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Background: Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNPs)
revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs)
promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes.
Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing.
However, while several software packages support the determination of CNVs from SNP chip data, the downstream
statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions,
thus strongly limiting the performance of GWAS based on CNVs.

Results: CONAN is a freely available client-server software solution which provides an intuitive graphical user interface
for categorizing, analyzing and associating CNVs with phenotypes. Moreover, CONAN assists the evaluation process by
visualizing detected associations via Manhattan plots in order to enable a rapid identification of genome-wide

significant CNV regions. Various file formats including the information on CNVs in population samples are supported as

Conclusions: CONAN facilitates the performance of GWAS based on CNVs and the visual analysis of calculated results.
CONAN provides a rapid, valid and straightforward software solution to identify genetic variation underlying the
'missing" heritability for complex traits that remains unexplained by recent GWAS. The freely available software can be

Background

Genome-wide association studies (GWAS) have identi-
fied associations between various phenotypes and com-
mon sequence polymorphisms, which might play a role
for disease development (for a comprehensive overview
see [1]). For most common diseases, these discoveries
collectively explain only a modest fraction (1-15%) of her-
itable variation of the phenotype [2]. Recently, genome
re-sequencing studies demonstrated that most bases that
vary among human genomes reside in copy number vari-
ations (CNVs) [3]. CNVs are genomic segments which are
duplicated or deleted among different individuals, rang-
ing from kilobases to several megabases in length [4].
Although at least 20% of the genome was found to be
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copy number variable, this class of variation is, nonethe-
less, poorly integrated into human genetic studies. How-
ever, part of the heritability void left by GWAS could be
accounted for common CNVs. Indeed, several CNVs
were recently described to be associated with complex
traits: a 20-kb deletion upstream of the IRGM gene with
Crohn's disease [5], a 45-kb deletion upstream of NEGR1
with body mass index [6], a 32-kb deletion with psoriasis
[7,8], and a 117-kb deletion of UGT2B17 with osteoporo-
sis [9]. Consequently, the next logical step is to perform
GWAS based on CNVs.

Available computer programs like Birdsuite [10], Quan-
tiSNP [11], PennCNYV [12], COKGEN [13], CNV Work-
shop [14] or the Affymetrix Genotyping Console allow
the determination of CNVs from SNP array data. Fur-
thermore, software systems exist for the management of
genotypes, phenotypes and other subject-related infor-
mation [15,16]. Unfortunately, those tools are limited
either for the calculation of CNVs or the storage of phe-
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notypes and provide no functionality to perform
genome-wide association studies based on CNVs. So far,
GWAS based on CNVS have used either commercial
software solutions like Helixtree (Golden Helix, Inc.),
Array Studio (Omicsoft), open source software like
PLINK [17] or self created R scripts for the determination
of genome-wide regions of interest and for the perfor-
mance of statistical analysis, especially general linear
regression models. The use of different software tools for
each step requires additional efforts for appropriate data
conversion and slows down the process as entity. For biol-
ogists without expertise in computer science or statistics
these analyses turn out to be very difficult.

We present CONAN (Copy Number Variation Analysis
Tool), a freely available software package to support sci-
entists by GWAS based on CNVs. It was developed with
the goal of creating a user-friendly, intuitive and fast soft-
ware tool which covers the whole analysis process of
association studies based on CNVs. To use it in real-life
scenarios, a variety of de facto standard data formats are
supported (Affymetrix Genotyping Console and Micro-
soft Excel) and all implemented algorithms are scalable
and fast enough for typical problem sizes. Moreover,
visual analytical methods assist the user to get a fast over-
view of the results.

Implementation
The CONAN software package consists of a client appli-
cation and several database packages. The client applica-
tion was implemented in Java http://www.java.com. It
was successfully tested on Windows and Linux operating
systems with about 1650 subjects and millions of CN'Vs.
A user-friendly graphical interface was designed using
the open source widget toolkit SWT (Standard Widget
Toolkit). For wizards and progress monitor dialogs we
used JFace http://wiki.eclipse.org/index.php/JFace. The
complete application was programmed in a strictly
object-oriented way using JFace's Action Framework and
is based on the Model-View-Controller Pattern. Libraries
such as JExcelApi and opencsv were used to enable the
import of phenotypes and CNVs from a variety of differ-
ent data formats. All needed Java libraries are included in
the software package and need no additional installation.
The users can upload their CN'Vs, phenotypes and gen-
otypes directly through the client application to the
server. All imported and calculated data are stored in a
relational database (Oracle Database 10gR2). In order to
avoid unnecessary data transfer between the client work-
station and the database server, all time and data inten-
sive analysis methods used by CONAN are executed on
the database server itself. This leads to a markedly faster
generation of results compared to traditional approaches
where the application requests data, processes it locally
and uploads the results (Figure 1). All algorithms are
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Figure 1 Software Architecture. (A) In traditional approaches the ap-
plication requests data, processes it locally and uploads the results.
Thus, additional amount of data transfer reduce the performance. (B)
The two-tier architecture of CONAN outsources all data intensive algo-
rithms on the database server. The client invokes stored procedures to
execute them on the database server itself; thus no upload of data is
required and the client retrieves only the informative results.

implemented in PL/SQL (Procedural Language/Struc-
tured Query Language) as stored procedures and are
organized in several packages. The Java client uses Ora-
cle's JDBC (Java Database Connectivity) driver to estab-
lish the connection to the database server and to invoke
the stored procedures.

CNVR detection

CNV regions (CNVRs) are defined as the union of all
overlapping CNVs across subjects. As these regions are
very long and therefore inadequate for the analysis, we
divided them (based on the rules defined in [18]) into
several sub-CNVRs (Figure 2A). The frequency of a sub-
CNVR is defined as the percentage of subjects which
have a CNV inside the boundaries. Only those with a fre-
quency higher than the user-defined threshold are
selected and saved in the database (Figure 2B).

More precisely, our CNVR algorithm performs the fol-
lowing steps to detect sub-CNVRs with a frequency
greater than the threshold:

1. A list is created that contains only SNPs from all
study individuals on a specific chromosome that
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Figure 2 CNVR Determination. (A) The boundaries of a sub-CNVR are
determined using the start and end SNP of each CNV. (B) The basic al-
gorithm designates a sub-CNVR as a CNVR if its frequency is greater
than the threshold. (C) The extended algorithm merges consecutive
sub-CNVRs and builds a single one on their basis.

define the borders of individual CNVs; upstream
SNPs are designated as "starting" SNPs "S", down-
stream SNPs are designated as "ending" SNPs "E"

2. The list is sorted by the physical position of those
SNPs (note: if several individuals have a CNV with the
same starting or ending SNP, this SNP is listed for
each individual separately; thus, the same SNP could
be listed several times, sometimes as starting SNP,
sometimes as ending SNP)

3. A counter is initiated which increments on each
CNV-starting SNP and decrements on each CNV-
ending SNP.

4. When two consecutive SNPs within this sorted list
have different (ascending) physical positions, a next
sub-CNVR could begin or previous sub-CNVR would
end. The frequency of this potential sub-CNVR is
determined with the help of the counter, and only if
the frequency is greater than the user-specified
threshold, the specific sub-CNVR is actually desig-
nated as CNVR.

5. When two consecutive SNPs within this sorted list
have exactly the same physical position, the counter
actualizes to the frequency of the respective CNVR as
defined under step 3.

Note: the boundaries of each sub-CNVR are only
approximated by the physical positions of its bracketing
SNPs.

If the number of subjects is very huge and their CN'Vs
are highly interlaced with each other, the algorithm will
detect many regions with almost all of the calculated
CNVRs having a length of only two SNPs. Therefore we
implemented a second algorithm which extends the for-
mer one by merging consecutive sub-CNVRs with a fre-
quency greater than the threshold and building a single
one on their basis. This leads to regions with greater
length, but has the consequence that the state of a subject
(e.g. deletion or amplification) in a region is no longer
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unique. Thus we have introduced a second threshold
which is used to define the state of a subject: if the CNV is
the longest in the given region and its physical length is
greater than this threshold, then the state of this CNV is
used for the association analysis (see Figure 3).

Association analysis

A multiple linear regression model is used to discover
associations between extracted CNVRs and phenotypes.
The regression analysis is performed for each CNVR sep-
arately; the dependent variable is the phenotype for
which an association should be calculated. As indepen-
dent variables we use the state of the subject in the region
and a user defined list of covariates. Covariates are phe-
notypes that are used for adjustment. After the estimated
coefficients and the standard variations are calculated
using the Gaussian Algorithm, we determine the signifi-
cance (p-value) of each region using Student's t-test. A
sub-CNVR is genome-wide significant if the calculated p-
value is below the Bonferroni-threshold.

Results

CONAN is a cross-platform analysis software tool devel-
oped to provide several methods for genome-wide associ-
ation studies based on copy number variations. An
intuitive graphical user interface (GUI) enables the deter-
mination of CNV regions and carrying out association
analysis through multiple regressions. In addition, the
explorative process of results is supported by several
interactive visualizations.

CONAN implements a simple but effective workflow to
enable CNV analysis (Figure 4): in a first step CNVs gen-
erated by third party software are imported and stored in
a relational database. In a second step, copy number vari-
able regions (CNVR) are determined and GWA analyses
are conducted. CNVRs are defined as the union of all
overlapping CNVs across subjects. Finally, CONAN pro-
vides visualizations for all CNV regions and for all results
of association analysis and enables thus a rapid interpre-
tation. CONAN is very flexible and can easily be imple-
mented in an existing workflow without error-prone data
adaptation.

Proband CNVR Final State
1 = P m Deletion
2 = o=0
3 - ~—m = m Amplification
4 [ = B a
== Deletion
5 m o —n o =] Deletion Amplification
Threshold: 50%

Figure 3 Extended CNVR-Determination. The longest CNV of a sub-
ject in the CNVR with a percentage greater than the threshold (e.g.
50%) is used to define the final state.
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Figure 4 Overview of steps. The CONAN analysis process is divided
into three main steps: data import, data analysis, and data visualization.

User interface

CONAN has a very clear and simple interface (Figure 5):
on the left side of the main window, all imported datasets,
their calculated CNV regions and associated analyses are
organized in a tree structure with different symbols. In
the center, all CNV regions of the current selected dataset
or association analysis are shown as a table (with a short
summary of the parameters) and as a graphical represen-
tation. By selecting a certain CNVR a new dialog box
appears which provides information about its position, its
SNPs and its associations (with p-values). There is also
the possibility to view the respective genomic region in
the UCSC Human Genome Browser [19], HapMap
Genome Browser [20] or ensemble Genome Browser [21]
by just another mouse click. All algorithms and functions
can be executed through well-structured menus and all
required parameters can be set step by step. Moreover,
the user always has the full control over the execution of
each algorithm and can monitor its current progress and
status.

Data input and output

CONAN supports copy number variations which are
determined using Affymetrix 500K SNP Arrays. Addi-
tionally, our solution supports the import of the "Copy
Number Segment Summary" and the "Copy Number Seg-
ment Data" file format which can be exported from the
frequently used Affymetrix Genotype Console software.
There also exists a generic importer for CNVs that were
detected from any other platform with any other software
tool; however, then the CNVs need to be stored in a
comma separated values file format (an example can be

downloaded at http://genepi-conan.i-med.ac.at).
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After the data is uploaded, a dataset is created which
covers all information about the loaded CNVs and sub-
jects. For the association analysis, different phenotypes
for the same subjects are required and can be easily and
at any time imported into an existing dataset. At present,
CONAN allows the import of phenotypes saved in a tab-
ular data format (Microsoft Excel or CSV) in which each
row represents a certain person and contains its related
phenotypic information. In addition to spreadsheet and
statistic software, the efficient phenotype management
software eCOMPAGT [15] can also export phenotypic
data for import into CONAN. CONAN automatically
checks the input files to ensure that they are correspond-
ing to the subjects and only numerical values are con-
tained.

For further analysis with statistical software such as R
[22] and SPSS, all results can be exported as CSV (comma
separated values) or Microsoft Excel files. Visualizations
can be saved as high quality PNG images.

Analysis methods

Once all data are stored in the database, the analysis pro-
cess starts with the determination of CNV regions. For
this purpose we have implemented the procedure
described in [18,23] for the detection of regions where
the number of subjects which have a CNV (with either a
gain or a loss) therein is greater than a given threshold. In
addition to this threshold, the user can also control the
minimal number of consecutive SNPs which is used to
define a CNV (CNVs, which involve less SNPs than the
threshold, are discarded).

If the number of subjects is huge (>1000) and their
CNVs are highly interlaced with each other, the algorithm
will detect many regions with almost all of the calculated
CNVRs having a length of only two SNPs. Therefore, we
developed a second algorithm which extends the former
procedure by merging consecutive regions and building a
single one on their basis.

Table 1 summarizes several algorithm runs with differ-
ent parameters to demonstrate their impact on the result-
ing regions. The results suggest that the number of CNV
regions and the execution time depend on the total num-
ber of subjects, total number of CNVs and the threshold
parameters (see "Validation" for a description of the data-
set).

After CNV regions were calculated, the user is pro-
vided with the ability to perform GWA analysis on their
basis. For this task we provide a multiple linear regression
model (assuming an additive genetic model) which
enables to discover associations between the detected
regions and the imported phenotypes. A second associa-
tion analysis method combines the genotyping data from
SNPs with the states of detected CNVRs in order to dis-
cover associations between cumulative effect of SNPs and
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Figure 5 Graphical User Interface. All imported datasets, their calculated CNV regions and associated analyses are organized in a tree structure. All
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CNVS and phenotypes. In both cases the user can select
the dependent phenotype (e.g. blood sugar level) and a
list of phenotypes which should be used for adjustment
(e.g. sex, age, BMI). The software automatically calculates
the corresponding p-values for all selected regions and
checks for genome-wide significance after Bonferroni-

Table 1: Execution times for the calculation of CNVRs

correction for multiple testing (p < 0.05/total number of
CNV regions). In some cases it is necessary to perform
the analysis only on subjects with particular properties
(for example only subjects whose blood was collected
after an overnight fasting period or only male subjects).
Therefore, it is possible to build user defined filters in

Frequency Threshold [%] Number of CNVRs Execution Time [sec]
5 25,007 1,957
10 11,720 949
15 6,162 521
20 3,440 310
25 2,049 220

The analyses were run on 1,644 subjects with on average 7,130 CNVs per sample. Apart from the total number of subjects and the total
number of CNVs, the resulting number of CNV regions and the execution time depend on the threshold parameters.
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order to perform the association analysis only on a subset
of all available data.

In addition, to save CPU time, already detected CNV
regions can be reused for several studies. These can be
compared quickly to see their difference and to identify
the impact of each changed parameter.

Data visualization

The interpretation of tables with thousands of regions is a
complex and time-consuming task. Therefore, to assist
the user, we have implemented several interactive visual-
izations to discover regions of interest in a fast manner
and to show their attributes on demand. CONAN depicts
the distribution of all detected CNV regions on each
chromosome (Figure 6A). The results of an association
study can be visualized with a Manhattan-Plot in which
all p-values are plotted using log;,-transformation and
each chromosome has a different color; genome-wide sig-
nificant hits can be found above the Bonferroni-threshold
line which is automatically drawn considering the num-
ber of tests performed (Figure 6B). Every plotted p-value
can be addressed by a mouse click, and a short overview
of its properties appears. As a special feature, CONAN
compares the detected regions with already known and
published associations from the GWAS database [24].
Genomic regions that are known to be associated with
the phenotype or disease in question are highlighted in
yellow (Figure 5).

Validation

In order to verify the implemented algorithms we have
tested CONAN with sample data consisting of 1,644
KORA subjects [25]. The Affymetrix 500K SNP Chip
data were analyzed by DARVIN, our in-house software
solution for CNV detection using a Hidden Markov
Model after identification of chromosomal gains and
losses by comparing the intensity of the probe sets of all
subjects with a reference set (manuscript under review).
The software detected about 7,130 CNVs per sample on
average. As phenotypes we used BMI, gender and age.
CONAN has discovered the same associations between
BMI and CNVs as previously suggested: (1) nearby gene
KCTD15 [6] we have discovered a CNVR on 19q13.11
with a p-value of 0.003; (2) on 5p15.33 [18] we have dis-
covered a CNVR with a p-value of 0.009.

Discussion

We present CONAN, a new and useful tool for GWAS
based on CNVs detected by third party computer pro-
grams. It combines the individual steps of the whole anal-
ysis process into one user-friendly software solution. Due
to the outsourcing of all time intensive algorithms on the
database server, the software works very fast and scales
well.
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The analysis of millions of CNVs is a very time-con-
suming task; therefore we have optimized the applied
algorithms with respect to two different aspects: First we
optimized the algorithm in terms of run-time and time-
complexity; then we optimized the used SQL queries and
created indices on the underlying tables to enable fast
data retrieval. As a consequence, the import of CNVs
requires more time, but as the focus of our software lies
on the analysis, fast query results are more important.

Comparison with similar software packages

The open source command line tool Birdsuite [10]
enables the detection of CNVs and provides several
scripts in order to perform GWAS on the results using
PLINK [17]. Visualizations are possible with gPLINK.
SCIMMKit [26] is also open source and provides a com-
mand line tool which enables the targeted interrogation
of CNVs using Illumina Infinium II and GoldenGate SNP
assays; association analysis with phenotypes is not yet
provided. Helixtree and Array Studio are both commer-
cial solutions and support a variety of input formats
(CNVs detected by analyzing Affymetrix SNP arrays and
Ilumina arrays). GWAS are performed through a user-
friendly GUI and different graphical representations
enable a rapid interpretation. However, most of those
approaches are client-oriented and perform their calcula-
tions locally; this leads to poor scalability and all results
are stored on different workstations and not on a central
machine. This is an important aspect because the amount
of the genotyping data for GWAS is increasing continu-
ously and in a non-linear manner; thus high-performance
data retrieval is an important issue. CONAN solved this
problem by outsourcing all tasks to a central database
server and by using the client workstation only for the
presentation of the results.

Strengths and limitations

Our software has several strengths: (1) Extensive tests
with real data demonstrated that the analysis of a study
with about 1,600 subjects and hundreds of thousands of
CNVs can be performed with CONAN without any prob-
lems and in reasonable time frames. (2) Due to an intui-
tive user interface and a detailed user manual, no
knowledge in computer science and statistics is required
to perform the association analysis. (3) With the help of
the Manhattan Plot it is possible to spot within seconds
which regions are genome-wide significant. In addition,
various export functions enable the further usage of the
newly-detected information in other software packages
such as R or SPSS (see Table 2 for a complete list of all key
features). CONAN has limitations as well, as it supports
only phenotypes with numerical values; phenotypes at
nominal level must be pre-processed and encoded
numerically before they can be imported. However, the
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Figure 6 Data Visualization. CONAN supports the analysis process by several visualizations: (A) Visualization of the distribution of all detected CNV
regions on each chromosome. (B) Visualization of associations via Manhattan plot enables a rapid identification of genome-wide significant CNVRs.




Forer et al. BMC Bioinformatics 2010, 11:318
http://www.biomedcentral.com/1471-2105/11/318

Table 2: Key Features
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Feature

Details

Supported CNV File Formats

Supported SNP Arrays
Supported Phenotype File Formats

Supported Genotype File Formats

Affymetrix Genotyping Console
Microsoft Excel

Comma Separated Values
Affymetrix SNP Array 500K
Microsoft Excel

Comma Separated Values

Affymetrix SNP 500K .call files

Algorithms

Genome-wide CNVR-determination

Genome-wide CNV-phenotype association analysis

Visualization

Interactive Manhattan Plot with automatically drawn Bonferroni-
threshold line

Visualization of the distribution of detected CNV regions on each
chromosome

Exporting of all visualizations as PNG and JPEG images

Analysis

Filtering and searching of statistical results
Highlighting of genome-wide significant results

Highlighting of regions which fit with results from the GWAS
database

Exporting of all results as Microsoft Excel or CSV-Files
Direct links to entries in public databases:

UCSC Genome Browser, NCBI dbSNP, Ensembl, HapMap

next version of CONAN is conceived to provide func-
tions for labelling nominal variables automatically with
numbers. Moreover, CONAN is presently limited to the
analysis of Affymetrix SNP Arrays, but an extension to
the import of Illumina data is planned for the next
release. CNVs generated by QuantiSNP [11] or PennCNV
[12] must be converted into a CSV file before they can be
used in the software. However, a direct support of those
data formats is planned. Finally, an interface between
CONAN and eCOMPAGT [15,16] should eliminate the
error prone export and import tasks of phenotype-data
through files.

Conclusions

CONAN facilitates the performance of GWAS based on
CNVs and the visual analysis of calculated results.
CONAN provides a rapid, valid and straightforward soft-
ware solution to identify genetic variation underlying the
'missing' heritability for complex traits that remains
unexplained by recent GWAS. The freely available soft-

ware can be downloaded at http://genepi-conan.i-med.
ac.at.

Availability and requirements
Project name: CONAN

Project home page: http://genepi-conan.i-med.ac.at
Operating system(s): Windows and Linux

Programming language: Java
Other requirements: Java 1.5+, relational database
(Oracle)
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