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Abstract

Background: Metabolic pathway is a highly regulated network consisting of many metabolic reactions involving
substrates, enzymes, and products, where substrates can be transformed into products with particular catalytic
enzymes. Since experimental determination of the network of substrate-enzyme-product triad (whether the substrate
can be transformed into the product with a given enzyme) is both time-consuming and expensive, it would be very
useful to develop a computational approach for predicting the network of substrate-enzyme-product triads.

Results: A mathematical model for predicting the network of substrate-enzyme-product triads was developed.
Meanwhile, a benchmark dataset was constructed that contains 744,192 substrate-enzyme-product triads, of which
14,592 are networking triads, and 729,600 are non-networking triads; i.e., the number of the negative triads was about
50 times the number of the positive triads. The molecular graph was introduced to calculate the similarity between the
substrate compounds and between the product compounds, while the functional domain composition was
introduced to calculate the similarity between enzyme molecules. The nearest neighbour algorithm was utilized as a
prediction engine, in which a novel metric was introduced to measure the "nearness" between triads. To train and test
the prediction engine, one tenth of the positive triads and one tenth of the negative triads were randomly picked from

the benchmark dataset as the testing samples, while the remaining were used to train the prediction model. It was
observed that the overall success rate in predicting the network for the testing samples was 98.71%, with 95.41%
success rate for the 1,460 testing networking triads and 98.77% for the 72,960 testing non-networking triads.

Conclusions: It is quite promising and encouraged to use the molecular graph to calculate the similarity between
compounds and use the functional domain composition to calculate the similarity between enzymes for studying the
substrate-enzyme-product network system. The software is available upon request.

Background

Metabolism (the Greek word for "change" or "overthrow")
is the biochemical modification of chemical compounds
in living organisms and cells. It comprises a series of
chemical reactions that occur in a cell and enable it to
keep living, growing and dividing. Without metabolism
we would not be able to survive. Metabolism comprises a
series of chemical reactions that occur in a cell and enable
it to keep living, growing and dividing. Metabolism usu-
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ally consists of sequences of enzymatic steps, the so-
called metabolic pathways. The number of metabolic
pathways is very large, reflecting the fact that "life is
extremely complicated". Metabolic pathways interact in a
complex way in order to allow an adequate regulation.
This interaction includes the enzymatic control and hor-
mone control. In the current study, we are focused on the
enzyme control category, where metabolic pathway is the
network linking various chemical reactions of com-
pounds (substrates or products) catalyzed by enzymes.
As is known, many metabolic pathways are available in
the pathway databases, such as KEGG PATHWAY [1],
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which enable us to analyze known metabolic pathways.
However, since there are many compounds and enzymes
whose biological functions are not discovered completely,
many reactions cannot be determined. Thus, determina-
tion of the network of substrate-enzyme-product triads
(whether the substrate can be transformed into the prod-
uct with the catalyst enzyme) would be very helpful for
expanding our knowledge about the metabolic pathways,
and conducting in-depth studies in this regard. However,
it is time-consuming and expensive to determine the net-
work through biological experiments alone. Therefore, it
is highly desired if an automated method can be devel-
oped to address this problem. Encouraged by the suc-
cesses of using computational approaches to tackle
various problems in different biological systems (see, e.g.,
[2-7]), here we are to develop a different computational
approach for predicting the network of substrate-
enzyme-product triads.

The benchmark dataset used in this study consists of
positive triads and negative triads, where the number of
negative triads was about 50 times as many as positive
ones. To evaluate the prediction model, one-tenth triads
were randomly selected as testing samples and the rest
triads used to train the prediction engine. The Nearest
Neighbour Algorithm [8,9] was used to conduct predic-
tion, where the metric to measure the nearness was for-
mulated by combining the compound similarity and
functional domain composition. The compound similar-
ity was calculated based on the SMILES [10,11] and graph
representations [12]; while the functional domain com-
position representations [13,14] were used to represent
the enzyme samples and estimate their similarity. The
highest accuracy thus obtained in predicting the positive
triads was 95.41%. Interestingly, it was observed through
this research that similar triads always tended to have the
same network.

Methods
Materials
Molecular samples were downloaded from the public
database KEGG [15,16] at http://www.genome.jp/kegg/
(release 53.0 in 2010), from which 16,144 molecules were
retrieved. Among these molecules, only 2123 compounds
take part in the main reactant-pairs in each metabolic
reaction of yeast. For these selected small molecules, after
removing those that had no information to calculate their
similarity with other small molecules, we had 1,326 small
molecules left; for enzyme molecules, after removing
those whose functional domain compositions were not
available, 939 enzyme molecules of yeast genome were
obtained.

Although a same substrate might be converted into
many products with different catalyst enzymes, a triad
and its network would be unique. Each of the triads in the
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positive dataset consists of two small molecules (one for
the substrate and one for the product) and one enzyme
molecule. All the triads in the positive dataset were deter-
mined by solid experiments, and they were extracted
from two KEGG files "reaction” and "enzyme", down-
loaded from ftp://ftp.genome.jp/pub/kegg/pathway/map/
(8th January, 2010). Each of the samples in the negative
dataset, the so-called "negative triad", was generated by
randomly picking two small molecules (one for the sub-
strate and one for the product) and one enzyme molecule.
Since the possibility for such three molecules to be a pos-
itive triad was extremely low, the credibility of the nega-
tive dataset thus constructed would be also very high.
Also, to reflect the real world that the number of positive
triads is much less than that of the negative ones, the neg-
ative triads were generated 50 times as many as the posi-
tive ones. The final benchmark dataset thus constructed
contains 14,592 positive triads and 729,600 negative tri-
ads. Positive triads are also termed as networking triads,
and negative triads termed as non-networking triads.

In order to evaluate the prediction model, one-tenth
positive triads and one-tenth negative triads were ran-
domly selected as testing samples, while the rest triads in
the benchmark dataset were used to train the prediction
engine. The detail information for the (1,460+72,960) =
74,420 testing samples and (13,132+656,640) = 669,772
training samples can be found in Additional File 1.

Encoding Methods

A key step for conducting accurate prediction and analy-
sis is to effectively encode and compare the three compo-
nents: substrates, enzymes, and products. Since
substrates and products are compounds, some estab-
lished methods, such as SMILES [10,11] and MACCS
keys [17,18] can be used to estimate the similarity of com-
pounds. Recently, a method based on graph theory was
proposed to measure the similarity of two compounds by
means of the undirected graph [12]. Using graphic
approaches to study biological systems can provide an
intuitive vision and useful insights for helping analyze
complicated relations therein, as indicated by many pre-
vious studies on a series of important biological topics,
such as enzyme-catalyzed reactions [19-26], protein fold-
ing kinetics and folding rates [27-29], inhibition of HIV-1
reverse transcriptase [30-32], inhibition kinetics of pro-
cessive nucleic acid polymerases and nucleases [33], and
drug metabolism systems [34]. In this study, a different
graph approach [12] will be utilized as described below.
Graph representation

Using graph representation to estimate the similarity of
two compounds was proposed by Hattori et al. [12].
According to their method, each chemical structure can
be represented by a two-dimensional (2D) graph where
the vertices correspond to the atoms and the edges corre-
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spond to the bonds between them. The similarity of the
two compounds is estimated by detecting their common
subgraphs, followed by aligning them accordingly. The
similarity score between two compounds by the graph
representation can be calculated by the online web-server
at http://www.genome.jp/ligand-bin/search _compound.
However, the web-server only provides similarity scores
that are greater than 0.4. Accordingly, in the current
study, the similarity of two compounds is assigned to be
zero if it is less than 0.4. The similarity score thus
obtained between two compounds c; and c, is denoted by
Sgraph(cl C2)'

Meanwhile, the following non-graphic SMILES [10,11]
approach will also be utilized to facilitate comparison.
SMILES
Abbreviated from the full name of "Simplified Molecular
Input Line Entry System" [10,11], SMILES is a line repre-
sentation for compound, which consists of a series of
characters without including spaces. The similarity score
between two compounds with the SMILES representa-
tion can be obtained from a pre-computed database
called STITCH ([35] at http://stitch.embl.de/cgi/, where
the similarity score between two compounds ¢; and c, is
denoted by Sgyies(c;, ¢,)/1000. The developers of
STITCH applied the open-source Chemistry Develop-
ment Kit [36] to calculate the chemical fingerprints and
used the Tanimoto 2 D chemical similarity scores [37,38].
Functional domain composition representation
Since enzyme belongs to protein, we can use various
descriptors for proteins as summarized in a recent review
[39] to represent enzymes. In this study, we adopted the
functional domain composition to represent the enzyme
samples because it has been successfully used for predict-
ing various protein attributes [6,13,14,40-46]. The con-
cept of protein functional domain composition was first
introduced by Chou and Cai for predicting protein sub-
cellular localization [13], where the SBASE-A database
[47] was used that contained 2,005 functional domains.
In this research, we used a more complete database, the
InterPro database (release 23.1, December 2009) [48] that
contained 21,144 functional domain entries. Accordingly,
by following the similar procedures as elaborated in [13],
an enzyme molecule e can be formulated as the following
21144-D vector

5
T 1

F(e) =[xy, x5,/ X31144] (1)
where x; = 1 if there is a hit at the i-th functional

domain entry by searching the InterPro database for the
enzyme sample e; otherwise, x; = 0. Thus, the similarity

between two enzyme molecules, e; and e, is given by [13]
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Shapleve2)= E(e1) Fleo) @)
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where E(e,)- F(e,) is the dot product of two vectors,

and ”15(61)" and ”13(62)" are their modulus, respectively.

Thus, the similarities between any two substrate-
enzyme-product triads can be calculated using the above
equations, as will be further discussed below.

K-Nearest Neighbour Algorithm (KNN)

In this research, the K-Nearest Neighbour (KNN) algo-
rithm [5,8] was applied to predict a query triad belonging
to networking or non-networking. To utilizing the KNN
algorithm, we have to first define a metric to measure the
nearness between two triads T, = (s, e;, p;) and T, = (s,,
e, P,), where s;, e;, p; represent the substrate, enzyme,
product in the first triad T}, and s,. e,, p, those in the sec-
ond triad T5. Since there are three members in each triad,
and we do not know which one of the three will play more
important role in determining the network, let us first
define the following metric with a weight parameter to
measure the nearness between the two triads:

D(T,,T,) = 1-

R OIS E(29) R

- wsFunD(eI’ 62)

where the weight factor w can be obtained by optimiz-
ing the predicted result. According to the KNN rule
[8,49,50], also named the "voting KNN rule", a query triad
should be assigned to the class represented by a majority
of its K nearest neighbours. If the majority of its K nearest
neighbour triads belong to the triad networking, and so
does the query triad; otherwise, it belongs to the non-net-
working triad.

Accuracy Measurement
The accuracy of prediction is defined by

TP+TN (4)
TP+TN+FP+FN

where TP represents true positives, TN true negative,
EP false positives, and FN false negative [51-54], with

ACC =

TP

N (5)
TP+FN
for the sensitivity and

= IN+FP
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for the specificity.

In order to evaluate the performance of prediction
models more accurate, Matthew's correlation coefficient
(MCC) [55] was employed in this study, which is defined
by

MCC =
TP-TN—FP-FN
JIN+FN)-(TN+FP)-(TP+FN)-(TP+FP)

(7)

Results

The predicted accuracies with K =1 and w = 1/4, 1/2, and
3/4 for the testing triads in which the substrate and prod-
uct compounds were represented by SMILES are given in
Table 1, while those with graph to represent the com-
pounds are given in Table 2. The detailed predicted
results are provided in Additional File 2.

It can be seen from Table 1 and 2 that, when w = 1/4
and using the graph representation for the substrate and
product compounds, we obtained not only the highest
overall prediction accuracy (ACC = 98.71%) but also the
highest MCC value (MCC = 75.67%), indicating that the
graph representation approach is really quite effective.

Shown in Table 3 are the prediction accuracies when K
= 3, 5, and w = 1/4. Compared with the case of K = 1,
although the rate for the non-networking triads was
remarkably increased somewhat, the rate for the net-
working triads was decreased.
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Discussion
Our results have shown that, in the study of the substrate-
enzyme-product triad network, it is quite promising and
encouraged to use the functional domain composition to
represent enzyme and use the graph descriptor to repre-
sent substrate and product compounds, fully consistent
with the advantage of using functional domain to repre-
sent enzyme samples for predicting enzyme family classi-
fication [56-58] and the advantage of using the graph
descriptor to represent compounds as discussed in [12].
As indicated in Additional File 1, there are 1,460 posi-
tive triads in testing samples. For each of these positive
triads T; (i = 1,2,<,1460), we calculated the distance of
Eq.3 (with w = 1/4 and using the graph descriptor for sub-
strate and product compounds) from 7, to its nearest
positive triad and nearest negative triad in the training
set, respectively. Denote the two distances thus obtained
by P, and N, respectively. Shown in Fig 1 are two curves
generated from P,;and N,, named as P-curve and N-curve,
respectively. The P-curve is the one with the index i of T
as its X-axis and P; as its Y-axis. The N-curve is the one
with the index i of T;as its X-axis and Nj as its Y-axis. It
can be seen from Fig 1 that the N-curve is almost always
above the P-curve, meaning that the distances of the
1,460 testing triads to their nearest positive triads in the
training set are almost always smaller than those to their
nearest negative triads in the training set, fully consistent
with the very high success rate of 95.41% for predicting

Table 1: Prediction accuracies of testing samples using SMILES to represent substrate and product compounds.

w Prediction accuracy for each class (%) Overall prediction accuracy Matthew's correlation
(ACC) (%) coefficient (MCC) (%)
Networking triads (SN) Non-networking triads (SP)
1/4 94.25 94.95 94.94 49.14
1/2 83.01 87.77 87.68 28.62
3/4 79.11 83.74 83.65 22.94

Table 2: Prediction accuracies of testing samples using graph to represent substrate and product compounds.

w Prediction accuracy for each class (%) Overall prediction accuracy Matthew's correlation
(ACC) (%) coefficient (MCC) (%)
Networking triads (SN) Non-networking triads (SP)
1/4 95.41 98.77 98.71 75.67
1/2 85.68 97.56 97.32 58.39
3/4 82.19 97.47 97.17 55.77




Chen et al. BMC Bioinformatics 2010, 11:293 Page 5 of 11
http://www.biomedcentral.com/1471-2105/11/293

Table 3: Prediction accuracies of testing samples using different K.

Representation of compound K Prediction accuracy for each class (%)
Networking triads (SN) Non-networking triads (SP)
SMILES 3 92.67 92.03
5 89.79 92.92
Graph 3 95.34 99.48
5 94.18 99.48

the 1,460 networking triads, as shown in Table 2. Further-  86.85%) were clustered in the interval from 0.15 to 0.4,
more, for the distribution of these distance values, there indicating that the distance defined by Eq.3 for the KNN
are 1,104 (75.62%) T, with P, < 0.15, while there are only  algorithm with w = 1/4 can separate the positive triads
174 (11.92%) T, with N, < 0.15. The most of N, (1268, and negative triads very well. Also, since the distance of
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Index of testing sample
—FP-curve — R-curve
Tnterval Foeiuetey Tnterval Foapency
Positive trads  Negative triads Positive riads  Negative tnads
0.00-0.05 730 16 0.05~0.10 208 30
0.10~0.15 146 108 0.15~0.20 83 124
0.20~0.25 31 153 0.25~0.30 186 356
0.30~0.35 3 254 0.35~0.40 12 181
0.40-0.45 1 14 0.45-0.50 2 2
0.50~0.35 1 0 0.55~0.60 3 1
0.60-0.65 0 1
Figure 1 P-curve and N-curve.
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Table 4: Distance to nearest positive triads and negative triads of misclassified positive triads.
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Substrates Enzymes Products Distance Differences
Positive triads Negative triads

C00002 YIL139C C06397 0.24 0.19125 0.04875
C00002 YPL271W C00008 0.25 0.22125 0.02875
C00002 YPR033C C00020 0.1 0.03375 0.06625
C00003 YKR066C C00004 0.25 0.225 0.025
C00003 YPR167C C00004 0.25 0.177831 0.072169
C00010 YERO90W C00024 0.25 0.1125 0.1375
C00010 YER178W C00024 0.189188 0.1425 0.046688
C00024 YALO54C C00033 0.21 0.199626 0.010374
C00024 YCLO30C C06548 0.25 0.0975 0.1525
C00024 YLR153C C00033 0.21 0.199626 0.010374
C00025 YHRO37W C03912 0.375 0.202643 0.172357
C00026 YIR034C C00449 0.271688 0.25 0.021688
C00035 YGLO47W C00096 0.1875 0.165 0.0225
C00037 YOL049W C00051 0.48375 0.25 0.23375
C00047 YPLO96W C12989 0.25 0.225 0.025
C00055 YBLO13W C04121 0.177831 0.12375 0.054081
C00055 YDR410C C04121 0.25 0.22125 0.02875
C00055 YKRO69W C04121 0.25 0.19125 0.05875
C00065 YBR263W C00143 0.375 0.25 0.125
C00065 YLRO58C C00143 0.375 0.25 0.125
C00083 YPL231W C12647 0.073223 0.02625 0.046973
C00085 YKL104C C00352 0.25 0.2325 0.0175
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Table 4: Distance to nearest positive triads and negative triads of misclassified positive triads. (Continued)

C00086 YIR029W C00499 0.4525 0375 0.0775
C00096 YBR252W C00144 0.25 0.12 0.13
C00096 YGR036C C00636 0.25 0.24375 0.00625
C00108 YDR354W C04302 0.375 0.2325 0.1425
C00109 YCLO18W C06032 0.383376 0.36625 0.017126
Co0118 YGL026C C03506 0.375 0.37375 0.00125
C00143 YGL125W C00440 0.3025 0.28375 0.01875
C00155 YNL256W Co1118 0.25 0.22125 0.02875
Co0167 YJR131W C00191 0.25 0.21 0.04
C00191 YORO65W C05787 0.25 0.19875 0.05125
C00223 YDR062W C12096 0.0825 0.082244 0.000256
C00223 YMR296C C12096 0.0825 0.04875 0.03375
C00234 YDR408C C04376 0.36625 0.32125 0.045
C00333 YJR153W C00470 0.375 0.12375 0.25125
C00448 YDL205C C16144 0.225 0.19125 0.03375
C00582 YHL003C C05598 0.25 0.1875 0.0625
C00582 YKLO08C C05598 0.25 0.1875 0.0625
C00632 YDR120C C05831 0.25 0.15 0.1
C00652 YMLO86C Co6316 0.565 0.36625 0.19875
C00842 YDR127W C06017 0.1125 0.09 0.0225
C00864 YDR531W C03492 0.25125 0.25 0.00125
C00931 YDL205C C01024 0.59625 0375 0.22125
C01063 YBLO15W C09813 0.1275 0.1125 0.015
C01079 YDR044W C03263 0.41875 0.25 0.16875
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Table 4: Distance to nearest positive triads and negative triads of misclassified positive triads. (Continued)

C01096 YCL030C C02888 0.25 0.22875 0.02125
C01100 YIL116W C01267 0.375 0.25 0.125
C01902 YML008C C08830 0.375 0.25 0.125
C02411 YGR155W C03058 0.09 0.075 0.015
C02909 YHR007C C14098 0.25 0.195 0.055
C03012 YDR402C 11713 0.36375 0.2575 0.10625
C03598 YPR167C C04297 0.25 0.1875 0.0625
C04751 YARO15W C04823 0.34 0.32875 0.01125
C04874 YDR452W C05925 0.16875 0.125 0.04375
C06102 YLR231C C06105 0.535 0.25 0.285
C06397 YBR029C C07838 0.18375 0.17625 0.0075
C06599 YNL202W C06600 0.147938 0.113376 0.034562
C06714 YDR127W C06723 0.0975 0.08625 0.01125
C07649 YDR402C C12673 0.55 0.3625 0.1875
C07732 YGR234W C07733 0.3075 0.25 0.0575
C09811 YGLO63W C09812 0.1125 0.10125 0.01125
C11907 YPR118W C11908 0.25 0.22875 0.02125
C11923 YFRO15C C12384 0.25 0.03 0.22
C11923 YLR258W C12384 0.25 0.03 0.22
C14082 YHR007C C14089 0.25 0.195 0.055
C15786 YGRO60W C15797 0.09375 0.08625 0.0075
Eq.3 is defined based on the similarities of two substrates, As indicated by comparing the results in Table 1, Table

two enzymes and two products, the smaller the distance 2 and Table 3, the best predicted rate for the 1,460 net-
between the two triads, the more similar the two triads = working triads in the testing set was 95.41%, with w = 1/4
are. It is interesting to see from the current study that the and K = 1. Of these triads, 67 were mispredicted. It is
similar triads as defined by our formulation almost instructive to see the reason behind these by examining
always exhibit the same network. Table 4, where the difference between the distance to the



Chen et al. BMC Bioinformatics 2010, 11:293
http://www.biomedcentral.com/1471-2105/11/293

Page 9 of 11

[4)]

o

Frequency

— = NN
[

o

(]

o

{0, () 0. 05 0.1

Figure 2 Distribution of differences in Table 4.

Difference

nearest positive triad and the distance to the nearest neg-
ative triad for each of the 67 misclassified triad samples
was given. As we can see from the table, the maximum
difference was 0.285 and the minimum difference was
0.000256. Shown in Fig 2 is the distribution of the dis-
tance differences listed in Table 4. Of the 67 misclassified
positive samples, 47 (70.15%) samples are with the dis-
tance differences less than 0.1, implying that the mispre-
dicted triads are pretty close to the margin of correct
prediction, and that the current metric as defined in Eq.3
for measuring the nearness for the KNN algorithm is
quite effective.

Like most of the other prediction methods, the current
prediction method also has its own limitation. For exam-
ple, for those query triads without any similarity at all to
any of the triads in the training datasets, the performance
of the current prediction method might be poor. This is
because the current prediction method was established
on the basis of the "triad similarity", i.e., the similarity
between substrates, between enzymes, and between
products.

As pointed out by one of the anonymous reviewers, it
would be interesting to further discuss the current algo-
rithm from the viewpoint of divergent and convergent
evolution [59]. We shall work on such an interesting topic
in our future work.

Conclusions

Metabolic pathway is one of the key biological networks,
consisting of many metabolic reactions involving sub-
strates, enzymes, and products, where substrates can be
transformed into products with some particular catalytic
enzymes. Knowledge about the network of substrate-
enzyme-product triads is very useful for in-depth studies
of the metabolic pathways. It is both time-consuming and

costly to determine the network through biological
experiments alone, and hence it is highly desired to
develop computational methods in this regard. The com-
putational method reported in this paper can be used to
identify the network of substrate-enzyme-product triads
with quite high success rate. It is anticipated that the
method may become a very useful tool for studying drug
metabolism systems. Meanwhile, as shown through this
study, it is quite promising to introduce the molecular
graph and functional domain composition into this area.
Since user-friendly and publicly accessible web-servers
represent the future direction for developing practically
more useful predictors [60], we shall design a user-
friendly web-server for the prediction method so that
many experimental bench scientists can easily use it to
get the desired results without the need to go through all
the mathematical details.

Additional material

Additional file 1 Networking and non-networking triad samples in
the training dataset and testing dataset used in this study. Each triad
consists of a substrate, an enzyme, and a product.

Additional file 2 The detailed prediction results. This file lists the pre-
diction results for each of the testing sample in Additional File 1.
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