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Abstract

Background: Graph drawing is one of the important techniques for understanding biological regulations in a cell or
among cells at the pathway level. Among many available layout algorithms, the spring embedder algorithm is widely
used not only for pathway drawing but also for circuit placement and www visualization and so on because of the
harmonized appearance of its results. For pathway drawing, location information is essential for its comprehension.
However, complex shapes need to be taken into account when torus-shaped location information such as nuclear
inner membrane, nuclear outer membrane, and plasma membrane is considered. Unfortunately, the spring embedder
algorithm cannot easily handle such information. In addition, crossings between edges and nodes are usually not
considered explicitly.

Results: We proposed a new grid-layout algorithm based on the spring embedder algorithm that can handle location
information and provide layouts with harmonized appearance. In grid-layout algorithms, the mapping of nodes to grid
points that minimizes a cost function is searched. By imposing positional constraints on grid points, location
information including complex shapes can be easily considered. Our layout algorithm includes the spring embedder
cost as a component of the cost function. We further extend the layout algorithm to enable dynamic update of the
positions and sizes of compartments at each step.

Conclusions: The new spring embedder-based grid-layout algorithm and a spring embedder algorithm are applied to
three biological pathways; endothelial cell model, Fas-induced apoptosis model, and C. elegans cell fate simulation
model. From the positional constraints, all the results of our algorithm satisfy location information, and hence, more
comprehensible layouts are obtained as compared to the spring embedder algorithm. From the comparison of the
number of crossings, the results of the grid-layout-based algorithm tend to contain more crossings than those of the
spring embedder algorithm due to the positional constraints. For a fair comparison, we also apply our proposed
method without positional constraints. This comparison shows that these results contain less crossings than those of
the spring embedder algorithm. We also compared layouts of the proposed algorithm with and without compartment
update and verified that latter can reach better local optima.

Background

For biological pathways such as signal transduction path-
ways, gene regulatory networks, and metabolic pathways,
one of the crucial techniques for understanding their
characteristics is to use graph visualization. Both publicly
[1] and commercially available pathway databases [2] dis-
play retrieved pathways in the form of graphs to enable
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users to understand them easily. Usually, in these data-
bases, a large number of pathways are retrieved with vari-
ous types of criteria according to biologists' purposes.
However, it is laborious to manually draw graphs for each
request, and hence, automatic layout algorithms special-
ized for biological pathways are strongly desired.

Thus far, several types of drawing algorithms have been
designed for biological pathways and they have been inte-
grated in biological modeling and/or simulation software,
e.g., Cell Illustrator [3,4], Pajek [5], PATIKA [6,7], and
CADLIVE [8,9].
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Karp and Paley extracted biological topologies such as
linear, cyclic, and branching pathways and used them as
the backbone of the layout [10]. For chemical reaction
networks, Becker and Rojas proposed a method [11] that
uses the longest directed cycle as the backbone of the lay-
out to capture the flow of reactions. On the other hand,
Wegner and Kummer used recursively extracted small
cycles as the backbone of the layout [12], because such
cycles are known to participate in important recycling
processes. Their work has been implemented as an SBML
application [13].

Several biological properties are considered in spring
embedder approaches. The use of edge directions and
simple positional constraints has been proposed for more
general metabolic pathways [14,15]. In GOlorize [16], an
additional attractive force is applied to nodes belonging
to the same Gene Ontology class. An SBML layout exten-
sion, SBWAutoLayout [17], employs the spring embedder
approach as its layout algorithm. Schreiber et al. [18] pro-
posed to a generic layout algorithm where the spring
force cost is optimized independently in horizontal and
vertical directions. Due to the optimization strategy, the
algorithm can handle placement constraints for the bio-
logical comprehension such as horizontal or vertical
aligning of nodes, non-overlapping of nodes, and keeping
the same network motifs to some formation. Spring
embedder approaches are very popular in the field of Bio-
informatics because of the harmonized appearance of
their results. However, Li and Kurata noted that spring
embedder approaches are not suitable for generating
compact layouts of complex pathways [19]. In addition,
such approaches have a difficulty in handling complicated
positional constraints such as arranging some nodes only
on a tours-shaped region, which corresponds to cellular
membranes, e.g., nuclear inner membrane, nuclear outer
membrane, and plasma membrane.

A grid layout algorithm for biological networks was
first proposed by Li and Kurata, in which nodes of the
given graph are mapped to grid points and the locally
optimal mapping of nodes in terms of the defined cost
function is searched over all possible mappings [19]. The
cost function is defined by the weighted sum of several
components: node distances weighted according to the
graph structure and Manhattan distance [19], edge-edge
and node-edge crossings [20], rewarding scores for the
aligned nodes possessing the same biological attributes
[21], and negative inner product between directions of in-
edges and out-edges that induces the traceability of the
flows [22]. Because finding optimal mapping is NP-hard
[23] even when only edge-edge crossings are considered
in the cost function, the basic grid layout algorithm
repeatedly updates the layout by moving nodes one by
one under a greedy search strategy, and a locally optimal
layout is obtained after convergence. For efficient calcula-

Page 2 of 15

tion, the cost differences calculated by checking move-
ments of a node to a grid point at the current step are
cached for calculating the cost differences at the next step
[19]. Swapping the positions of two nodes is additionally
considered at update steps for the better local optimum
without increasing the time complexity [21], whereas
Barsky et al. restricted movements of a node to stochasti-
cally selected grid points at update steps [24]. Further, the
reduction of time complexity is accomplished by using
sweep calculation algorithm [22], which can efficiently
calculate edge-edge and node-edge crossings and the
Manhattan distance. In addition, grid layout algorithms
can deal with complicated positional constraints that are
often assumed in biological networks as sub-cellular
localization information, and thus, they succeed in gener-
ating compact and biologically comprehensible layouts.

We propose a new grid-layout-based spring embedder
algorithm that considers the spring force cost as a com-
ponent of the cost function of a grid-layout algorithm.
Hence, the cost function consists of the spring force cost
and edge-edge and node-edge crossings. As stated above,
the sweep calculation can be used to efficiently count the
number of edge-edge and node-edge crossings and calcu-
late the Manhattan distance. However, the sweep calcula-
tion cannot be used to calculate the spring force.
Therefore, we devise a new caching approach for calcu-
lating the spring force and propose a new layout algo-
rithm having the same time complexity.

The remainder of this paper is organized as follows. In
the Results and Discussion section, we discuss the perfor-
mance of the proposed algorithm by comparing it with
that of the conventional spring embedder approach on
three biological networks. The conclusions of our work
are presented in the Conclusions section. Finally, the
Methods section describes the procedure of the proposed
algorithm and its time complexity.

Results and Discussion

Experimental settings and results

We compare our proposed algorithm (Grid Layout) with
a spring embedder layout algorithm [25] (Spring). As the
attraction force F,(d) and repulsion force F,(d), d?and 1/

d? are used, respectively, where d is the distance between
nodes (here, the Euclidean distance is adopted). We use
three biological networks that were constructed from
curated knowledge in biological literatures:

» Endothelial cell model [26]: 221 nodes and 274

edges.

« Fas-induced apoptosis model [27]: 84 nodes and 93

edges.

« Cell fate simulation model of C. elegans [28]: 53

nodes and 59 edges.

Grid resolutions of 73 x 81, 39 x 29, and 26 x 21 are

used for the endothelial cell model, Fas-induced apopto-
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sis model, and cell fate simulation model of C. elegans,
respectively. Both algorithms are implemented in Java
and experiments were performed on a Core micro-archi-
tecture-based Xeon 3.0 GHz processor. For each model,
ten random layouts are generated and applied to Grid
Layout and Spring. Since node-edge crossings cause the
difficulty on distinguishing the node connections, we
consider node-edge crossings as more problematic factor
than edge-edge crossings and then set more weight for
node-edge crossings than edge-edge crossings in the cost
function. Specifically, weight for node-edge crossings w,
is two times as much as that for edge-edge crossing w,,
i, w,=2 x w, For the three pathway networks, the
numbers of rows and columns of the grid are determined
by setting the grid interval as the size of basic elements
and setting the canvas size as the size used in the manu-
ally created layout. Li and Kurata stated that the desirable
numbers of rows and columns of grid are proportional to

JVT 9],

Since by calculating (the number of row + the number

of columns) /| V| for the three pathways we have (73 +

81)/4/221 = 10.76, (39 + 39)//84 = 7.42, (26 + 21)/

J53 = 6.46, our grid resolutions somehow follow the
assumption in [19]. The repulsion force is defined to be
inversely proportional to the square of distance between
nodes, and the force comes from all nodes. As we dis-

cussed, the grid size is proportional to ./|V| and the

repulsion force does not depend on the grid size if nodes

are evenly distributed in the canvas ((1/ \/m 2% |V] =
1). Thus, we use the same weight for repulsion force (w, =
1) among three networks. Remnant weights to be
adjusted are attraction force w, and edge-edge crossings
w,. We empirically select their parameter ranges as w, =
{1, 5, 10, 12} and w, = {10, 50}, respectively. Figures 1, 2,
and 3 respectively show the layouts of the Fas-induced
apoptosis model, cell fate simulation model of C. elegans,
and endothelial cell model obtained from Grid Layout
and Spring, which has the minimum cost among the
results from ten random layouts. Note that here only a
resulting layout under one of the above parameter sets is
given for each model (for Fas-induced apoptosis model
w,=1,w,=1,w,= 10, w, = 20; cell fate simulation model
of C. elegans w, =1, w,= 1, w, = 50, w, = 100; and
endothelial cell model w, = 12, w, = 1, w, = 50, w,, = 100).
For results under other parameter sets, see Section 1 of
Additional file 1.

The resulting layouts are generated using an XML for-
mat called Cell System Markup Language (CSML), and
these can be directly displayed by using the Cell Illustra-
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tor Player in a Web browser. All URL links are listed in
Table 1. In the layouts, the cellular membrane, nucleus,
mitochondria, and Golgi apparatus are depicted by a blue
frame, yellow circle, red oval, and brown crab-shaped
object, respectively. In order to analyze the number of
crossings in the layouts and the running time, ten random
layouts for each model are also applied to Grid Layout
without positional constraints (hereafter called Grid Lay-
out NL). For these random layouts, we compare the num-
bers of edge-edge and node-edge crossings in the
resulting layouts and the running time of Grid Layout and
Spring. These comparisons are summarized in Figures 4,
5, and 6 for the Fas-induced apoptosis model, cell fate
simulation model of C. elegans, and endothelial cell
model, respectively.

As shown in the two left-hand side plots of Figures 4, 5,
and 6, the resulting layouts from Grid Layout tend to con-
tain more edge-edge and node-edge crossings than those
from Spring. This may be because positional constraints
restrict the search space of Grid Layout. This hypothesis
is also reinforced by the results of Grid Layout NL, which
contains a lesser or, occasionally a comparable number of
crossings as compared to those of the spring embedder
algorithm among three cases on both edge-edge and
node-edge crossings.

Although the above comparison appears to suggest that
positional constraints degrade the quality of the resulting
layouts, in the next subsection, we show that how loca-
tion information serves to improve the understandability
of biological networks while surveying the results of Grid
Layout.

Dynamic resizing and repositioning of compartments

Dynamic resizing and repositioning of compartments are
considered in our proposed algorithm. Li and Kurata [19]
stated that as an empirical rule, setting vertical and hori-
zontal sizes of canvas proportional to the square root of
the number of nodes is suitable for most networks. This
rule can also be applied to size the compartment accord-
ing to the nodes localized in it. However, if nodes in a
compartment are densely connected, they tend to create
cluster, and thus they do not fill out the space optimally.
By making the size of the compartment smaller, better
quality layout will be obtained. On the other hand, if
nodes are distributed uniformly enough in the compart-
ment, its enlargement might be required for the better
quality of the layout. Also, if the center of the compart-
ment is away from the nodes' center of gravity, it might
spoil the quality of the resulting layout. Thus, we consider
dynamic update of sizes and positions of compartments
iteratively at each step. Hereafter, we call Grid Layout
with dynamic compartment update as GDC. Figures 7, 8,
and 9 show the minimum cost resulting layouts obtained
from GDC for Fas-induced apoptosis model, cell fate sim-
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Figure 1 Resulting layouts of Fas-induced apoptosis model obtained from Grid Layout (a) and Spring (b). Because the spring embedder algo-
rithm does not consider location information, this location information is not shown in its resulting layout.

ulation model of C. elegans, and endothelial cell model,
respectively. Weights for the cost functions are the same
as those of the experiments in the previous section. Initial
sizes and positions of the compartments are the same as
in layouts for Grid Layout. In this study, we keep the size
and position of the extracellular or cellular membrane,
and then update the sizes and positions of other compo-
nents inside of the cellular membrane such as nucleus,
mitochondria, and Golgi apparatus. The detailed proce-
dures of dynamic compartment update are in the follow-
ing method section. As a common property in the layouts
of the three models, nodes of the layouts of GDC are cen-
tered on each compartment, whereas nodes of the layouts
Grid Layout tend to be positioned only on a part of each
compartment. In addition, the compartments are well
resized and then are filled out with the nodes enough,
e.g., nodes on nucleus in Figure 9, comparing to nodes on
nucleus in the layout image of Figure 3(a). We also com-
pare the total cost, the number of edge-edge crossings,
the number of node-edge crossings, and computational
time of the resulting layouts of Grid Layout and GDC.
The box plots of total cost, the number of edge-edge
crossings, the number of node-edge crossings, and com-

putational time are summarized in Figures 10, 11, and 12.
Although GDC requires slightly more computational
time than Grid Layout, GDC provides better or competi-
tive results in other indicators. Since the repositioning of
compartments is allowed in GDC, the positions of com-
partments are moved to more desirable positions, which
contributes to the better cost, the number of edge-edge
crossings, and the number of node-edge crossings. On
the other hand, since the consideration of the dynamic
compartment update spreads out the search space of the
layouts, the more steps are required to reach local
optima.

Discussion

The first model shown in Figure 1 is a famous signal
transduction pathway, apoptosis, which is known to par-
ticipate in various biological processes such as develop-
ment, maintenance of tissue homeostasis, and
elimination of cancer cells. Malfunctions of apoptosis
have been implicated in many forms of human diseases
such as neurodegenerative diseases, AIDS, and ischemic
stroke. Apoptosis is reportedly caused by various induc-
ers such as chemical compounds, proteins, or removal of
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(a)

Figure 2 Resulting layouts of cell fate simulation model of C. elegans obtained from Grid Layout (a) and Spring (b). Because the spring em-
bedder algorithm does not consider location information, this location information is not shown in its resulting layout.

(b)

NGE. The biochemical pathways of apoptosis are com-
plex and depend on both the cells and the inducers. In
particular Fas-induced apoptosis has been studied in
detail and its simulation model has been proposed [27].
Fas ligands, which usually exist as trimmers in the extra-
cellular region, bind and activate their receptors by
inducing receptor trimerization in the cytoplasm mem-
brane region. Activated receptors recruit adaptor mole-
cules such as Fas-associating protein with death domain
(FADD), which recruit procaspase-8 to the receptor com-
plex, where it undergoes autocatalytic activation in the
cytoplasm. Activated caspase-8 activates caspase-3
through two pathways. In the complex pathway, caspase-
8 cleaves the Bcl-2 interacting protein and its COOH-ter-
minal part translocates to the mitochondria where it trig-
gers the release of cytochrome c. The cytochrome c
released from the mitochondria binds to apoptotic pro-
tease activating factor-1 (Apaf-1) together with dATP and
procaspase-9 and activates caspase-9 in the cytoplasm.
Caspase-9 cleaves procaspase-3 and activates caspase-3.
In other pathway, caspase-8 cleaves procaspase-3 directly
and activates it. In the nucleus, caspase-3 cleaves DNA
fragmentation factor (DFF) 45 in a heterodimeric factor
of DFF40 and DFF45. The cleaved DFF45 dissociates
from DFF40, inducing the oligomerization of DFF40 that
has DNase activity. The active DFF40 oligomer causes

internucleosomal DNA fragmentation, which is an apop-
totic hallmark indicative of chromatin condensation. As
stated above, these reaction events are strictly regulated
in specific cellular locations, and therefore, the corre-
sponding location information cannot be ignored in the
resulting layout. Figure 1(a) clearly shows the regulation
of these events in each cellular location, i.e., plasma mem-
brane, cytoplasm, mitochondria, and nucleus. In con-
trast, Figure 1(b) shows the two different flows by Fas-
induced apoptosis; however, it is difficult to capture the
location information of each event.

Figure 2 shows the cell fate determination model of two
gustatory neurons of C. elegans - ASE left (ASEL) and
ASE right (ASER) [28]. These neurons are morphologi-
cally bilaterally symmetric but physically asymmetric in
function, and their fates are strictly regulated by the dou-
ble negative feedback loop (DNFL), the main path of
which consists of four steps: (i) activation of DIE-1 pro-
tein leads to the activation of /sy-6 miRNA in the nucleus;
(ii) Isy-6 miRNA is transported from the nucleus and
inhibits the translation of cog-1 mRNA into COG-1 pro-
tein; (iii) if the COG-1 protein is not suppressed, then it is
translocated into the nucleus and activates the transcrip-
tion of mir-273 miRNA in the nucleus; and (iv) mir-273
miRNA is transported from the nucleus and inhibits the
translation of die-1 mRNA; this completes the loop to (i).
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y Figure 3°

Figure 3 Resulting layouts of endothelial cell model obtained from Grid Layout (a) and Spring (b). Because the spring embedder algorithm
does not consider location information, this location information is not shown in its resulting layout.
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Table 1: Summary of layout results.

Model/Algorithm

Fas-induced apoptosis model/Grid Layout

Fas-induced apoptosis model/Spring

Fas-induced apoptosis model/GDC

cell fate simulation model of C. elegans/Grid Layout

cell fate simulation model of C. elegans/Spring

cell fate simulation model of C. elegans/GDC

endothelial cell model/Grid Layout

endothelial cell model/Spring

endothelial cell model/GDC

csmi30/gl/endothelialgdc.csml

The resulting layouts of Grid Layout and Spring for the Fas-induced apoptosis model, cell fate simulation model of C. elegans, and endothelial cell model are available at the following links.


https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/apoptosisgrid.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/apoptosisspring.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/apoptosisgdc.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/elegansgrid.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/elegansspring.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/elegansgdc.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/endothelialgrid.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/endothelialspring.csml
https://cionline.hgc.jp/cifileserver/launchCIOPlayer?mode=BP&antialias=on&model=https://www.csml.org/download/model/csml30/gl/endothelialgdc.csml
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Figure 4 Comparisons of number of edge-edge crossings (left), number of node-edge crossings (middle), and running time (right) for Fas-
induced apoptosis model. Numbers of edge-edge intersections and node-edge intersections and running time for Grid Layout, Spring, and Grid
Layout NL (Grid Layout considering no location information) are compared using box plots. These indicators are obtained by applying these three
algorithms to ten randomly obtained layouts of the Fas-induced apoptosis model.

Node-Edge Crossing

Running Time

In a manner similar to apoptosis, these DNFL reaction
events are strictly regulated in specific cellular locations,
and therefore, the corresponding location information
cannot be ignored in the resulting layout. Although Fig-
ure 2(b) shows these steps, it is difficult to capture the
location information of each step. For instance, most of
the proteins and miRNAs in this model, e.g., COG-1 pro-
tein, LIM-6 protein, DIE-1 protein, mir-273 miRNA, and
Isy-6 miRNA, translocate between the nucleus and the
cytoplasm. However, such information cannot be
inferred from this figure. In contrast, Figure 2(a) shows
the regulations of these steps while keeping the cellular
location of each step, i.e., cytoplasm and nucleus.

These differences can be observed more clearly in
larger models. Figure 3 shows the responses of endothe-
lial cells to the tumor necrosis factor, with an emphasis on
the induction of endothelial leukocyte adhesion mole-
cules with more elements than in the other two models
[26]. Since adhesion molecules are usually localized on
the plasma membrane, many molecules should be on the
plasma membrane domain. Usually, external signals are
received by these adhesion molecules and transferred
into the molecules located in the cytoplasm. Finally, these
signals trigger the translation of mRNAs in the nucleus.
From the viewpoint of the density of nodes, Figure 3(b)
appears to suitably keep a uniform density of nodes.

Unfortunately, in terms of the understanding of cascading
events, Figure 3(b) does not provide completely useful
information because, due to the lack of location informa-
tion, it is difficult to interpret the network as the response
model by the tumor necrosis factor from the external
region to the nucleus via the cytoplasm. On the other
hand, as shown in Figure 3(a), our layout requires no dif-
ficulty in tracing the flow of biological cascading events
in our layout, i.e., a reader can easily interpret the net-
work as the response model of a cell from the external
region to the nucleus via the cytoplasm as a signal flow.

Conclusions

We propose a grid-layout-based spring embedder algo-
rithm that exploits the advantages on both methods, i.e.,
consideration of location information and harmonized
layouts. Not only the harmonized appearance of resulting
layouts, spring force also contributes the reduction of
crossings, which is verified by comparing two cases of
grid layout algorithms: (i) without considering distance
cost and (ii) considering only spring force. (Section 2 of
Additional file 1). Although only spring force is consid-
ered as the distance cost in this study, we can incorporate
other distance cost such as the Manhattan distance cost
in the cost function simultaneously.
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Figure 5 Comparisons of number of edge-edge crossings (left), number of node-edge crossings (middle), and running time (right) for cell
fate simulation model of C. elegans. Numbers of edge-edge intersections and node-edge intersections and running time for Grid Layout, Spring,
and Grid Layout NL (Grid Layout considering no location information) are compared using box plots. These indicators are obtained by applying these
three algorithms to ten randomly obtained layouts of the cell fate simulation model C. elegans.

In addition, to explicitly consider the reduction of
crossings, edge-edge and node-edge crossing costs are
included in the cost function. To calculate spring forces
among nodes, we proposed an efficient calculation
method for spring force cost with O(|V|2-h-w), and to cal-
culate other costs, we employ the sweep calculation [22],
which can count the crossings for all the possible move-
ments of a node at once. By applying the proposed algo-
rithm and spring embedder algorithm to three biological
networks, we verified that the consideration of location
information significantly improves the understandability
of a network from a biological viewpoint.

In order to realize better biological pathway layouts,
under the framework of grid layout, several useful cost
functions were proposed, e.g., (i) rewarding score for
aligned nodes in one line with the same attribute and (ii)
negative inner product of directions of in-edge and out-
edges. Feature (i) is very important for biologists because
the nodes in a biological pathway usually have biological
attributes, e.g., a node is mRNA, protein, modified pro-
tein, or complex of proteins, and they explicitly distin-
guish these components. Feature (ii) is also very
important for biochemists because it helps in under-
standing the reaction flows of the biological pathway.
These cost functions can be easily plugged in to our grid
layout algorithm without increasing the time complexity.

Furthermore, to obtain a better resulting layout, we can
also introduce the swapping operation of nodes at each
step of moving a node to a vacant grid point to increase
the search space while keeping the time order.

Our proposed algorithm succeeded in realizing the
required features for biological pathway layouts; however,
several enhancements are still required. For example,
usually, the combination and order of some biological
reactions can be grouped, and thus, this set of reactions,
e.g., phosphorylation and dephosphorylation, and related
biological elements, e.g., protein and modified protein,
can be considered as subgraphs that consume several grid
points. Although in our search strategy the final result
might fall into bad local optima, for the better local opti-
mum, we can use simulated annealing or other tech-
niques which enables escape from the bad local optima
although more computational time is required for the
final result. If we could extend the current grid layout
algorithm to allow the movement of multiple fixed struc-
tured nodes at once, then the required feature would be
realized. Our layout framework assumes that compart-
ments representing sub-cellular localizations are allo-
cated by users in advance and then the layout algorithm is
applied, but we also considered dynamic adjustment of
sizes and positions of these compartments. In this work,
the initial state of compartments are given in advance.
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to ten randomly obtained layouts of the endothelial cell model.

For automatically providing their initial state, the follow-
ing approach can be considered as an example. The size
of compartment can be determined by the square root of
the number of nodes that localize in the same compart-
ment. For the positions of the compartments, we put pair
of compartments in close positions if many edges are
bridging them.

In addition, the bending of edges that enables bypassing
edge-edge and node-edge crossings has not been consid-
ered in the current grid layout algorithms. This could be
achieved by considering bends as virtual nodes and han-
dling them in a manner similar to normal nodes in search
steps.

Methods

Given a graph G = (V, E) and a grid of & rows and w col-
umns, we define a cost function for mappings of nodes to
grid points and show an algorithm that finds the mapping
of nodes, minimizing the cost function in a greedy man-
ner. The cost function is defined by the weighted sum of
four components:

(a) Attraction force F,(d(P (v), P (u))) between pairs of
adjacent nodes v and u in the graph G, where P (v) and P
(1) are grid points to which v and u are mapped, respec-
tively, and d(P (v), P (u)) is the distance between two grid
points P (v) and P (u).

(b) Repulsion force F(d(P (v), P (u))) between any pairs
of nodes v and u.

(c) Number of edge-edge crossings gl (e, f), where (e,
f) is a binary function that returns 1 if e and f cross with
each other and 0 otherwise.

(d) Number of node-edge crossings , v, ¢l,(v, e) where
I,(v, e) is a binary function that returns 1 if v and e cross
with each other and 0 otherwise.

Formally, the cost function is given by

w, Y E(dP), P)+w, Y F(d(P(),

veV,ue N'(v) v,ueV
+w, Z I(e f)+w, 2 I,(v,e),
e,feE veV,eeE

where N (v) is the set of adjacent nodes of v, and w,,

w, W, and w, R*are weights for the components.

Search algorithm

In grid layout, nodes are mapped to different grid points,
i.e., no grid point is occupied by more than one node. Our
algorithm optimizes the cost function by moving a node
to an empty grid point at each step in a greedy manner.
Note that, given positional constraints, nodes are allowed



Kojima et al. BMC Bioinformatics 2010, 11:335
http://www.biomedcentral.com/1471-2105/11/335

Page 11 of 15

Figure 7 Resulting layouts of Fas-induced apoptosis model ob-
tained from GDC (Grid Layout with dynamic compartment up-
date). Iterative update of the sizes and positions of nucleus and
mitochondria is considered at each step.

Figure 8 Resulting layouts of cell fate simulation model of C. ele-
gans obtained from GDC (Grid Layout with dynamic compart-
ment update). [terative update of the size and position of nucleus is
considered at each step.

to be moved only to empty grid points satisfying the posi-
tional constraints, e.g., if a node is localized only in the
cellular membrane, it can be mapped only to those grid
points corresponding to cellular membrane. The above
operation can be performed by calculating delta cost,
which is the cost difference by the movement of a node to
a grid point, for all nodes and for all vacant grid points.
Although a naive algorithm requires O(|V|%A-w) time to
find the movement that reduces the cost most at each
step, we devise an efficient method that requires
O(|E|*min(h, w) + h-w) time for finding the movement,
which is described below.

Efficient calculation of spring force
Repulsion force for a node v is given by

()= Y EPw)Pw)),

ueV\{v}

Figure 9 Resulting layouts of endothelial cell model obtained
from GDC (Grid Layout with dynamic compartment update). lter-
ative update of the sizes and positions of nucleus, mitochondria, and
Gologi apparatus are considered at each step.
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where the function P (i) returns the grid point to which
i is mapped. Checking the movement of a node to all
the vacant grid points requires | V|-h-w calculations, and
hence, O(| V|2-h-w) time is required in total at each step.

Although the above naive calculation has a higher time
complexity than existing grid layout algorithms, we pro-
pose an efficient calculation. When v is moved from P (v)
to g, the repulsion force for v is given by:

c,(v) = 2 F.(d(q, P(u)))
ueV\{v}
= ) E(d(q, P())) - F,(d(q, P())).
ueV

Because the term , /F,(d(q, P(x))) in the above equa-
tion depends on ¢, but not on v, by calculating ,, /F,(d(q,
P(u))) for all the vacant points g initially, the calculation
of ¢(v) requires a constant time. The term , F (d(q,
P(u))) for all the vacant points requires O(| V|-h-w) time,
and |V]-h-w movements are considered at each step.
Therefore, in total, O(|V|-h-w) time is required at each
step to calculate the repulsion force.

For the attraction force, the delta cost A, , induced by
the movement of a node v to grid point p can be calcu-
lated by considering the attraction force between v and its
adjacent nodes. In addition, the movement of a node v
influences the delta costs only for v and its adjacent
nodes, i.e., the delta costs for its non-adjacent nodes at
the previous and current steps are the same. Thus, by
using the cached delta costs obtained at the previous step,
we can calculate the delta costs efficiently. If v is moved
from p to g at the previous step, the delta cost for the
movement of v to 7 can be updated by

’
Av,r = Av,r - Av/q'

and foranode zin N (v) tor,
ANyr =48, + 2-(F(d(r,q)) - F,(d(P(u),q)))
= 2-(F,(d(r,p)) + F,(d(P(u), p))).

Efficient counting of edge-edge and node-edge crossings
The delta cost caching technique is used for counting
crossings as well. When v is moved at the previous
step, the following cases need to be considered for cal-
culating the delta costs induced by the movement of
node u.

(i) edge-edge crossing betweene, E,ande, E,where
E,and E, are the sets of edges connected to v and 1,
respectively.
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(ii) node-edge crossing between e, E,and v.

(iii) node-edge crossing between e, E, and u.

(iv) edge-edge crossing between edge e(u, v) and E\(E,
E,) if edge e(v, u) exists.

(v) node-edge crossing between edge e(u, v) and V\{y,
uy if edge e(v, u) exists.

In a naive way, the crossings of the above cases are
counted in each movement of a node to a grid point.
Thus, the above cases (i), (ii), (iii), (iv), and (v) may
respectively require O(|E,||E,|), O(|E,|), (|E,|), O(E), and
O(|V]) time. Thus, each movement of a node u requires
O(|E,||E,|) time if u N (v) and O(|E,||E,| + |E|) time
otherwise. Hence, in total, O(h-w-deg(v)|E|) time is
required at each step, where deg(v) is the degree of v.

These time complexities can be reduced by using more
sophisticated crossing counting algorithms [29-31]. In
this study, we employ the sweep calculation algorithm
[22], which is known to require less time complexity than
even sophisticated crossing counting algorithms under

the assumption that # and w are proportional to /| V|

and the average degree is bounded by O(| V1/4). The grid
resolution in the former assumption is commonly
employed in existing grid layout algorithms [19-22]. In
addition, because the biological networks we are moti-
vated to tackle can be modeled as scale-free networks
whose average degree is bounded by a constant value
[32], the latter assumption is reasonable.

Given an edge e, a node v connected with e, and a set of
edges F E on the grid, we consider the counting of
crossings between e and edges in F for the movement of v
to each grid point. Unlike conventional crossing counting
algorithms, the sweep calculation can simultaneously
count the crossings for all the movements of v in
O(|F|'min(h, w) + h-w) time [22]. Because node-edge
crossings can be counted in a manner similar to the case
of edge-edge crossings, by replacing the number of edges
with the number of nodes, the time complexity for count-
ing node-edge crossings is obtained. Therefore, for the
five cases mentioned above, the sweep calculation simul-
taneously counts crossings for mappings of u to g for all
grid points g in O(|E, | |E,|-min(k, w) + h-w), O(|E,,|- min(k,
w) + h-w), O(|E,|-min(k, w) + h-w), O(|E|-min(h, w) + h-w),
and for (v) O(|V|-min(h, w) + hw) time, respectively.
Thus, the algorithm using sweep calculation requires
O(deg(v)|E|-min(k, w) + h-w-|V]) time at each step.

Time complexity at the initial step

The calculation of delta costs at the initial step requires
more computational time than those at latter steps
because no cached delta costs are available. Here, the
time complexity for the first step is analyzed for each
component.
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(a) Repulsion force: The computation of repulsion
forces does not rely on the cached delta costs. Thus,
O(|V|-h-w) time is required.

(b) Attraction force: Because attraction forces

between a node v and its adjacent nodes N (v) are calcu-
lated, O(deg(v)) time is required for each movement of v.

Thus, O(|E|-h-w) time is required in total.

(c) Edge-edge crossing: Because crossings between
edges in E, and other edges are checked for the move-
ment of a node v, O(|E|2min(k, w) + h-w) time is required
by sweep calculation.

(d) Node-edge crossing: When a node v is moved, we
need to consider two cases: (i) crossings between edges in
E,and all nodes other than v, and (ii) crossings between v,
and all the edges other than edges in E, Thus,
O(|E|| V]'min(h, w) + h-w) time is required by sweep cal-
culation.

From the above analysis, the proposed algorithm
requires O(|E|2min(/, w) + h-w) time at the initial step.

Procedures for resizing and repositioning of compartments
The resizing and repositioning of compartments are
mainly comprised of the following procedures:

(i) The size of each compartment is updated according
to the distribution range of nodes localized in the com-
partment.

(ii) The position of the compartment is updated in such
a way that the center of the compartment is close to the
center of gravity of nodes localized to it.

For the resizing of each compartment in step (i), we fist

5, = (2, (@ (veb)’

Sy = \/ZUC (d,(v,,b,))* where v_is a node localized to

calculate and

the compartment ¢, b, is the center of gravity of v, (d the
nodes localized to ¢, and d,(-) and d,(,) return vertical
and horizontal distance of v, and b, respectively. Then, if
5, < 0.4 x the width of the compartment and s;, < 0.4 x
the height of the compartment, the compartment is
shrunk to one level smaller size (0.95 times as large as the
current size, in our setting). On the other hand, s, < 0.9 x
the width of the compartment and 2 value s;, < 0.9 x the
height of the compartment, the compartment is enlarged
to one level larger size (1/0.95 time as large as the current
size). For the limitation of the scaling, the compartment
cannot be shrunk if its current size is smaller than 0.6
times of its original size, while it cannot be enlarged if its
size is larger than 1.5 times of its original size.

For step (ii), the position of the compartment that min-
imizes the distance of the center of compartment and the
center of gravity of nodes are searched. For an easier
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implementation, we discredited the center of compart-
ment and the center of gravity of nodes to some grid
points and employed the Manhattan distance for the dis-
tance measure. Positioning is searched in the limited dis-
tance from the center of gravity, which is set to 10 in our
setting. if the compartment is resized. Also, for the search
procedure, the following two conditions must be satis-
fied:

« Every node satisfies its localization information.

+ No compartments are allow to overlap.

For the efficiency and simplicity of checking the second
condition, we only consider overlapping of the rectangles
that surround the compartments. Overlapping of these
rectangles can be detected by checking if at one of four
corners are in the other rectangle. If no valid position can
be found in the above procedure, the size of the compart-
ment is turned back to its previous size of step (i) and
then step (ii) is applied again. If no valid position is still
not found, then its current size and position are used for
the next step. When several nodes are located close to the
surface of a compartment, its size and position cannot be
updated to a better condition as resizing and reposition-
ing of the compartment violate the localization of these
nodes. In order to avoid the case, we introduce the fol-
lowing cost function to nodes located within one grid dis-
tance from the surface of the compartments defined as
a-exp(-BI), where a and f5 are respectively set to 20-(w + 7)
and 0.002 from an empirical rule and / is the number of
updated steps. Due to the above cost function, the place-
ment of nodes close to the surface of the compartments is
avoided and then the compartments can be updated to a
better size and position with higher probability. In addi-
tion, since the above cost function converges to zero with
increasing update steps /, the convergence of the search is
guaranteed.

Next, we consider the time complexity of the dynamic
compartment update. For step (i), the calculation of s,
and s, require O(|V,|) time for a compartment ¢, where V,
is the set of nodes localized to c. Resizing the compart-
ment c requires O(w_-h,) time, where w_and %, are width
and height of the compartment c. Thus, in total, O(| V] +
w-h) = O(w-h) time is required for step (i). For step (ii),
checking the violation of localization information of
every node requires O(| V) time for each movement of a
compartment even in a naive way. In addition, at worst,
each compartment is moved to all the grid points in the
limited distance from the center of gravity and the num-
ber of them are obviously less than the number of grid
points. Checking the overlapping of a pair of compart-
ment requires constant time. Since the number of com-
partments are limited (in our setting, at most three),
which can be considered as a constant, the time complex-
ity of step (ii) requires O(w-h-|V]) time at worst case.
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Actually, since the number of grid points searched for the
repositioning of compartments are limited, the time com-
plexity for the dynamic compartment update is not heavy
in practice, which is supported by the comparison of run-
ning time of the proposed algorithm with and without the
dynamic compartment update in Figure 10, 11, and 12.

Additional material

Additional file 1 Comparison of the resulting layouts under several
parameter sets (Section 1) and among three cost functions (Section
2). Layouts of Fas-induced apoptosis model, cell fate simulation model of C.
elegans, and endothelial cell model obtained by the proposed algorithm
under several parameter sets are compared in Section 1. From the compari-
son, the influence of parameters to positions of nodes and the number of
crossings are discussed. In Section 2, resulting layouts of Grid Layout, Grid
Layout without considering spring force cost, and Grid Layout considering
spring force cost are compared on the three models. By using box plots for
the numbers of edge-edge and node-edge crossings on layouts from these
algorithms, the effectiveness of spring force cost is discussed.
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