
and reverse reaction rates occurs due to uncertainty in
the standard chemical potentials of the activated com-
plexes associated with the reactions and the standard
chemical potentials of the reactants.

As a consequence of the previous model, we investigate
the sensitivity properties of a biochemical reaction sys-
tem due to the uncertainty in the standard chemical
potentials. To simplify notation, we use W = {W1, W2, ...,
WJ} to denote the random variables Y‡ and Y. We consider

two cases, namely J = M and Wj = , for j = 1, 2, ..., M, as
well as J = N and Wj = Yj, j = 1, 2, ..., N. In the first case, the
standard chemical potentials of the molecular species are
assumed to be fixed, whereas, the standard chemical
potentials of the activated complexes are perturbed ran-
domly. Our objective is to investigate the importance of

reactions in influencing the system response and, for this
reason, we refer to this case as reaction-oriented sensitiv-
ity analysis (ROSA) [16]. In the second case, the standard
chemical potentials of the activated complexes are
assumed to be fixed, whereas, the standard for chemical
potentials of the molecular species are perturbed ran-
domly. In this case, our objective is to investigate the
importance of molecular species in influencing the sys-
tem response. For this reason, we refer to this case as spe-
cies-oriented sensitivity analysis (SOSA) [16].

Given the response R of a biochemical reaction system
with random factors W, its total variance Vtot := Var[R(W
)] satisfies [17,38,39]:

where

with similar expressions for the remaining terms. If the
biochemical factors W are statistically independent
(which we assume here to be true), then each term on the
right-hand-side of (7) is nonnegative. This equation pro-
vides a decomposition of the total system response vari-
ance Vtot into individual terms V1,V2, ..., V12, .... It turns
out that Vj quantifies the average reduction in total
response variance, obtained by keeping the jth biochemi-
cal factor fixed. As a consequence, we use Vj to measure
the singular influence of the jth biochemical factor Wj on
the system response. Moreover, the term Vjj' quantifies
the average reduction in the total response variance due
to jointly fixing the two biochemical factors Wj and Wj',
not accounted for by summing the average reductions
obtained by separately fixing these factors. Therefore, we
use Vjj' to measure the joint influence of the biochemical
factors Wj and Wj' on the system response. Finally, higher-
order terms in (7) quantify the joint influence of three or
more biochemical factors on the system response.

In most practical situations, it is difficult to evaluate the
high-order terms (≥ 3) in the response variance decom-
position scheme given by (7). Although these terms are
usually negligible at low to moderate levels of biochemi-
cal factor uncertainty, they may take substantial values at
high levels [16]. Unfortunately, it is difficult to deal in
practice with high-order variance terms. For this reason,
it is quite convenient to base our sensitivity analysis effort
only on the first- and second-order terms Vj and Vjj'.
Then, instead of using the total system response variance
Vtot, we base our sensitivity analysis on its second-order
portion V, given by
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By using the probabilistic model given by (6) and the
variance decomposition scheme in (9), we can develop a
powerful (second-order) methodology for sensitivity
analysis of biochemical reaction systems, similar to the
one discussed in [16] that was based on the total response
variance Vtot. The method requires evaluation of two
indices, namely the (second-order) single-effect sensitivity
index (SESI) σj, defined by

and the (second-order) joint-effect sensitivity index
(JESI) ηj, defined by

where

Clearly, σj quantifies the fractional singular contribu-
tion of the jth biochemical factor to the second-order por-
tion V of the total response variance, whereas, ηj
quantifies the fractional contribution of the jth biochemi-
cal factor to V jointly with another factor. It turns out
that, if σj = ηj = 0, then we can conclude that factor j does
not influence the system response singularly or jointly
with another factor (although, it may influence the sys-
tem response jointly with two or more factors). On the
other hand, if σj > 0 and ηj = 0, then we can conclude that
factor j influences the system response singularly but not
jointly with another factor. Moreover, if σj = 0 and ηj > 0,
we can conclude that factor j does not influence the sys-
tem response singularly but it does so jointly with some
other factor, whereas, if σj > 0 and ηj > 0, we can conclude
that factor j influences the system response both singu-
larly and jointly with some other factor. In practice, we
can set a small threshold θ to determine whether σj and ηj
are sufficiently larger than zero.

Unfortunately, we cannot evaluate the exact values of
the sensitivity indices σj and ηj. For this reason, we must
resort to approximations. In this paper, we consider the
possibility of employing one of five methods to accom-
plish this goal. We discuss these methods next and refer
the reader to [16] and the accompanying Additional file 1
for details pertaining to their development and numerical
implementation.

Monte Carlo estimation
A straightforward technique for approximating the

SESI and JESI values is based on a Monte Carlo Latin
hypercube sampling approach, whose details can be
found in [16] (see also [2,20]). This approach can be used
to provide estimates  and  of the second-order
SESI's and JESI's by using 2L(J + 1) system evaluations [by
integrating the system of N ordinary differential equa-
tions given by (1) and (2)], where L is the number of Latin
hypercube samples used and J is the number of biochem-
ical factors considered in the analysis. We refer to  and

 as the (second-order) SESI's and JESI's obtained by
Monte Carlo (MC) estimation. This method is computa-
tionally expensive, since a large number L of Latin hyper-
cube samples is required to obtain sufficiently accurate
estimates of the sensitivity indices.

Derivative approximation

A method for deriving approximations  and  of
the sensitivity indices σj and ηj is to replace the response
function R(w) by its second-order Taylor series approxi-

mation  about w = 0, given by

where

are the first- and second-order partial derivatives of R
at w = 0, and set

where
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Equation (13) and the statistical independence and
zero-mean Gaussianity of the biochemical factors Wj
imply that

where λj is the standard deviation of Wj, for j = 1, 2, ..., J.
As a consequence, we obtain an analytical expression for
the sensitivity indices  and , which requires evalua-
tion of the first- and second-order partial derivatives of
the response function R(w), with respect to the biochemi-
cal factors, at w = 0.

Although many techniques have been developed to
compute response derivatives [40], for reasons we explain
in Additional file 1, we choose to approximate the partial
derivatives by symmetric finite differences. We refer to

 and  given by (14), (15), and (16), as the (second-
order) SESI's and JESI's obtained by Derivative Approxi-
mation (DA). The resulting method requires 2J(J + 1) + 1
system integrations, which is quadratic in terms of the
number J of the biochemical factors and is much smaller
than the number 2L(J + 1) of system integrations required
by MC, since J « L.

Polynomial approximation
Another way to approximate the sensitivity indices σj and
ηj is to replace the response function R(w) by

where the α's are parameters whose values must be

appropriately determined so that (w) sufficiently
approximates the response function R(w) in an appropri-

ately chosen neighborhood around 0. Note that 
provides a polynomial approximation of the response

function R(w). If  is sufficiently close to R(w) in a
neighborhood around 0, then the parameters αjj'coincide

with the partial derivatives , 1 ≤
κ1, κ2 ≤ 2, of R at w = 0.

By using (17) and the statistical independence and zero-
mean Gaussianity of the biochemical factors Wj, we can

show that, in this case,  and  are given by (14) and
(15), with

As a consequence, we obtain again an analytical expres-
sion for the sensitivity indices  and , which requires
evaluation of the α parameters. This can be done by the
polynomial regression approach we discuss in Additional
file 1. We refer to  and , given by (14), (15), and
(18), as the (second-order) SESI's and JESI's obtained by
Polynomial Approximation (PA). The resulting method is
based on the approach proposed in [41] and requires J(J -
1)S2/2 + JS + 1 system integrations, which is quadratic
both in terms of the number J of biochemical factors and
the number S of the samples per factor used in the regres-
sion. Note that J(J - 1)S2/2 + JS + 1 . 2J2(S/2)2, for suffi-
ciently large J. This number is much smaller than the
number 2L(J + 1) . 2LJ of system integrations required by
MC, since L Ŭ J(S/2)2, but larger than the number 2J(J +
1) + 1 . 2J2 of system integrations required by DA, since S
> 2.

Gauss-Hermite integration

We can obtain a more accurate approximation  of
the response function R(w) than the one given by (13) if
we truncate the Taylor series expansion of R(w) about w =

V d d V dj j j j jj jj j j jj

∧ ∧

= + =′ ′ ′l l l l2 2 4 2 2 2 21
2

and ,

(16)

σ^ j η^ j

σ^ j η^ j

R R

w w

w w

j j j j

j

jj

j jj

J

JJ

j j

∧

=

+ +

+ +

=

′
′= +=

∑

∑ ′

−

( ) ( )

( ), ,

,

w 0

α α

α

1 2

1

1

11

2

11
2

1

2
1

2

11

3

11

∑ ∑∑

∑

′ ′
′= +=

′ ′
′= +=

−

−

+ +

α

α

jj j j

j jj

jj j j

j jj

w w

w w

JJ

JJ

,

,∑∑ ∑∑ ′ ′
′= +=

−

α jj j j

j jj

w w
JJ

, ,4

11

2 2
1

(17)

R
^
( )w

R
^
( )w

R
^
( )w

∂ ∂ ∂+k k k k1 2 1 2R w wj j( ) / ’0

σ^ j η^ j

V j j j j j

j j m mj

m

j

m jm

m j

∧

= +

+ +
=

−

=
∑

λ α λ α

λ α λ α λ α

2
1

2 4
2

2

2
1

2
2

1

1
2

3

2

2

, ,

, , ,

++

=

−

= +

∑

∑ ∑

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+ +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+

1

2 2
2

1

1
2

3

1

2

J

j m mj

m

j

m jm

m j

J

λ λ α λ α, ,

44

2

4
2

2
4

1

1
2

4

1

4 2

λ α λ α λ α

λ λ α

j j m mj

m

j

m jm

m j

J

j m m

, , ,

=

−

= +
∑ ∑+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+ jj

m

j

m jm

m j

J

V jj j j jj

, ,

,

4

1

1
2

4

1

2

2 2
1

2 2

=

−

= +
∑ ∑+

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= +
∧

′ ′ ′

λ α

λ λ α λλ λ α

λ λ α λ λ α

j j jj

j j jj j j jj

4 2
2

2

2 4
3

2 4 4
4

22 4

′ ′

′ ′ ′ ′+ +

,

, , .

(18)

σ^ j η^ j

σ^ j η^ j

R
^
( )w



Zhang and Goutsias BMC Bioinformatics 2010, 11:246
http://www.biomedcentral.com/1471-2105/11/246

Page 8 of 17
0 by removing all terms that involve partial derivatives
with respect to more than two factors [note that the
approximation given by (13) is obtained from the Taylor
series expansion by truncating all terms that involve par-
tial derivatives of order greater than two]. In this case, we
can show that

where

as we explain in Additional file 1. The approximations

 and  are now given by (14) and (15), with

where e0, ej, and ejj' are given by

Note that evaluation of  and  requires only one-
and two-dimensional integrations, which can be numeri-

cally done by a standard Gauss-Hermite integration
approach. For this reason, we refer to  and , given
by (14), (15), (19), (20), and (21), as the (second-order)
SESI's and JESI's obtained by Gauss Hermite Integration
(GHI). The resulting method is based on the approach
proposed in [42,43] and requires 2J(J - 1)NQ/2Q2 + 2JNQ/2Q +
1 system integrations, which is quadratic both in terms of
the number J of biochemical factors and the order Q of
Gauss-Hermite integration used. Note that, if the number
S of the samples per factor used in the regression associ-
ated with the PA is even, and Q = S or Q = S + 1, then GHI
requires the same number of system integrations as PA.

Orthonormal Hermite approximation
The last method we consider for approximating the sensi-
tivity indices σj and ηj is based on replacing the response
function R(w) by

where the α's and  are parameters whose values

must be appropriately determined so that  suffi-
ciently approximates the response function R(w) over the

entire space of biochemical factor values. Note that 
provides a polynomial approximation of the response
function R(w), similar to the one given by (17). However,
the polynomials used in the approximation given by (22)
are orthonormal Hermite polynomials, as opposed to the
polynomials used in the approximation given by (17),
which are standard second- and fourth-order polynomi-
als. Note also that the approximation given by (22) is
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"global," in the sense that it is based on approximating the
system response function R(w) over the entire factor
space, whereas, the approximation given by (17) is "local,"
in the sense that it approximates the system response
function R(w) in a neighborhood around w = 0.

By using (22), the orthonormality of the Hermite poly-

nomials, and the statistical independence and zero-mean

Gaussianity of the biochemical factors Wj, we can show

that  and  are given by (14) and (15), with

As a consequence, we obtain again an analytical expres-
sion for the sensitivity indices  and , which requires
evaluation of the α parameters. This can be done by poly-
nomial regression based on the Monte Carlo Latin hyper-
cube sampling approach we discuss in Additional file 1.
We refer to  and , given by (14), (15), and (23), as
the (second-order) SESI's and JESI's obtained by Ortho-
normal Hermite Approximation (OHA). The resulting
method is based on the approach suggested in [44-47]
and requires L system integrations, where L is the num-
ber of regression points obtained by Latin hypercube
sampling. We here take the number of regression points
used to be the same as the number of Latin hypercube
samples employed by MC, although these two numbers
can be different in general. As a consequence, the number
of system integrations performed by OHA is smaller than
the number 2L(J + 1) of system integrations used in MC
by a factor of 2(J + 1), but it could be larger than the num-
ber of system integrations required by DA, PA, or GHI.

Results
We now employ the previously discussed techniques to
estimate the variance-based sensitivity indices σj and ηj
associated with the duration, integrated response, and
strength of ERK-PP activity. We do this by considering
the dynamic behavior, within a time frame of 6 hours, of
the MAPK signaling cascade model depicted in Figure 1
(see Additional file 2 for more details on this model). As
we have explained in the previous section, we consider
two cases: ROSA and SOSA. In each case, we need to set

values for the standard deviations { , m = 1,2, ..., M} of
the standard chemical potentials of the activated com-
plexes of the reactions and the standard deviations {λn, n
= 1,2, ..., N} of the standard chemical potentials of the
molecular species. Due to difficulties in obtaining these

values in practice, we assume here that  = λ‡, for m =
1,2, ..., M, and λn = λ, for n = 1,2, ..., N, and consider λ‡, λ
as two "user-defined" parameters that quantify the per-
turbation levels in biochemical factor values. By following
our previous work in [16], we perform sensitivity analysis
with λ‡, λ = 0.1, 0.2, 0.3, 0.4. Finally, we employ L = 6,000
Latin hypercube samples in MC and OHA, S = 4 regres-
sion samples per factor in PA, and a Gauss-Hermite inte-
gration of order Q = 5 in GHI.

In our simulations, we use S = 4 regression points per
biochemical factor, located at -2w, -w, w, and 2w, where w
= λ‡ for ROSA and w = λ for SOSA (i.e., we use regression
points located at ± one and two standard deviations from
0). Note also that, as a consequence of equation (6), if Yn
= 0, for n = 1, 2, ..., N, then a ± λ‡ variation in the values of

 about zero will produce a variation in the nominal
values of the rate constants of the mth reaction within the

percentage interval 100[exp{- } - 1, exp{ } - 1]%.
This corresponds to variations in the nominal values of
the reaction rate constants within the interval [-9.52%,
10.52%], for λ‡ = 0.1, [-18.13%, 22.14%], for λ‡ = 0.2, [-
25.92%, 34.99%], for λ‡ = 0.3, and [-32.97%, 49.18%], for λ‡

= 0.4.
In Table 1, we summarize the number of system inte-

grations and the equations used by each method. For
ROSA-based sensitivity analysis (J = 21), the number of
system integrations required by DA, PA, GHI, and OHA,
are respectively only 0.35%, 1.30%, 1.30%, and 2.27% of
that required by MC. For SOSA-based sensitivity analysis
(J = 23), the number of system integrations required by
DA, PA, GHI, and OHA, are respectively only 0.38%,
1.44%, 1.44%, and 2.08% of that required by MC.

We list the ROSA results in Tables 2, 3, and 4, whereas,
we list the SOSA results in Tables S-3.1, S-3.2, and S-3.3
of Additional file 3. The results are given in percentages
and have been truncated to the nearest integers. To
reduce the size of the tables, we depict only the results
associated with reactions whose truncated SESI or JESI
values, estimated by MC, are at least 5%. We consider the
SESI and JESI values obtained by MC as the "true" values.
By following our previous work in [16], we classify reac-
tions and molecular species into one of four categories of
interest: singularly influential, jointly influential, singu-
larly/jointly influential, and noninfluential. We do this by
comparing their SESI and JESI values to a 10% threshold.
Bold reaction numbers indicate SESI or JESI values,
obtained by MC, that are above the 10% threshold. Note
that a reaction is singularly influential if the correspond-
ing SESI value is at least 10% and the JESI value is smaller
than 10%, jointly influential if the JESI value is at least
10% and the SESI value is smaller than 10%, singularly/
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jointly influential if both the SESI and JESI values are at
least 10%, and noninfluential if both the SESI and JESI
values are smaller than 10%.

In the remaining of this section, we discuss the ROSA
results separately for each response characteristic. A sim-
ilar discussion applies for the SOSA results presented in
Additional file 3.

Duration
Estimation, by MC, of the ROSA-based sensitivity indices
associated with the duration of ERK-PP activity produces
values that change little with the size λ‡ of the underlying
perturbations; see Table 2. Moreover, the estimated SESI
and JESI values indicate that the duration is primarily
affected by reactions 4, 6, and 13 (refer to Figure 1 and
Additional file 2 for identifying these reactions), which
exert their influence only singularly (since the SESI values
are larger than 10%, whereas the corresponding JESI val-
ues are less than 10%). As a matter of fact, all JESI values
are negligible, which indicates that the log-duration may
be approximately additive, at least within the range of the
applied perturbations. Note that a multivariate response
function is called additive if it can be decomposed into a
sum of one-dimensional functions of one variable. Addi-
tive response functions do not produce high-order (≥ 2)
joint effects and result in zero JESI values [2]. Although a
linear response function is additive, the inverse is not
necessarily true. It turns out that the SESI's associated

with an additive response function can be well estimated
by all previous approximation techniques.

From the results depicted in Table 2 (and Table S-3.1 in
Additional file 3), it is clear that, as compared to MC, the
DA, PA, GHI, and OHA consistently provide good
approximations to the SESI and JESI values at all pertur-
bation levels. Moreover, all methods can be used to cor-
rectly classify reactions 4, 6, and 13 as being singularly
influential.

Integrated response
Estimation, by MC, of the ROSA-based sensitivity indices
associated with the integrated response of ERK-PP activ-
ity produces the SESI and JESI values depicted in Table 3.
These values indicate that the integrated response is pri-
mary influenced by reactions 4 and 6 (refer to Figure 1
and Additional file 2 for identifying these reactions). For
small to moderate perturbations (i.e., for λ‡ = 0.1, 0.2),
reactions 4 and 6 influence the integrated response only
singularly. However, for large perturbations (i.e., for λ‡ =
0.3, 0.4), reaction 4 influences the integrated response
both singularly and jointly (since both SESI and JESI val-
ues are at least 10%), whereas, reaction 6 still influences
the integrated response only singularly.

It is clear from the results depicted in Table 3 (and
Table S-3.2 in Additional file 3) that all approximation
techniques work relatively well for small to moderate per-
turbation levels (i.e., for λ‡ = 0.1, 0.2), providing accurate
SESI and JESI values, as compared to the values obtained

Table 1: Required system integrations, equations used, and sources of error.

Method System Integrations ROSA SOSA Equations Used Error Sources

MC 2L(J + 1) 264000 288000 (10)-(12) • number of MC samples used

DA 2J(J + 1) + 1 925 1105 (14)-(16) • local approximation

• truncation of Taylor series

• derivative approximation

PA J(J - 1)S2/2 + JS + 1 3445 4141 (14), (15), (18) • local approximation

• truncation of FD-HDMR

• polynomial approximation

• polynomial regression

GHI 2J(J - 1)NQ/2Q2 + 2JNQ/2Q + 1 3445 4141 (14), (15), (19)-(21) • local approximation

• truncation of FD-HDMR

• Gauss-Hermite integration

OHA L 6000 6000 (14), (15), (23) • truncation of ANOVA-HDMR

• Hermite approximation

• polynomial regression

L: number of Monte Carlo (Latin hypercube) samples.
J: number of biochemical factors.
S: number of regression samples per factor.
Q: order of Gauss-Hermite integration.
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Table 2: ROSA-based sensitivity analysis results for the duration of ERK-PP activity.

SESI - DURATION (λ‡ = 0.1) JESI - DURATION (λ‡ = 0.1)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 28 28 28 27 28 4 1 0 0 0 0

6 24 26 25 22 25 6 1 0 0 0 0

11 7 7 7 9 8 11 0 0 0 0 0

13 18 18 20 18 19 13 1 0 0 0 0

SESI - DURATION (λ‡ = 0.2) JESI - DURATION (λ‡ = 0.2)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 26 27 27 29 27 4 2 1 1 1 1

6 22 25 25 25 23 6 2 1 1 1 1

11 7 7 7 8 8 11 1 0 0 0 0

13 16 17 18 16 17 13 1 1 0 0 0

17 5 5 6 4 5 17 1 1 1 1 1

21 5 5 5 6 5 21 1 1 0 1 1

SESI - DURATION (λ‡ = 0.3) JESI - DURATION (λ‡ = 0.3)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 26 26 26 24 26 4 1 2 2 2 2

6 21 24 20 21 21 6 1 2 1 1 1

11 7 6 7 7 8 11 0 1 0 0 0

13 15 16 13 15 15 13 1 1 1 1 1

17 5 4 6 5 5 17 1 2 2 2 1

21 6 5 8 8 6 21 2 2 3 2 1

SESI - DURATION (λ‡ = 0.4) JESI - DURATION (λ‡ = 0.4)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 23 24 23 21 25 4 4 3 2 3 3

6 19 22 20 19 21 6 4 3 2 2 2

11 8 6 6 7 9 11 1 1 0 0 0

13 14 15 12 11 15 13 1 2 1 1 1

17 5 4 6 8 5 17 2 3 2 3 1

by MC, and produce correct classification of the reac-
tions. This is true, since the log integrated response may
be approximately additive in this case, as indicated by the
negligible JESI values. However, for large perturbations
(i.e., for λ‡ = 0.3, 0.4), the log integrated response is not

additive anymore and the results obtained by DA deterio-
rate noticeably, deeming the use of DA inappropriate. For
example, using the JESI results produced by ROSA, the
largest differences between the values obtained by DA
and MC are 8% and 12% for λ‡ = 0.3, 0.4, respectively. As a
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matter of fact, the DA is not capable of capturing second-
order joint effects and the resulting JESI values are very
small. If we use the DA results to classify the reactions,
then we will erroneously conclude that reaction 4 influ-
ences the integrated response only singularly, when λ‡ =
0.3, 0.4.

From the results depicted in Table 3 (and Table S-3.2 in
Additional file 3), it is clear that, for large perturbations,
GHI and OHA provide good approximations to the sensi-
tivity indices. Moreover, the results indicate that OHA
may be a better approximation technique than GHI (e.g.,
compare the SESI results obtained by GHI and OHA for

reaction 4). On the other hand, the results obtained by PA
are much better than the results obtained by DA. How-
ever, the performance of PA may deteriorate at high per-
turbation levels and may become inferior to GHI and
OHA (e.g., compare the results obtained by PA, GHI, and
OHA for reaction 4). Finally, it is clear that the sensitivity
results obtained by GHI and OHA can be used to cor-
rectly classify all reactions.

Strength
Estimation, by MC, of the ROSA-based sensitivity indices
associated with the strength of ERK-PP activity produces

Table 3: ROSA-based sensitivity analysis results for the integrated response of ERK-PP activity.

SESI - I-RESPONSE (λ‡ = 0.1) JESI - I-RESPONSE (λ‡ = 0.1)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 39 39 39 39 39 4 1 0 0 0 0

6 26 27 27 27 27 6 1 0 0 0 0

11 9 10 9 9 9 11 0 0 0 0 0

13 8 8 8 8 8 13 0 0 0 0 0

SESI - I-RESPONSE (λ‡ = 0.2) JESI - I-RESPONSE (λ‡ = 0.2)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 37 38 40 40 39 4 5 1 1 2 2

6 25 27 26 26 25 6 4 0 0 1 1

8 5 5 5 5 6 8 2 0 0 1 1

11 7 9 8 8 8 11 1 0 0 0 0

13 6 8 7 7 7 13 1 1 0 0 0

SESI - I-RESPONSE (λ‡ = 0.3) JESI - I-RESPONSE (λ‡ = 0.3)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 38 37 43 41 36 4 10 2 9 10 11

6 21 26 22 21 21 6 7 1 4 4 6

8 8 4 7 7 7 8 4 0 3 4 5

SESI - I-RESPONSE (λ‡ = 0.4) JESI - I-RESPONSE (λ‡ = 0.4)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 36 36 43 40 34 4 15 3 18 15 16

6 18 25 16 19 18 6 8 2 7 7 8

8 8 4 8 9 8 8 7 1 6 6 7
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Table 4: ROSA-based sensitivity analysis results for the strength of ERK-PP activity.

SESI - STRENGTH (λ‡ = 0.1) JESI - STRENGTH (λ‡ = 0.1)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 38 38 36 30 38 4 1 0 0 0 0

6 17 15 15 14 17 6 1 1 0 0 0

8 10 10 9 6 10 8 1 0 0 0 0

11 8 9 9 4 8 11 0 0 0 0 0

19 12 10 12 15 13 19 1 1 0 0 0

SESI - STRENGTH (λ‡ = 0.2) JESI - STRENGTH (λ‡ = 0.2)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 32 34 40 39 33 4 13 2 3 8 11

6 14 14 14 12 13 6 8 3 1 3 6

8 8 9 11 12 9 8 7 1 1 2 5

17 6 4 6 3 6 17 6 1 1 2 4

19 10 9 11 12 12 19 5 2 1 1 4

SESI - STRENGTH (λ‡ = 0.3) JESI - STRENGTH (λ‡ = 0.3)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 31 30 37 37 27 4 23 3 22 25 26

6 10 12 12 11 10 6 17 5 9 10 15

8 9 8 10 9 8 8 11 2 8 9 11

19 6 8 7 6 5 19 5 4 3 3 4

SESI - STRENGTH (λ‡ = 0.4) JESI - STRENGTH (λ‡ = 0.4)

Reaction MC DA PA GHI OHA Reaction MC DA PA GHI OHA

4 28 25 40 36 26 4 28 5 29 27 29

5 2 1 1 0 2 5 6 5 2 2 5

6 10 10 9 11 10 6 16 7 11 11 15

8 8 7 8 10 8 8 15 3 11 11 14

15 1 0 0 0 2 15 7 5 4 4 7

21 1 0 0 0 1 21 7 4 4 4 8

the SESI and JESI values depicted in Table 4. These values
indicate that the log strength may be approximately addi-
tive when λ‡ = 0.1. However, the log strength becomes
nonadditive when λ‡ = 0.2, 0.3, 0.4, since the estimated
JESI values are not negligible at these perturbation levels.
Note that, when λ‡ = 0.1, the strength is primarily affected

by reactions 4, 6, 8, and 19, which exert their influence
only singularly. However, when λ‡ = 0.2, reaction 8
becomes noninfluential, reaction 4 influences the
strength both singularly and jointly, whereas, reactions 6
and 19 still influence the strength singularly. On the other
hand, when λ‡ = 0.3, 0.4, reactions 4 and 6 influence the
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strength both singularly and jointly, whereas, reaction 8
influences the strength only jointly (since the JESI values
are larger than 10%, whereas, the corresponding SESI val-
ues are less than 10%).

It is clear from the results depicted in Table 4 (and
Table S-3.3 in Additional file 3) that all approximation
techniques work relatively well when λ‡ = 0.1, producing
accurate SESI and JESI values, as compared to the values
obtained by MC, and resulting in correct classification of
the reactions. However, when λ‡ = 0.2, 0.3, 0.4, DA pro-
duces inaccurate results, while the performance of PA
and GHI deteriorates noticeably. For example, using the
JESI results produced by ROSA, the largest differences
between the values obtained by DA and MC are 11%, 20%
and 23% for λ‡ = 0.2, 0.3, 0.4, respectively. Moreover, the
largest differences between the values obtained by PA and
MC are 10%, 8% and 5% for λ‡ = 0.2, 0.3, 0.4, respectively.
Finally, the largest differences between the values
obtained by GHI and MC are 5%, 7% and 5% for λ‡ = 0.2,
0.3, 0.4, respectively. Once more, OHA consistently pro-
vides good results, which can be used to correctly classify
the reactions at all perturbation levels.

Discussion
The previous numerical results demonstrate that, in
terms of estimation accuracy, OHA is the best method
and DA is the worst, whereas, PA and GHI are in
between, with GHI slightly better than PA. To explain
why this is so, we must investigate the sources of error
introduced by each technique, which we summarize in
Table 1.

The estimation error produced by the MC approach is
mainly due to the finite number L of samples used and
decreases slowly as L increases, regardless of the number
J of biochemical factors used, at least theoretically. Note,
however, that to achieve a certain level of accuracy in
practice, we may also need to increase L as the number J
of biochemical factors increases, due to the exponential
growth in the volume of the biochemical factor space
when adding extra dimensions ("curse of dimensional-
ity").

There are two sources of error associated with DA.
First, substantial errors may be introduced due to the fact
that DA locally approximates the response function by a
Taylor series expansion that includes only first- and sec-
ond-order partial derivatives. Consequently, DA may not
produce good estimates of the sensitivity indices under
large perturbations, since a second-order Taylor series
approximation of the response function may not be suffi-
ciently accurate over the range of factor values generated
by such perturbations. This is especially true when the
response function is nonadditive (as it is the case with the
log integrated response and the log strength of ERK-PP in
the MAPK example). In such cases, large factor variations

may produce substantial joint effects, which cannot be
captured by a local second-order Taylor series approxi-
mation. This is evident by the fact that, under large per-
turbations, the JESI values obtained by DA, associated
with the integrated response and strength, are signifi-
cantly different than the ones produced by MC.

A second source of error associated with DA is the
approximation of the first- and second-order derivatives
of the response function by finite-differences. In our sim-
ulations, we approximate the first- and second-order par-
tial derivatives of the response function by using
equations (S-1.35) and (S-1.36) in Additional file 1, with
Δ = 0.1. It has been pointed out in [1] that the resulting
approximations must be carefully used, since it is difficult
to theoretically predict, control, and numerically evaluate
their accuracy. Although a number of techniques have
been developed to deal with this problem [40], exact eval-
uation of the response derivatives usually requires simul-
taneous integration of a set of "sensitivity equations,"
together with the differential equations governing the
underlying molecular concentration dynamics, which
turns out to be a very difficult task due to stiffness of the
resulting system of differential equations [1].

PA attempts to improve the accuracy of DA by adding
high-order derivative terms in the Taylor series expansion
of the response function. In addition to the first- and sec-
ond-order partial derivatives used by the DA, the Taylor
series expansion now includes third- and fourth-order
partial derivatives that involve only two biochemical fac-
tors. Moreover, instead of approximating the derivatives
by finite differences, the method avoids such computa-
tions by expanding the response function using FD-
HDMR, by truncating all components of order ≥ 3, by
respectively approximating the first- and second-order
FD-HDMR components with second- and fourth-order
polynomials, and by estimating the coefficients of these
polynomials using regression (see Additional file 1 for
details). Errors are introduced by truncating the FD-
HDMR and locally approximating the resulting response
function by a fourth-order polynomial including only sin-
gle biochemical factors and pairs of factors. As a conse-
quence, PA may not be able to accurately estimate some
SESI and JESI values under large perturbations, since the
underlying truncation and polynomial approximation of
the response function may not be sufficiently accurate
over the range of factor values generated by such pertur-
bations. Note also that errors can be introduced due to
estimating the polynomial coefficients by regression, a
situation that cannot be evaluated and controlled easily.
As a matter of fact, and counter to intuition, we cannot
necessarily increase accuracy of estimation by using more
samples per biochemical factor, especially when dealing
with polynomial regression [48,49].
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GHI attempts to improve the accuracy of estimating the
sensitivity indices by employing the exact first- and sec-
ond-order FD-HDMR components, and numerically cal-
culating the required expectations and variances using
Gauss-Hermite integrations (see Additional file 1 for
details). Errors are introduced when truncating the FD-
HDMR and evaluating the expectations and variances by
one- and two-dimensional Gauss-Hermite integrations.
Evaluating and controlling these errors is practically
impossible. Note that higher-order Gauss-Hermite inte-
grations do not necessarily produce higher accuracy. This
is true only when the integrands are sufficiently smooth,
in the sense that can be well-approximated by polynomi-
als [49]. Truncation of the FD-HDMR essentially corre-
sponds to a local approximation of the response function,
although this approximation is expected to be more accu-
rate than the Taylor series and polynomial approxima-
tions used by DA and PA, respectively. As a consequence,
GHI may not be able to accurately estimate some SESI
and JESI values under large perturbations, since the
underlying FD-HDMR truncation may not be sufficiently
accurate over the range of factor values generated by such
perturbations.

Finally, the errors introduced by OHA are due to
approximating the ANOVA-HDMR expansion of the
response function by first- and second-order ANOVA-
HDMR components, approximating these components
with first- and second-order orthonormal Hermite poly-
nomials, and estimating the coefficients of these polyno-
mials using regression (see Additional file 1 for details).
Here, the truncation of high-order ANOVA-HDMR com-
ponents does not correspond to a local approximation of
the response function, which is why this approximation is
more accurate than truncating the FD-HDMR compo-
nents, as in GHI. In fact, if we consider perturbation lev-
els at which the higher-order (≥ 3) terms in the variance
decomposition scheme given by (7) are negligible, then
the higher-order (≥ 3) terms in the ANOVA-HDMR
decomposition of the response function will be negligible
as well [see equation (S-1.30) in Additional file 1]. This is
not necessarily true for the higher-order terms in the FD-
HDMR decomposition. Therefore, truncating the
ANOVA-HDMR decomposition of the response func-
tion, as opposed to the FD-HDMR decomposition, is well
justified for perturbation levels at which the response
variance is not appreciably influenced by high-order joint
effects. Under very large perturbations, OHA may not
accurately estimate the sensitivity indices, since the
underlying truncation of ANOVA-HDMR may not be
accurate enough due to appreciable high-order (≥ 3) joint
effects in the response variance. However, the global
nature of the approximation methodology employed by
OHA, the direct relationship between ANOVA-HDMR
and the response variance decomposition scheme given

by (7), and the orthonormality properties of the Hermite
polynomials, make OHA the most desirable technique for
approximating the sensitivity indices, among the tech-
niques considered in this paper.

Although we have also obtained simulation results for
other biochemical reaction systems, due to lack of space,
we have limited our presentation in this paper to the
results obtained for the MAPK model depicted in Figure
1. To illustrate various aspects of the approximation tech-
niques and their relative merits, we have chosen the
response functions to represent three types of high-
dimensional system responses: the log duration, lnD, is
approximately additive for the levels of biochemical fac-
tor uncertainty considered in this paper, the log inte-
grated response, lnI, is moderately nonadditive, whereas,
the log strength, lnS, is highly nonadditive. Based on our
experience so far, all our simulation results are consistent
with each other and perfectly agree with the theoretical
analysis presented in this paper. We therefore believe that
the conclusions based on the MAPK model are general
and can be applied to other biochemical reaction systems
as well.

It is very important to keep in mind that the four
approximation techniques considered in this paper are
based on the assumption that, for most biochemical reac-
tion systems of interest, perturbations of input biochemi-
cal factors will produce only single and second-order
joint effects at the output. As a consequence, truncating
the HDMR of the response function to a second-order is
a natural thing to do. Note that this assumption depends
on the particular choice of the biochemical factors used,
on how the system response relates to these factors, and
on the perturbation levels used for sensitivity analysis. In
general, the approximation methods discussed in this
paper are expected to fail in the presence of high-order ≥
3 joint effects among biochemical factors. Therefore, it
may be necessary in these cases to consider truncated
HDMR's that include higher-order basis functions.
Extension to this case is straightforward but computa-
tionally demanding, since higher-order cases require
evaluation of a large number of variance terms in the
decomposition scheme given by (7), which can be a
tedious thing to do for large biochemical reaction sys-
tems.

We should point out here that GHI is based on the
methodology proposed in [42,43], which has been effec-
tively used to calculate statistical moments of the
responses of high-dimensional mechanical systems sub-
ject to randomly fluctuating loads. In this paper, we have
reformulated this method to fit the framework of vari-
ance-based sensitivity analysis and have applied it to bio-
chemical reaction systems. On the other hand, OHA is
based on the methodology proposed in [25,44,45,50] for
approximating ANOVA-HDMR's using orthonormal
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basis functions. OHA can also be viewed as a special case
of the polynomial chaos expansion (PCE) approach to
sensitivity analysis discussed in [46,47,51], and has been
recently employed in [52] for estimating variance-based
sensitivity indices in order to learn the topology of a func-
tional network of interactions from given data. To our
knowledge, this is the first time that the four approxima-
tion techniques presented in this paper are systematically
compared to each other and used to study the sensitivity
properties of biochemical reaction systems.

To conclude, we would like to stress the fact that the
approximation techniques presented in this paper have
been derived by assuming that the biochemical factors
used for sensitivity analysis are statistically independent
and that each factor follows a Gaussian distribution. The
assumption of statistical independence between the ran-

dom variables { , m = 1,2, ..., M} and {Yn, n = 1, 2, ..., N}
has been justified in [16]. However, justifying mutual

independence within the sets { , m = 1, 2, ..., M} and
{Yn, n = 1,2, ..., N} is a very difficult thing to do. We simply
view this assumption as a convenient approximation that
allows us to proceed with the sensitivity analysis
approaches discussed in this paper. Developing variance-
based sensitivity analysis for correlated biochemical fac-
tors is a challenging problem that needs careful investiga-
tion [2,53]. On the other hand, if the biochemical factors
follow non-Gaussian distributions, such as uniform,
gamma, binomial, etc., the approximation techniques
must be appropriately modified to accommodate these
distributions. For example, if each biochemical factor fol-
lows a uniform distribution, then we must replace the
Gauss-Hermite integration step in GHI by Gauss-Leg-
endre integration [49]. Moreover, if the biochemical fac-
tors follow gamma distributions, then we must replace
the orthonormal Hermite polynomials in OHA by ortho-
normal Laguerre polynomials [47,51].

Conclusions
In this paper, we discussed four methods that one can use
to analytically approximate the second-order sensitivity
indices associated with a previously introduced variance-
based sensitivity analysis methodology for biochemical
reaction systems. The need for developing such methods
stems from an effort to remedy the large computational
burden associated with Monte Carlo estimation. We
highlighted important theoretical, numerical, and com-
putational aspects of each method, in an attempt to pro-
vide a comprehensive understanding of the advantages
and disadvantages of each technique. Our simulation
results, based on a mathematical model for the MAPK
signalling cascade, clearly demonstrate the inferiority of
second-order derivative-based sensitivity analysis at

moderate to high levels of uncertainty. It also shows the
superiority of OHA, which is constructed by truncating
the ANOVA-HDMR of the response function of a bio-
chemical reaction system and approximating the first-
and second-order ANOVA-HDMR component functions
with orthonormal Hermite polynomials.
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