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Abstract

genomes Ricinus communis and Vitis vinifera.

Background: There has been a trend in increasing the phylogenetic scope of genome sequencing without finishing
the sequence of the genome. Increasing numbers of genomes are being published in scaffold or contig form.
Rearrangement algorithms, however, including gene order-based phylogenetic tools, require whole genome data on
gene order or syntenic block order. How then can we use rearrangement algorithms to compare genomes available in
scaffold form only? Can the comparative evidence predict the location of unsequenced genes?

Results: Our method involves optimally filling in genes missing from the scaffolds, while incorporating the augmented
scaffolds directly into the rearrangement algorithms as if they were chromosomes. This is accomplished by an exact,
polynomial-time algorithm. We then correct for the number of extra fusion/fission operations required to make
scaffolds comparable to full assemblies. We model the relationship between the ratio of missing genes actually absent
from the genome versus merely unsequenced ones, on one hand, and the increase of genomic distance after scaffold
filling, on the other. We estimate the parameters of this model through simulations and by comparing the angiosperm

Conclusions: The algorithm solves the comparison of genomes with 18,300 genes, including 4500 missing from one
genome, in less than a minute on a MacBook, putting virtually all genomes within range of the method.

Background

The dramatic drop in the expense of genome sequencing
has two somewhat contradictory effects on the study of
gene order. On one hand it greatly increases the range of
organisms available for genomic analysis, including com-
parative studies and phylogenomics. On the other hand,
however, it encourages the final release of the genomes in
unfinished (standard or high-quality draft) form, since
the cost of finishing has not decreased at nearly the same
rate as the cost of random sequencing [1]. The use of
draft genomes makes many analyses and interpretations
tentative and prone to error, and leads to particular prob-
lems in the comparative study of gene order. Many algo-
rithms for studying genome rearrangement require whole
genome data, i.e., complete representations of each chro-
mosome in terms of gene order, conserved segment
order, or some other marker order, in order to calculate
the rearrangement distance D between two genomes.
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Items whose chromosomal location is unknown cannot
be part of the input. This puts the many draft genomes
outside the scope of currently available comparison tech-
nology, even though these data may be suitable to other
goals of genomics.

Strategy

To overcome these hindrances to the exploitation of
much of the genome sequence data produced now and in
the future, we have undertaken a program of adapting
genome rearrangement methodology to partially
sequenced and incompletely assembled genomes. The
idea is to use comparative information algorithmically to
improve the assembly of a draft genome, including the
ordering of scaffolds on the chromosomes and the inser-
tion of unsequenced genes in scaffold gaps, while simul-
taneously using the improved assemblies in comparison
of gene order and inference of genome rearrangement. In
earlier studies on papaya Carica papaya [2] and Droso-
phila [3], we investigated the case when one or both of
the genomes being compared are given only in contig
form. Though we did manage to find appropriate
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genomic data in contig form to test our methods in these
studies, most sequencing projects are able to order some
or all of the contigs, with intervening gaps, in scaffolds,
which contain more information than unordered sets of
contigs. In the next section, we model how contigs are
organized into scaffolds in the two current approaches to
sequencing. We then formalize scaffolded genome com-
parison, where one of the genomes is known only in scaf-
fold form, as a combinatorial optimization problem for
inserting missing genes in the scaffold gaps in such a way
as to minimize the rearrangement distance. We devise an
exact polynomial-time solution for this problem. We then
assess how this algorithm performs on simulated data
and apply it to compare the scaffolded genome of castor
bean Ricinus communis to the fully sequenced genome of
grapevine Vitis vinifera. In the process, we discover how
to estimate what proportion of the missing genes are sim-
ply unsequenced or unidentified, and what proportion
are actually absent from the genome.

Although using comparative evidence has long been
commonplace in predicting gene location and indeed is
one of the original motivations for model organism
genomics, we believe this to be the first effort to predict
the locations of large numbers of genes simultaneously
using combinatorial optimization, while detecting and
taking account of genome rearrangements.

Partial sequencing scenarios

By contig we understand a completely sequenced frag-
ment of a chromosome. This is assembled through identi-
fying significantly overlapping reads of sequencing
reactions. By scaffold we mean a set of ordered contigs
(the order reflecting that on the chromosome) separated
by unsequenced DNA which may be of known or
unknown length. An anchored scaffold or contig is one
whose location on the chromosome is known, thanks to
any one of a number of different types of evidence.

In an idealized completely sequenced and gene-identi-
fied genome, complete gene orders would be known for
each chromosome (Figure 1a). When genome sequencing
is not supplemented by finishing techniques, however,
three different types of incomplete gene order data can
result. When a strategy such as shotgun sequencing of
unordered clones is employed, we have only isolated con-
tigs constructed from overlapping reads, which would
contain no internal gaps but could be relatively short
assemblies (Figure 1b).

Contigs-only assemblies could also involve much lon-
ger sequence fragments produced by complete, polished,
sequencing of BACs or other chromosome fragments,
which are not yet numerous enough to have been assem-
bled into full chromosomes. When paired ends reads
with unsequenced inserts are included with shorter com-
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plete reads, some of the contigs may then be ordered into
scaffolds, with unsequenced gaps intervening between
successive contigs, as in Figure 1c. Finally, detailed physi-
cal maps may be available to anchor all scaffolds to pre-
cise chromosomal locations, so that the scaffolds for a
given chromosome become, in effect, a single scaffold or
pseudomolecule (Figure 1d).

In practice, sequencing projects may use both BAC and
shotgun methods as well as sequence obtained by other
means. Not all BACs are necessarily anchored and some
contigs produced by shotgun methods may be anchored.
Nevertheless, from our viewpoint, the three abstractions
represented in Figure 1b), 1c) and 1d) capture the essen-
tial distinctions between contig and scaffold and between
anchored and unanchored.

Genomic distance

The rearrangement distance or genomic distance D(G;,
G,) is a metric counting the number of rearrangement
operations necessary to transform one signed multichro-
mosomal gene order G, into another G,. In the simplest
case, we require that the two genomes both contain the
same # genes, with no duplicate genes. The positive or
negative sign associated with a gene indicates its reading
direction (or strandedness). To calculate D efficiently, we
use the breakpoint graph of G, and G, as follows and as
illustrated in Figure 2.

In a first step, each gene g with a positive sign is
replaced by its tail and head vertices in the order g,, g;; for
-g we would put g, g,. Each pair of successive genes in the
gene order defines an adjacency, namely the pair of verti-
ces that are adjacent in the vertex order thus induced. For
example, if i, j -k are three neighbouring genes on a chro-
mosome then the unordered pairs {i;, j,} and {j,, k,} are
the two adjacencies they define. There are two special
vertices called telomeres for each linear chromosome,
namely the first vertex from the first gene and the second
vertex from the last gene.

We convert all the telomeres in genome G; and G, into
adjacencies with new vertices all labelled T or T, respec-
tively. We define a blue edge connecting the vertices in
each adjacency in G; and a red edge for each adjacency in
G,.

In the next step in Figure 2, we start constructing the
breakpoint graph by identifying (i.e., superimposing)
each vertex in G, with the identically labelled vertex in
G,. In the last step depicted in Figure 2, we make a cycle
of any path ending in two T or two T, vertices, connect-
ing them by a red or blue edge, respectively, while for a
path ending in a 77 and a T, , we collapse them to form
one T vertex.
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a) Completely sequenced genome with
three chromosomes, and genes identified.

b) Unordered contigs from WGS
sequencing.

¢) Unordered scaffolds, from WGS
sequencing with paired end inserts.

d) One scaffold per chromosome,
from sequencing anchored BACs

Figure 1 Types of partially sequenced and incompletely assembled genomes. Shaded areas represent sequenced contigs. Dots represent iden-

| o000 0000000 000 |
| 00 0000000 00000000 0|
O
e
e00® o ® ¢e
o® () [
o0 (N X )
e
eeooe o
0
EXXXEEY | oo
(o ® ° o |
[ oo® o 00
XX xxyr [0 e]
| o0e0e o0 o000 X}
| @@ eeoe o0 ° o |
leeooe o 0
tified genes. The set of contigs within each outlined portion has a known order.

Each vertex is now incident to exactly one blue and one
red edge. This bicoloured graph decomposes uniquely
into x"alternating cycles. If #'is the number of blue edges

D(Gy,Gy) =1~ (1)
and the optimizing rearrangements are rapidly recov-
ered by operations on the graph [4,5].

In the Methods section below, we will refer to Tesler's
[6] mathematically equivalent formulation of the break-
point graph, where the final step in Figure 2, turning
paths into cycles, is not carried out. Instead, there are
only x < k’ cycles and a certain number 7 of the paths,
namely those with at least one T; endpoint, are called

good paths. Then

D(Gy,Gy)=n+yx, —Kk—m, (2)

where y; is the number of chromosomes in G;.
Although the breakpoint graphs, and D, are equivalent in
the two formulations, Tesler does not call D "genomic dis-
tance". This difference is due to our inclusion of transpo-

sitions of chromosomal segments in the repertoire of
rearrangements permitted in calculating D, together with
the inversions, reciprocal translocations, chromosome
fusions and fissions allowed by Tesler.

Methods
There are two different aspects of the comparison of a
completely assembled genome G; with a genome in scaf-
fold form G,. One is scaffold filling, which predicts where
in G, to locate potential genes that have not been identi-
fied in the sequence but are present in G;. The second is
contig fusion, which suggests how to piece G, contigs
together to form chromosomes. In Figure 1, only scaffold
filling is necessary for scenario (d) and only contig fusion
is required for scenario (b). Scenario (c) requires both.
We have shown how to handle the contig fusion prob-
lem in previous publications on papaya [2] and on Droso-
phila [3], and this will be reviewed in a separate section
below. In the present paper we design and analyze an effi-
cient exact algorithm for scaffold filling that simultane-
ously carries out contig fusion. We use this algorithm to
analyze real and simulated data.
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Figure 2 Construction of breakpoint graph. Upper left: Signed genomes G, and G,. Upper right: Vertices and edges of individual genome graphs.
Lower left: Cycles and paths after identifying vertices of two genome graphs. Lower right: Cycles in completed breakpoint graph.
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Filling in scaffolds

When G, is only partially sequenced, and is missing some
orthologs with G, (cases (c) and (d) in Figure 1), we can-
not complete the breakpoint graph since the red edges
cannot be drawn to the two vertices corresponding to
each missing gene, though these vertices are present in
the graph and are incident to blue edges. At the same
time, although we can draw a red edge between the last
gene in one contig of a scaffold and the first gene in the
next contig, we know that in reality there may be genes in
the unsequenced gap between the contigs, and that once
these genes are identified, the red edge will have to be
"cut" and replaced by two or more gene vertices and two
or more other red edges.

Statement of the combinatorial optimization problem
G, consists of y chromosomes, each of which is an
ordered set of signed genes.

A contig in G, is an ordered set of one or more signed
genes, each orthologous to a gene in G;. A scaffold in G,
is an ordered set of contigs. Then G, consists of a number
of scaffolds, each of which is an ordered set of genes
interrupted occasionally by a gap.

Then with reference to Figure 1(c) and (1d), the prob-
lem becomes: Find an assignment of the missing genes to

the gaps in the scaffolds or at the ends of the scaffolds of
G,, thus transforming the scaffolds into contigs, such that

the resulting set of contigs (_22 is at a minimum rear-
rangement distance from G;.

Implicit in our definitions is that between every pair of
successive contigs in a scaffold is a gap large enough to
contain genes. Where this is not the case, we can simply
create a larger contig by disregarding the gap and concat-
enating the contigs on either side. We also disregard con-
tigs without genes, so that they too may be subsumed in a
gap. Note these are basically terminological conventions,
rather than restrictions on the data.

A polynomial-time algorithm

The exact, linear-time, algorithm we have devised com-
pletes the breakpoint graph, only partially determined by
G, and by the scaffolds of G,, by means of insertions of
missing genes into the gaps of G,.

Terminology

We have hitherto used the term path only to refer to
alternating-colour sequences of edges connecting some
of the bivalent vertices in the breakpoint graph, with
telomeres at either end, that are eventually turned into
cycles by joining or collapsing these two telomeres. In
what follows, however, a path more generally may be any
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such connected set of edges, with or without telomeres,
and may consist of only one (blue) edge. Paths with two
telomeres will be called complete paths.

A free end is a vertex in the graph that has no incident
red edges, only a blue one.

Thus when we say that that G, and the scaffolds of G,
partially determine a breakpoint graph, we mean that
there are paths not ending in two T vertices, but in at
least one free end.

A half path is a path ending in one telomere and one
free end. A pseudopath is a structure consisting of two
half paths where the two telomeres are deemed to be
adjacent, though not by means of a red or blue edge.
Pseudopaths will sometimes be treated as if they were
paths, with the two free ends being the free ends from the
two constituent half paths.

Initially, a cuttable edge is a red edge drawn between
vertices of two successive genes in a scaffold that are not
in the same contig, i.e., there is an unsequenced gap
between the genes. Subsequently, if a red edge is dis-
rupted during gene insertion, new red edges are created
as will be specified in the algorithm presented below.

A bundle is a subset of the paths in the breakpoint
graph of G, and G,. Each bundle is associated with one or
more of the missing genes. The vertices corresponding to
each missing gene, its free ends, must be in the same bun-
dle and must be endpoints of two paths, or the two ends
of one path. An open bundle contains at least one cuttable
edge; a closed one has no cuttable edges. As the break-
point graph is completed by the algorithm, the bundles
also change.

A sketch of the algorithm

We have divided the algorithm into three parts. The first,
the main algorithm fillScaffolds, constructs the partial
breakpoint graph determined by G; and the scaffolds of
G,, and then partitions the paths in this graph (except the
complete paths, and not including the cycles) among a
number of bundles, some open and some closed. Initially,
a bundle can contain either zero or two telomeres. If they
are present, the half-paths, which are the two paths end-
ing in telomeres, are linked together to become a pseudo-
path.

Although the missing genes represented by the free
ends in an open bundle will eventually be inserted in an
optimal way by manipulating cuttable edges, this is not
possible within closed bundles. fillScaffolds thus calls
the second algorithm combineBundles, which subsumes
all closed bundles within open ones, as in Figure 3, thus
creating larger open bundles, including some which con-
tain more than two telomeres. This is done in such a way
as to minimize the eventual genomic distance between G,

and G, . This step requires interchanging the half paths
of the pseudopaths in the two bundles being combined,
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through changes in telomere adjacencies, to maximize
the number of good paths according to the Tesler formu-
lation in Equation (2).

Finally, fillScaffolds calls completeBundle, which
makes the connections between the free ends and the
cuttable edges within each of the open bundles.

The output of the algorithm includes cycles, each con-
taining at most one pair of "adjacent" telomeres, which
become the two endpoints of a complete path within the
breakpoint graph.

After presenting the algorithm, we state and prove a
theorem establishing its correctness:

Algorithm fillScaffolds
Input: A fully sequenced and assembled (without
gaps) genome G;, and a genome G, made up of scaf-
folds containing some of the genes in G, and gaps.

Output: A completed form of G,, denoted G, where
the missing genes from G, are inserted into the gaps

in such a way as to minimize D(G,,G,), and the
associated breakpoint graph.

1. Construct the breakpoint graph based on genome
G (blue edges) and G, (red edges), including cuttable
red edges between consecutive genes in G, scaffolds
separated by a gap. We include T, vertices at the
telomeres of G; chromosomes and T, vertices at the
end of G, scaffolds. We do not complete the third step
of Figure 2, so the graph may contain cycles, complete
paths and other paths.

2. We construct the initial bundles as follows. We
choose any free end not already in any bundle as the
seed of a new bundle. Then if a path containing free
end g, is in a bundle B, then we also include the path
with g, as a free end, and vice versa.

3. There can be zero or two T vertices in an initial
bundle. If there are two, we consider the two half
paths as if they were one path where the two T are
adjacent, even though there is no red or blue edge
connecting them.

4. We use combineBundles to remove all the closed
bundles by merging them with open bundles, or with
complete paths or cycles with cuttable edges, result-
ing in larger open bundles. We do this in such a way

as to minimize D(G,,G,).
5. Complete each bundle, using completeBundle.

Algorithm combineBundles

Input: The set of open and closed bundles as well as the

set S of complete paths and cycles with cuttable edges.
Output: A set of open bundles, and a subset S’ of the

complete paths and cycles. The open bundles contain all
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Figure 3 (left) Combining an open bundle (in black) and a closed bundle (in blue) by exchanging half paths. Dots represent free ends, rectan-
gular blocks represent T vertices in half paths. Cuttable edge in red. This may be iterated to incorporate more closed bundles in a linear or circular
structure as in the large open bundle on the right. Cuttable edge is in original open bundle.

the vertices in the input bundles plus those vertices in

S\S’, the paths and cycles not included in S'.

1. while there is a closed bundle with a T, T adja-
cency and a open bundle, or complete path with a
cuttable edge, with a T, T, adjacency, combine them
by switching the adjacencies between T vertices, i.e.,
by exchanging two half-paths. This results in a larger
open bundle and also increases the number of good
complete paths by one.

2. while there is a closed bundle with a T, T, adja-
cency and a open bundle, or complete path with a
cuttable edge, with a T, T adjacency, combine them
by switching adjacencies. This results in a larger open
bundle and also increases the number of good com-
plete paths by one.

3. while there is a closed bundle with a T, T, adja-
cency and closed bundle with a T} T} adjacency, com-
bine them by switching adjacencies. This results in a
larger closed bundle and increases the number of

good complete paths by one. The closed bundle even-

tually has to be combined with an open bundle or
cycle or complete path.

4. while there is a closed bundle with a TT adjacency
and a open one with a 7T adjacency, combine them
by switching adjacencies. To maintain the number of

good paths, if the adjacencies are T, T,, and T;T5,

then after the switching the adjacencies they should
be T,T, and T;T, .
5. while there is a closed bundle, combine it with an
open bundle or cycle or complete path by adding a
pair of cuttable edges, as in Figure 4:
i. Find two free ends g, and g, in the closed bundle.
ii. Choose a cuttable edge k/ in some open bundle,
or path or cycle.
iii. Replace kI by two cuttable edges kg; and and

gl.

Algorithm completeBundle

Input: a good bundle.

Output: a number of cycles.

while there remain paths in the bundle as in Figure 5
1. Choose a path containing a cuttable edge k/, with
endpoint g, where / is not on the subpath between k&
and g,.

2. Find the path with endpoint g, possibly the same
path.

3. Replace ki by kg, and g/, which are red cuttable
edges. This results in a cycle containing kg, and a path
containing g,/, unless g,and g; are on the same path, in
which case the operation produces two cycles.

Proving the algorithm
After the first three steps of fillScaffolds, suppose we
have constructed y open bundles with r;, <, r, paths, B
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Figure 4 Combining a closed bundle, represented by blue incomplete paths, with an open bundle (left) and with a cycle (right) with cutta-
ble edge ki, shown here after being replaced by two cuttable edges kg, and g/.
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closed bundles not containing T vertices with q;, <, qg
paths, and § - 8 closed bundles containing T vertices with
dp+1» < gspaths. Let ? = O unless § - 8 > 0 but there are no
open bundles containing T vertices nor any complete
paths with cuttable edges, in which case ? = 1. Suppose
there were x* cycles and p* complete paths in the original
breakpoint graph of G, and G,.
Theorem: There are

Y 5
K+p:;<*+p*+2ri+2qi+y—ﬁ—g (3)
i=1 i=1

cycles and complete paths in the final breakpoint graph
constructed by fillScaffolds. Moreover, not only is the
number of cycles k maximal over all ways of inserting the
missing genes, but so is the number of good complete
paths 7 < p. Thus the algorithm also implicitly produces
the value of D(G,, G,).

Proof: We first show that in completing an open bundle
with r paths, we obtain r + 1 cycles. Later, we will show
that each of these cycles has at most two T vertices.

Consider the case r = 1. Figure 5 shows that completing
this bundle in the optimal way creates two cycles. It also
shows that for r > 1, we obtain a open r - 1-bundle plus
one cycle. Thus, completing an open bundle with r paths
produces a total of r +1 cycles.

It is thus never advantageous to draw a pair of red edges
between two open bundles with r and s edges, since this
cannot create a cycle, only a bundle with r + s - 1 edges.
When completed this will only give r + s cycles instead of
the r + s + 2 if we had completed them separately.

On the other hand, to be processed toward completion,
it is necessary for a each closed bundle to be combined
with either an open bundle, or a cycle or a complete path
with a cuttable edges, since a closed bundle has no cutta-

ble edges by itself. The optimum ways to do this are illus-
trated in Figs. 3 and 4. In the former case, where both
bundles have T vertices, switching adjacencies allows a
closed bundle with r paths to contribute r paths to the
open bundle, and eventually to be responsible for r cycles.
If one of the bundles has no T vertices, on the other hand,
the closed bundle can contribute only r - 1 of its r paths in
combining with the open bundle (Figure 4).

Now the numbers of open bundles, closed bundles with
T vertices, closed bundles without T are fixed at the out-
set, and we can also find out if there are open bundles
with T (or complete paths with cuttable edges) or not at
the initial stage. Counting the number of cycles given by
each type we arrive at the first claim of the theorem. Since
each combination and completion is done optimally in
the algorithm, the result for x is best possible. So is 7,
through the operations minimizing the number of 7,7,
edges in combineBundles.

It remains to show that the cycles output by the algo-
rithm have no T vertices, i.e., are the kind of cycles
appearing in the breakpoint graph in the second to last
stage of the construction of Figure 2, or exactly two adja-
cent 7, i.e., are the kind of complete paths (upon dissolu-
tion of the TT adjacency) appearing breakpoint graphs.
Otherwise, the values of k and 7 that we obtain in this
theorem would not be those required for Equation (2).

To prove this, we refer to Figure 6, which integrates
aspects of Figure 3, 4 and 5. The case by case analysis
illustrated there shows that if there are more than one 7T
adjacency in a path, these adjacencies will necessarily be
incorporated at most one at a time into cycles. Cycles
without T'T adjacencies are also cycles in the breakpoint

graph between G, and the augmented genome G, and

the cycles with TT adjacencies become complete paths,
either good or bad, in this breakpoint graph. This com-
pletes the proof.
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Figure 5 First step in completing a good bundle, maximizing the number of cycles. ris the number of incomplete paths in the bundle. Dots
represent free ends before the step. k/is a cuttable edge in the input bundle, as are kg,and g,/in the new bundle. Output consists of two cycles (for r
= 1) or one cycle and an open bundle with one fewer incomplete path (for r> 1).

The construction of the optimal breakpoint graph by
fillScaffolds inserts the missing orthologs in the scaffold
gaps and at the ends of scaffolds in a way that minimizes
the number of rearrangements intervening between G,
and the optimal G, thus constructed. Once the optimal
breakpoint graph is known, these rearrangements can be
recovered rapidly by standard manipulations on the
graph [4], as mentioned in our discussion of Equation (1).
The construction of breakpoint graphs is of linear com-
plexity, and this extends to the identification of bundles
and their manipulations in fillScaffolds. This includes
the placement of missing genes. The recovery of mini-
mizing rearrangements can be implemented in subqua-
dratic time [4].

Contig fusion
The algorithm in the preceding section fills in the gaps
between the scaffold whenever this is justified, so that by

our definitions, the scaffolds become contigs. For unan-
chored scaffolds, as they are filled in by our algorithm
described above, they are also being assembled into chro-
mosomes. In doing this, our method based on the break-
point graph treats the incorporation of each scaffold/
contig as if it were a chromosomal fusion operation.

We previously found [3] through simulations that for
ordinary genomes, i.e., complete gene orders, if there are
T rearrangements, but the genomic distance algorithm
infers D rearrangements, then the expectation

E(D) = n(1 - e%lr/n%s(r/n)z)l (4)

An estimate of 7is

- n D
T:E[—il+\/lf—4lzlog(1—;]] (5)
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l

o

a;
G.
o Qk | = -
H.
o QK | ==
g I—oah

where 1, and 1, are parameters that depend on how the
rearrangements are generated.

When one of the genomes consists of unanchored con-
tigs (or filled-in scaffolds), we have to correct the output
of the genomic distance algorithm Dgbefore using (5) to
take into account the number of "fusions" necessary to
optimally piece together the contigs into chromosomes.
The corrected distance is

D=Dgs-a(t)| xa—xsl (6)

where a(7) is a decreasing function of the number of
rearrangements 7, approximately paralleling the deriva-

dDg

tive of D, namely et

Missing genes: absent or just unsequenced?
We will use G; and G, here to refer to the genomes that
are the source of the gene order data. By definition in our

method, unsequenced genes must be located in gaps
between the contigs or at the ends of scaffolds. We
assume any genes within contigs have been identified.
However, many or even most genes that are in G, but
have no ortholog in the G, data may actually be absent
from the latter genome either because over time they
have been deleted from G, , or because they were
acquired by G; but not by G, since the two lineages
diverged.

The scaffold filling algorithm is designed to enhance
sequence assembly, and cannot distinguish one type of
missing gene from another. Indeed, where gene models
are available from ¢cDNA or EST data, we could simply
discard the missing genes from G, that are not reflected
in the set of gene models for G,. In general, however, we
do not have this information, and the best we can hope
for is to be able to estimate quantitatively how many of
the missing genes are present in the genome, but unse-
quenced.
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Let G, represent the genome G, with all the genes
missing from G, deleted. The remaining genes are
ordered in the chromosomes in the same way as in G; .

One way to estimate the proportions of the two types of
missing genes is to compare the genomic distance

D =D(G,,G,), where only the genes in common in the

data from the two genomes are considered, with the dis-

tance D = D(G,,G,) after G, is augmented to G, by the
scaffold-filling procedure. As detailed below, we have
found in extensive simulations that if all unsequenced
genes were originally located in regions that are gaps after
the (partial) sequencing and assembly are finished, the

distances D and D are identical, or almost so, over a
wide range of genome sizes, rearrangement distances and
missing gene sets. If on the other hand, many of the miss-
ing genes are in reality absent from the G, genome, a
major proportion of these, approximately equal to the
coverage of the genome sequencing, will have been in
syntenic contexts in G, that are in contigs in G,. Thus
forcing these genes to be in gaps, as the scaffold-filling
algorithm does, will tend to increase the rearrangement

distance D . Then if m is the number of missing genes

D'=(D-D)/m (7)

is a measure of how the proportion of missing genes are
not actually in the G, genome.

The value of D' depends on how much the contigs are
already rearranged in the independent evolution of the
two genomes. If the contigs are highly rearranged com-
pared to G;, then there is no necessary increase in D’
when the missing gene is forced into a gap. But if the syn-
tenic context of a missing gene is intact in a contig, then
forcing this gene into a gap remote from this context will
necessarily increase D"

Our strategy for evaluating this dependence requires us
to manipulate the overall degree of syntenic context con-
servation while keeping D fixed. In the simulations in the
Results section below, we accomplish this by using fixed
length inversions. By generating the genomic divergence
with very short inversions, we require more inversions to
attain the same inferred D, but we also guarantee the
existence of a good number of conserved segments (con-
served syntenic contexts) and allow D'to increase. By fix-
ing the inversion length at successively higher values, the
scope of each inversion becomes longer and it is less
likely a conserved segment will remain undisrupted, and
D’ will tend not to increase.
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Results and discussion

In this section we apply the scaffold filling and contig
fusion methods by comparing the draft genome of Rici-
nus communis with the more complete genome of Vitis
vinifera. We will do this in three stages. First we will give
a brief description of the phylogenetic relationship of
these two angiosperms and a preliminary bioinformatic
comparison of their genome sequences. This will give us
14,033 presumptive orthologous genes in the two
genomes, plus 4267 genes Vitis genes which are not in the
Ricinus data, either because they are in the unsequenced
parts of the genome, or because they have simply been
deleted from, or never acquired in, the Ricinus lineage.
We call these missing genes. We calculate statistics about
how the missing genes are distributed in Vitis, as single-
tons, pairs, triples or longer runs. We also calculate for
Ricinus the distribution of the number of genes per contig
and per scaffold, the number of contigs per scaffold and
the total numbers of contigs and scaffolds.

In the second stage, we use these distributions to simu-
late random pairs of genomes having the same character-
istics as the Ricinus-Vitis data set. We model the number
and distribution of missing genes as being due to three
types of process:

« the evolutionary divergence of gene complement
between the two species,

« the variability of conserved segment size as chromo-
some inversions disrupt gene order over time, and

« the distribution of contig and scaffold sizes pro-
duced during the sequencing project.

The simulations enable us to predict how these factors
affect the results of scaffold filling.

Finally, in the third step, we apply our scaffold-filling
algorithm and contig fusion analysis to the Ricinus-Vitis
data and interpret the results in the light of missing gene
models we elaborate and the simulations we carry out.

The castor bean genome

Sequenced by the Sanger method to a depth of 4x, the
castor bean genome exemplifies the kind of final product
that we can increasingly expect of draft genome sequenc-
ing projects, with a large number of scaffolds (> 28,000)
not anchored to any chromosome. (Indeed, later
genomes sequenced with the 454 and Solexa methods
will have shorter reads and have perhaps even shorter
scaffolds.) Almost all of the genes, however, are found on
a smaller number (= 1600) of the larger scaffolds (> 10
Kbp). To illustrate our method, we wish to pick a com-
pletely sequenced genome with which to compare Rici-
nus, one from a not too distantly related angiosperm
species, so that it is likely to share a large majority of its
gene complement and gene order with Ricinus. More dis-
tant relatives might also work, but divergent gene com-
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plement and decreasing synteny would lead to more
ambiguous and less reliable results. Moreover, there is
another, more stringent, condition. On the two lineages
from their common ancestor leading to the two genomes,
there should be no whole genome duplication (WGD)
event. Though we know how to compare gene orders of
such former tetraploids with diploids that diverged before
the WGD [2,7], in the first instance we would like to avoid
such complexities in testing our new procedure. This
eliminates Arabidopsis, Oriza, Populus and Medicago
among the high-quality genome sequences available. It
also eliminates the closely related Hevea brasiliensis (rub-
ber) genome, in the same family (Euphorbiaceae) as Rici-
nus, for which the draft sequence has been announced,
but which is a recent tetraploid or, more accurately, an
amphidiploid [8], p. 278.

Fortunately, there seems to be no WGD in the lineages
leading to Vitis vinifera and Ricinus since their last com-
mon ancestor, and so we can use Vitis as G; in our
method and Ricinus as G,. Although Burleigh et al. [9]
have suggested that there have been one or more WGD
events in the rosid clade rooted after the divergence of
Vitis vinifera, in the lineage leading the Euphorbiaceae
family, which contains Ricinus, the evidence presented in
that paper, namely a large number of gene families origi-
nating in the early period, is not at all statistically signifi-
cant, may be a methodological artifact as acknowledged
by the authors, and, pace reference [10], is uncorrobo-
rated in the literature (cf the recent survey of the many
angiosperm WGD events by Soltis et al. [11]). In addi-
tion, though a relatively recent WGD has been proposed
for Vitis [10], this suggestion has not met with general
acceptance [11,12] either. Thus we may provisionally
treat the Vitis-Ricinus relationship as being uninter-
rupted by WGD. Finally, there is evidence that Vitis gene
order has evolved relatively slowly, e.g., Reference [2].

We extracted scaffold, contig and gene level data on
Ricinus communis from GenBank as well as chromosomal
gene order data on Vitis vinifera. Of the 18,300 Vitis
genes, 14,033 showed up as best reciprocal hits (BRH),
using BLASTP and a 1e-5 threshold to compare the pro-
teins, among the 31,221 possible protein genes suggested
by the Ricinus sequence. We discarded the rest of the
Ricinus gene models.

Key statistics are given in Table 1. To the 4267 missing
orthologs we add 339 genes that were found on Ricinus
scaffolds with no other genes, i.e., since they contribute
no gene order information, so that a total of 4606 genes
are to be placed relative to the Ricinus gaps. The remain-
ing 13,694 of the 14,033 Ricinus orthologs were organized
into 748 (=1087-339) scaffolds each with two or more
genes, i.e., containing at least some order information.
The scaffolds also contained a total of 2527 gaps. Note
that our algorithm automatically places additional gaps at
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the two ends of each scaffold, so that we need not worry
separately about placing genes between the scaffolds.

The distance D(G;, G,), where only the orders of the
13,694 genes in both G; and the scaffolds of G, are con-

sidered, is 8283. The distance D(G,,G,), which com-

pares G, to the augmented version of G,, namely G,,

after the scaffold-filling procedure has been applied, so
that the orders of all 18,300 genes are considered, is 9931.

Simulations

We simulated pairs of genomes with number of genes n =
18, 300. The first, G;, simply has the genes evenly distrib-
uted among the 10 chromosomes. Blocks totalling 4267
genes, distributed as in Table 1, to be eventually deleted
in forming G,, were chosen at random along the genome,
constrained only from overlapping or even touching. At
first these genes were only marked, but not deleted. For a
range of values of 7, we applied 7random rearrangements
to G; and then deleted the marked genes. We assumed
that rearrangements are preponderantly inversions
(around 90%), a common tendency in gene order evolu-
tion, and we chose the two breakpoints for each rear-
rangement randomly along the chromosome.

All deletions create gaps

Each deletion event created a gap between two contigs. In
addition random contig breaks were inserted to make
sure that the number of contigs totaled 3614, as in the
Ricinus data in Table 1. Adjacent contigs were then
assembled randomly into scaffolds in such a way as to
produce the same distribution of contigs per scaffold as in
Table 1. Single-gene scaffolds were identified and
removed from the lists of scaffolds and contigs and trans-
ferred to the list of missing genes, as in the Ricinus analy-
sis.

Applying the fillScaffolds algorithm to these data, for 7
= 3000, 6000,<,15000, twenty runs for each 7, demon-
strated that under the model where missing genes are
entirely due to incomplete sequencing, the distance

D(G,,G,) ) was exactly the same as D(G,,G,) in 90% of
the runs, and 2 rearrangements more costly (out of 5000
or more) in the remaining cases. Thus we can conclude
that fillScaffolds generally inserts the 4267 missing
genes (plus a variable number of genes from single-gene
scaffolds) at virtually no cost, in terms of genomic dis-
tance. This holds over a wide range of genomic distances.
It also holds for a range of models of rearrangement; for
example, if instead of the two breakpoints being ran-
domly chosen over the chromosome, we restrict inver-
sions to involve only a small number of genes, the
difference between pre- and post-scaffold-filling is less
than 0.5%.
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Table 1: Statistics on Ricinus assembly.
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genes per number of contigs per number of Vitis genes per number of
contig contigs scaffold scaffolds deleted block deletions
1 1699 1 469 1 2253
2 612 2 181 2 548
3 337 3 121 3 167
4 210 4 80 4 36
5 140 5 67 5 23
6 107 6 29 6 8
7 91 7 25 7 5
8 55 8 19 8 1
9 38 9 27 9 1
10 36 10 10 10 0
>10 289 >10 59 >10 3
total: 14033 3614 total: 3614 1087 total: 4267 3045

We note that the simulations, including the use of our
implementation of the fillScaffolds algorithm, took on
the order of a minute each on a MacBook Pro with 3.06
GHz processor speed.

Some deletions do not create gaps

How can we model the subset of missing genes that are
not those unsequenced genes in G, that cause gaps
between the contigs, but genes that are not in the G,
genome at all? To do this, we delete some proportion of
the genes marked at the beginning of the simulation as
before, but do not create a gaps between contigs at the
deletion point. Insofar as the syntenic context of the
absent G, gene is conserved in a G, contig, this should

cause an increase in D(G,,G,) over D(G,,G,), due to
the rearrangement cost of moving the gene from its origi-
nal context to a gap. It will not tend to cause an increase if
the syntenic context in G, has already been rearranged in
G,, e.g., if the absent gene is at the breakpoint of an inver-
sion or translocation. Because this effect involves the
interaction of synteny conservation and rate of non-gap-
creating deletions, we set up simulations as described in
the Missing genes: absent or just unsequenced? section
above, varying both of these processes. We carried out
simulations with from 60% to 100% non-gap-creating
deletions and with fixed-length inversions from 1 to 6
genes long. Each of the 30 simulation conditions (6 con-
servation settings times 5 deletion types) is represented
by the average of 20 simulation trials.

The simulations show that the value of D’ increases
with greater conserved synteny, and with higher propor-
tions of non-gap-creating deletions. This is depicted in
two ways in Figures 7 and 8. Of particular interest will be

the case of D’ = 0.37 indicated by the dashed line in both
graphs. This case corresponds to the Ricinus-Vitis com-
parison as reported in the Results on Ricinus section
below.

Distances

We compare the relationship between the inferred num-
ber of rearrangements, corrected for the number of scaf-
folds in G, and the actual number of random
rearrangements 7 used in simulating this genome. Before
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ferent proportions of non-gap-creating deletions.
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Figure 8 Effect on D'of increasing non-gap-creating deletions for
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the deletion of the genes from the gaps and the creation
of the scaffolds, i.e., when the genomes contain 18,300
orthologs, equation (4) closely predicts the observed dis-
tances. This is illustrated in Figure 9, which is based on
the average of 20 simulated trials per data point.

After the deletions of 4267 genes representing those
absent from G,, as well as the variable number (usually
less than 200) genes in single-gene scaffolds, following
scaffold creation in the "all deletions create gaps" model,
the observed distance is less than that predicted by equa-
tion (4), especially when the simulated rearrangements
become numerous. This is also illustrated in Figure 9.
The observed distance (averages of 20 trials) is corrected
(downwards) for the 935 chromosomal fusions necessary
to assemble the contigs (filled scaffolds) into 10 chromo-

somes, using a(7) = ‘fi—? in equation (6), but the inferred

distance is smaller than predicted even without this cor-
rection.

These results indicate that estimating 7 using equation
(5), e.g., for the purposes of distance-based phylogeny, is
likely to underestimate this genomic distance to some
extent.

Results on Ricinus
Our algorithm found a distance of 9931 operations
between Vitis and the reconstructed Ricinus genome,
corrected for fusions to 9365 by subtracting 566 fusion
operations.

In previous work [7] we estimated the distance between
Populus and Vitis, which should represent the same
divergence time, given that Populus and Ricinus presum-
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rearrangements/number of genes

Figure 9 Fit of equation (4) (solid line) to the normalized number
of rearrangements inferred (filled dots), before deletion of miss-
ing genes; A, = 0.899, A, = 0.988. Fit of same equation, when taking
into account only genes remaining after deletions and scaffold con-
struction (dashed line), to normalized number of rearrangements in-
ferred (open dots) after correction for the number of scaffold fusions.
The position of each dot is based on an average of 20 trials.

ably shared a common ancestor since the divergence of
the Vitis lineage. We also estimated [2] the distance
between Populus and Carica papaya, which should rep-
resent a divergence time smaller than Vitis - Ricinus.
Making these comparisons (Table 2) is reasonable,
although the Populus rearrangements occurred after a
WGD event.

When all the data are taken into account, and each dis-
tance normalized by the number of genes in the compari-
son, the Vitis - Ricinus distance is comparable to the
Populus - Carica one, and both are greater than Populus -
Vitis. This slight disproportion between Vitis - Ricinus
and Vitis - Populus is attributable, in unknown propor-
tions, to

« the use of a method more refined than BRH, namely
OrthoMCL [13], to identify Populus - Vitis orthologs.
For Vitis - Ricinus we used BRH without any valida-
tion by chromosomal context or by gene ontology.

« generation time difference in different lineages, as
argued in [2].

« the proportion of non-gap-creating deletions, which
is a function of the divergence in gene complement.

Only the first of these is directly amenable to computa-
tional improvements, without further biological input.

The key result in Table 2 is the rate of correct place-
ment of the missing orthologs. Some 63% percent of the
orthologs were inserted without any increase in rear-
rangement distance. This is comparable to the 57% - 64%
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Table 2: Normalized distances and insertion costs for three comparisons.

without missing homologs missing homologs replaced change
Comparison n D D/n n D D/n An AD AD
An
Populusb-Vitis [7] 2104 1092 0.52 6144 2545 0.41 4040 1453 0.36
Populust-Carica [2] 2590 1461 0.56 7222 3466 0.48 4632 2005 0.43
Ricinusc<-Vitis 13694 8283 0.60 18300 9931 0.54 4606 1682 0.37
R.-V. correcteda 13694 7715 0.56 18300 9365 0.51 4606 1684 0.37

a: contains corrections to distance due to scaffold fusions. b: Populus comparisons include rearrangements during the re-diploidization of the
ancestral tetraploid. c: some missing homologs in the Ricinus comparisons are simply not sequenced, while in the other comparisons, missing

homologs are virtually all absent from the genome.

in the previous studies, even though the latter each bene-
fited from evidence from two syntenic contexts rather the
single Vitis contexts used for orthologs placement in Rici-
nus. With reference to Figures 7 and 8, it suggests that
around 75% of missing genes are not attributable to
incomplete sequencing, but rather to divergent gene
complement in the two genomes. Table 2 and Figure 7
and 8 are also compatible with the fact that almost all the
missing genes in the Populus comparisons are attribut-
able to divergent gene complement.

Conclusions

One methodological difficulty inherent in our compari-
son of Ricinus and Vitis is that of ortholog identification.
BRH, which we used, is the simplest approach to this
problem, using only sequence similarities, but there are
many others available such as OrthoMCL [13], Inpara-
noid [14] and MSOAR [15], which can also make use of
local order and gene ontology information.

Aside from improvements in orthology identification,
which is a major roadblock to all gene order reconstruc-
tion problems, not only the scaffold assembly problem
discussed here, there are a number of immediate possibil-
ities to extending our technique. One is to take into
account gap sizes on the scaffolds and gene sizes for the
orthologs. As it is our reconstruction does not limit how
many genes of whatever size can go into a gap.

A second, associated, problem would be to allow over-
lapping scaffolds, in cases where the paired ends data
might not be resolved enough to preclude this configura-
tion. We have already done this to some extent, in treat-
ing the single-gene scaffolds in the same way as missing
genes. These small scaffolds are thus being inserted into
the gaps in other scaffolds. Allowing more general over-
lapping might complicate the algorithm, but in practice
this could be a rare occurrence.

In the present work, we have assumed G, to be fully

sequenced and G, to be in scaffolds. This is reasonable

even though there are some gaps in the Vitis genome;
there are not likely to be a large proportion of genes that
remain unsequenced as there are in Ricinus. In other con-
texts, however, it might be desirable to expand our theo-
retical and practical considerations to allow both
genomes to be in scaffold form. Here it may be necessary
to insert missing orthologs in both directions, from G, to
G, as well as from G, to G,.

We have devoted much effort to differentiating
between unsequenced genes and genes that are truly
absent from the genome. Our goal here has been to pre-
dict the location of those genes that are missing because
of incomplete sequencing or unsuccessful gene identifica-
tion, not those genes that are absent because they have
been deleted from Ricinus over time or acquired by Vitis
since the divergence of the two lineages. Yet the latter
class of genes are forced into our Ricinus reconstruction,
because we have no a priori way of knowing they are
actually absent from Ricinus. Our procedure would work
equally well if instead of using all the missing Vitis genes,
we used only those for which we had unigene, EST, RNA
sequence or other cDNA evidence of their existence in
Ricinus. We could then apply our algorithm to recon-
struct the Ricinus gene order based on that of a reduced
version of Vitis where all the genes with no Ricinus
ortholog would be deleted at the outset from the Vitis
gene order.

We discussed the case of BAC sequencing where the
scaffolds are anchored on chromosomes so that there is
no issue of optimal scaffold fusion. Gaps can still occur
between BACs, and even inside BAC sequence assem-
blies, depending on the strategies and policies of the
sequencers. Here our algorithm would require no modifi-
cation to do a rearrangement analysis and ortholog inser-
tion.

There are many occurrences of non-uniqueness in rear-
rangement inference and ortholog insertion in applying
methods such as ours. This precludes a straightforward
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comparison of G, with the pre-deletion simulated
genome to validate the method. However, non-unique-
ness can sometimes be partially resolved by examining
elements in common from many optimal solutions.

It bodes well for future use of this methodology that our >
algorithm was efficient enough to solve the problem with
over 18,000 genes in less than a minute of computing ¢
time on a laptop computer, putting virtually all genomes
within range of this technology.

Availability
The program implementing scaffold filling is included in

this paper as Additional file 1.

Additional material

Additional file 1 Contains the Java code for the fillScaffolds algo-

rithm, including class files and sample input data, as well as user 10.

instructions and a list of environments in which the program has been
tested.
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