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Background: High throughput sequencing (HTS) platforms produce gigabases of short read (<100 bp) data per
run. While these short reads are adequate for resequencing applications, de novo assembly of moderate size
genomes from such reads remains a significant challenge. These limitations could be partially overcome by
utilizing mate pair technology, which provides pairs of short reads separated by a known distance along the

Results: We have developed SOPRA, a tool designed to exploit the mate pair/paired-end information for assembly
of short reads. The main focus of the algorithm is selecting a sufficiently large subset of simultaneously satisfiable
mate pair constraints to achieve a balance between the size and the quality of the output scaffolds. Scaffold
assembly is presented as an optimization problem for variables associated with vertices and with edges of the
contig connectivity graph. Vertices of this graph are individual contigs with edges drawn between contigs
connected by mate pairs. Similar graph problems have been invoked in the context of shotgun sequencing and
scaffold building for previous generation of sequencing projects. However, given the error-prone nature of HTS
data and the fundamental limitations from the shortness of the reads, the ad hoc greedy algorithms used in the
earlier studies are likely to lead to poor quality results in the current context. SOPRA circumvents this problem by
treating all the constraints on equal footing for solving the optimization problem, the solution itself indicating the
problematic constraints (chimeric/repetitive contigs, etc.) to be removed. The process of solving and removing of
constraints is iterated till one reaches a core set of consistent constraints. For SOLID sequencer data, SOPRA uses a
dynamic programming approach to robustly translate the color-space assembly to base-space. For assessing the
quality of an assembly, we report the no-match/mismatch error rate as well as the rates of various rearrangement

Conclusions: Applying SOPRA to real data from bacterial genomes, we were able to assemble contigs into
scaffolds of significant length (N50 up to 200 Kb) with very few errors introduced in the process. In general, the
methodology presented here will allow better scaffold assemblies of any type of mate pair sequencing data.

Background

Next-generation high-throughput sequencing (HTS)
holds the promise of revolutionizing the field of biologi-
cal research [1]. By producing millions of short reads
(25-100 bp) per run at a moderate cost, these new
sequencing platforms move whole genome sequencing
from large centers to individual scientists. To name a
few, the list of applications includes gene expression
analysis, mutation mapping, non-coding RNA discovery,
metagenomics, and protein binding site identification
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[2,3]. From bioinformatics point of view, there are
essentially two types of problems: short read alignment
or mapping and de novo assembly (the case where no
reference genome is available). De novo assembly of
short reads into larger DNA contigs/scaffolds has pro-
ven a bioinformatics challenge both in terms of algorith-
mic and computational power [4].

Over the past few years, several algorithms have been
developed for assembly of short reads. These algorithms
can be divided into two broad categories. Some meth-
ods, based on 3’kmer extension, use particular data
structures to efficiently search for short reads extending
a seed sequence [5-7]. In contrast, the graph-based
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methods pose the sequence assembly as a problem of
finding paths on a graph that encodes the short read
overlap information [8-11].

Mate pair and paired-end sequencing represent key
innovations in short read sequencing that enabled
assembly of short contigs into larger scaffolds. Mate pair
sequencing was a key innovation that allowed shotgun
sequencing of large complex genomes such as humans
and Drosophila [12]. Mate pair libraries are generated
by enzymatically isolating the ends of a long (1 to 10
kb) DNA molecule. These ends are sequenced in the
same direction. In contrast, paired-end sequencing
involves sequencing the ends of a smaller (< 600 bp)
DNA fragment from both ends in the opposite direc-
tion. In this paper, unless we are explicitly contrasting
the two methods, we will use the term mate pair to
refer to both these technologies.

The current version of some of the above-mentioned
short read assemblers can handle mate pair information.
However, the use of this information was not central to
the concepts that led to the design of most of these
algorithms. The sole exception is the ALLPATHS
assembler [9], where the use of mate pairs is essential.
From a practical point of view, one drawback of ALL-
PATHS is that it requires at least two paired libraries,
with very different insert sizes. Also, the performance of
this assembler degrades rapidly as the coefficient of var-
iation of insert size in a library increases past a few per-
cent [9]. This sensitivity is a problem for assembly of
real sequence data, as we will see. In the context of pre-
vious generations of sequencing technologies with
longer reads, the incorporation of mate pair information
has also been addressed, either in conjunction with con-
tig assembly [13,14] or as a scaffolding module [15].

Generally speaking, current scaffolding algorithms fall
into two categories. Prominent de Bruijn graph based
contig building algorithms (e.g. Velvet [8] and Euler
[14]) utilize mate pairs to improve the path/walk in the
same de Bruijn graph. The other category of scaffolding
algorithms [13,15], formulate the problem in terms of
graph theoretic constructs in which vertices of the
graph are associated to contigs and edges encode mate
pair information. Although our approach to the scaffold-
ing problem has partial similarity to this last category,
our solution strategy is different, as we will explain. Our
algorithm could be implemented, in principle, for any
kind of mate pairs, from Sanger reads to the HTS data.
However, the special challenges inherent in scaffolding
with short read data necessitate an approach that is
more sophisticated than those developed so far. That is
why we implemented and tested SOPRA in the context
of short reads from next-generation technologies.

Existence of repetitive regions in DNA, errors in the
sequencing process and mis-assembly of short reads
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into contigs are all factors which contribute to the com-
plexity of scaffold building using mate pair information.
This complexity arises in the form of apparent inconsis-
tency among the set of constraints laid by the mate
pairs. Detecting and eliminating the sources of these
inconsistencies is essential for the success of any algo-
rithm dealing with mate pair data. This issue is espe-
cially important in the context of short read data, since,
we expect a higher number of problematic mate pair
constraints in the process of scaffold building.

Existing scaffolding algorithms follow a greedy
approach, starting with certain schemes of ordering the
contigs and pairing information. The mate pairs are
then iteratively incorporated as long as the new infor-
mation does not conflict with the previously assembled
scaffolds. In other words, at each step, only a subset of
contigs and links in between are considered to improve
the assembly. Given the nature of short read data, solu-
tion strategies employed in previous studies face difficul-
ties for such data [16].

In this paper, we present SOPRA (Statistical Optimi-
zation of Paired Read Assembly), a new tool for de novo
assembly of short reads produced by new sequencing
platforms. The design of SOPRA is especially targeted
to exploit the mate pair information in the process of
scaffold assembly. In other words, SOPRA is a module
that can be combined with any of the available algo-
rithms for contig assembly. Such a modular design
allows greater flexibility and control over the scaffold
building process, as has been noted before [15]. SOPRA
proceeds in an iterative fashion where at each step pro-
blematic mate pair constraints are detected and
removed. At each step, one finds a solution consistent
with most of the constraints by statistically optimizing
over a cost function. Then, one relaxes the most vio-
lated constraints. This alternation between removing
suspicious data and optimization continues, till we get
scaffolds consistent with the remaining trusted
constraints.

Among the available de novo assemblers, as far as we
are aware, Velvet [8] is the only one that can handle
color-space data. Adapting available assemblers for
color-space data is not a trivial task, since, naive transla-
tion from color-space to base-space leads to serious
error amplification [17]. Particular attention was paid so
that SOPRA could handle data from the SOLiD plat-
form. The final output, given in base-space, is con-
structed from the color-space assembly, as well as from
additional information obtained by translating only the
first color call of all the reads. This method will prevent
the propagation of the error that can happen in the
naive translation. SOPRA is available freely, under the
GNU Public License, at http://www.physics.rutgers.edu/
~anirvans/SOPRA/
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Figure 1 Flow chart of the algorithm. In principle, the contig assembly can be performed using any of the available contig assembly
algorithms. SOPRA uses the mate pair information to assemble contigs into scaffolds. S-SOPRA and V-SOPRA correspond to the integration of
SOPRA with SSAKE and Velvet respectively.
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Results and Discussion

The flow chart of the assembly process is shown in
Figure 1. Below, we will explain each section in more
details.

Contig Assembly Preliminaries

As we mentioned, SOPRA is focused on scaffold assem-
bly. The information SOPRA needs from a contig
assembler is the computed positions of reads in each
contig. SOPRA reconstructs the contigs based on this
information. Note that, in the case where these reads do
not show perfect overlap, reconstruction of the contigs
by SOPRA may not agree with the output of the original
contig assembler.

In this paper, we present the performance of SOPRA
integrated with two particular contig assembly algo-
rithms, namely, SSAKE [7] and VELVET [8]. We will
refer to these two versions as S-SOPRA and V-SOPRA,
respectively. This integration is relatively straightforward
and described in the Methods section. However, for
color-space data, there is one additional step of translat-
ing the assembled contigs to base-space.

Robust translation of contigs assembled in color-space
SOLiD (Sequencing by Oligonucleotide Ligation and
Detection) is a novel HTS platform. It uses four fluores-
cent color probes (coded as 0-3) for reading dinucleo-
tides, namely, two neighboring bases at a time. The
sixteen possible dinucleotide combinations are divided
into groups of four, each of which is assigned a unique
color (e.g. color 2 is assigned to combination AG, GA,
TC and CT). However, the groups are designed in such
a way that, every combination of the first base and the
color call uniquely determines the second base. In other
words, each color encodes a transition matrix in the
base-space.

Each SOLID read starts with a reference base, the last
base in the primer (usually T or G), followed by a cer-
tain number of color calls e.g. G10223...330. Using the
reference base and the first color call, we can find the
first letter base, which in turn can be combined with the
second color call to obtain the second letter base. Conti-
nuing so forth, we can translate the whole sequence
from color-space to the conventional base-space. The
issue is if one of the color calls is wrong (because of an
error in the sequencing process), the whole translation
from that point on will be wrong. In other words, one
error in the color-space will propagate into many errors
in base-space. It is because of this error rate magnifica-
tion that we do not simply translate the SOLiD output
directly to the base-space. Instead, SOPRA translates the
resulting color-space assembly using a dynamic
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programming method that avoids such error propaga-
tion, as we will explain below.

We only translate the first color call (using the refer-
ence base) to the base-space but keep the rest of the
sequence in color-space. This means a library of
sequences, each of which consists of a reference base
and L color calls, will become a library of sequences
that start with a DNA base followed by L - 1 color calls.
If we ignore for a moment the first DNA base, we can
use the L - 1 base long sequences for contig assembly in
the same way as in regular base-space data. Of course,
the result of this assembly will be contigs in the color-
space. Although we do not use the first letter base of
the sequences in the assembly process, once a sequence
is used in building a contig, we record where on the
contig the first letter base of the corresponding
sequence lies (Figure 2). Notice that the first letter base
lies between two color calls and serves as a suggestion
for what the DNA base at that position should be. On
the other hand, each color call is located between two
neighboring DNA bases and provides information about
the corresponding dinucleotide.

At this point, the assembly result is a sequence in
color-space, C, plus some letter base suggestions at cer-
tain locations of each contig, F. In Figure 3, the color-
space contig is represented using blue numbers 0-3,
whereas, base-space suggestions are shown in magenta.
Now, we pose the following question: Given a color-
space sequence plus its letter base suggestions, what is
the most likely DNA sequence which gave rise to this
data? We will set up a model that allows for mistakes in
the base suggestions as well as in the assembled color-
space contigs. To each arbitrary base-space sequence,
the model assigns a probability for that sequence to be
the real DNA sequence. The final translation output
would be the base-space sequence that maximizes this
probability.

The reason why this method prevents propagation of
error can be intuitively understood as follows. If the pre-
sence of a color call error is ignored, the naive transla-
tion will disagree with most of the base-space
suggestions. If this disagreement goes on for a long
stretch, from the perspective of the probability function,
it is better to declare that particular position to be a
color call error and replace it with another color such
that the translation becomes consistent with the stretch
of base-space suggestions. The ability to alter a color
call to enhance the consistency with base suggestions in
long stretches helps not only with substitution errors,
but also helps to compensate for inconsistency arising
from indels. The details of the model are explained in
the Methods section.
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Figure 2 Robust translation from color-space to base-space. The base-space suggestions, obtained by translating only the first color call of
each read, are shown in magenta. Contig assembly is performed using only the color part (indicated by numbers 0-3) of each sequence.
Inconsistencies between the color-space calls and the base-space suggestions, signals the presence of errors. We use an error probability model
to find the most likely DNA sequence consistent with this data. The underlined color calls and suggestions in the figure are declared as mistakes

in the final translation.

Contig self-consistency check

We implemented the self-consistency checks described
below only in S-SOPRA. The reason for these checks is
that the programs, like SSAKE, which use a greedy algo-
rithm for contig assembly, are particularly vulnerable to
generating chimeric contigs. If two legs of a mate pair
are located on the same contig, then their relative orien-
tation and position in the contig should match the ones
suggested from the mate pair link. If we observe more
than certain number of times (threshold is a parameter
of the software) cases where the orientation disagrees or
the separation between reads is more than one standard
deviation different from the insert size, we discard that
contig. This method, however, does not necessarily
detect chimeric contigs where two or more regions from
different parts of the genome have been mis-assembled
into one contig. Mate pair information can be used to
detect such mis-assemblies, as explained below.

If a contig is genuine, there should be several mate
pairs connecting different locations on the same contig
(assuming the contig is at least a few times longer than
the insert size of mate pairs). However, if it is the case
that the contig is composed of two or more sequences
coming from different parts of the genome, there should
not be as many mate pair links connecting those
sequences together. For each point on a contig, we
count how many mate pair links connect the right side
of that point to the left side. If this number is particu-
larly low for some region, we cut the contig into two at
that position.

Estimation of insert size

In the case where there are enough long contigs, the
typical value of the insert size can be estimated from
the mate pairs located on the same contig. To do so, we
first remove the outliers for which the separation
between the pair is different from the suggested insert
size by more than the value of the suggested insert size
(or equivalently, more than five times the standard
deviation, if we assume it is 20% of the suggested insert
size). The empirical insert size is equal to the mean
value of the separation for the remained pairs. The user
needs to know only an approximate value for the insert
size based on the library preparation protocol. Prior
knowledge of the typical insert size needs to be accurate
only when almost all contigs are smaller than the typical
inserts.

In case the insert size targeted by the library prepara-
tion methods is not available to the user, he/she could
take advantage of the empirical distribution of insert
sizes output by SOPRA and determine the typical insert
size by inspection. In any case, it is a good idea to
inspect this distribution, to ascertain the quality of the
mate pair library.

Removal of reads in high coverage regions from
scaffolding process

A contig containing repetitive regions can provide con-
flicting mate pair constraints and cause mis-assembly in
the scaffolding process. Although, one could take up the
problem of resolving the repeat structures, our approach
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Figure 3 Histogram of separation between locations of two reads of a mate pair on the reference genome. This histogram appears to
be a combination of two parts. One part is a distribution peaked around the insert size of the mate pair library, as expected. However, in
addition, there is a broad background. (A) E. coli data from SOLID platform. (B) E. coli dataset, but limited to pairs for which the separation is
around the peak region in (A). (C) P. syringae data from lllumina platform. (D) P. syringae dataset, but limited to pairs for which the separation is
around the peak region in (C). Both distributions in (B) and (D) have large standard deviations, each around 20% of the corresponding mean

currently is to identify and remove such contigs from
the scaffolding process. One way of detecting repeats is
by looking for high coverage regions in each contigs. If
a contig has high mean coverage (determined by a para-
meter of the software) we remove such a contig from
scaffold assembly before starting the process. Some con-
tigs have high coverage locally without having high
mean coverage. We exclude mate pairs with reads falling
in such local high coverage regions for the scaffolding
considerations as well (the threshold is a parameter of
the software).

Scaffold Assembly

If two legs of a mate pair are incorporated into two
separate contigs, we can infer the relative orientation
and relative position of those two contigs on the gen-
ome. However, such ordering of contigs is not an easy
task, since, the constraints imposed by mate pairs are

often not self-consistent. The best one can do is to
assign the orientations and positions so that as many
constraints as possible are satisfied. In addition, there
can be misleading or incorrect information. These
dubious constraints arise not only from issues like erro-
neous contig assembly, but also from innate problems in
mate pair data itself.

To elucidate this point, let us examine the two real
libraries discussed below in the performance comparison
section. In Figure 3, we plot the histogram of separation
between the two reads belonging to a mate pair,
obtained by matching the reads to the reference gen-
ome. As we can see, the distribution of separation could
be thought of as a combination of a sharp peak and a
broad background that spans over the entire length of
the genome. Even if we limit ourselves to the sharp
peak (Figures 3B and 3D), the standard deviation is
around 20% of the mean value. The variability in
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separation is much larger than values used for generat-
ing simulated data in some studies [8,9]. The algorithm
for position assignment has to be robust to such large
degree of uncertainties. As will be discussed in the com-
ing sections, in our approach, this goal is achieved by
identifying and removing those mate pairs that belong
to the broad background as well as from averaging effect
of imposing all the remaining constraints together.

For contig building, it is often convenient to represent
the sequence overlap information using graph theoretic
constructs, e.g. in terms of an overlap graph or a de
Bruijn graph. Similarly, it is useful to encode the con-
straints given by mate pair information into a graphical
model. In this model, the underlying undirected graph
has vertices corresponding to each contig. Any two con-
tigs connected through mate pairs have an edge in
between. We call this graph the contig connectivity
graph. This graph is similar to the contig-mate-pair
graph introduced in [13], except that here each contig is
represented by a single vertex as opposed to two. This
kind of graph structure has been used in other studies
as well [15]. The structure of the contig connectivity
graph, at different stages of the assembly, can be visua-
lized with the help of programs such as GraphViz pack-
age [18].

In our formulation, orientations and positions for
each contig are variables living on the vertices of this
graph. If we introduce the mate pair information as
probabilistic constraints on relative orientations and
positions of neighboring vertices on the graph, this
graphical model has the structure of a Markov random
field model [19]. Markov random field models were
originally inspired by problems in statistical physics.
There are relatively obvious connections between find-
ing the ground state (the most probable configuration
of Markov random field) of certain statistical physics
models and well-known graph optimization problems
as was pointed out by several researchers in the eigh-
ties [20]. Such analogies also led to the simulated
annealing [21] as a heuristic method for solving hard
combinatorial optimization problems (see [22] for a
review). We will explain our procedure by invoking the
physical analogies, but one could often describe the
same procedure using a language familiar to computer
scientists.

We perform the scaffolding in two steps. We first
assign the orientation of contigs, without considering
their positions. Once the orientation is determined, in
the second step, we calculate the position of contigs. In
this second step, we only use those mate pair links
which are consistent with the orientation assigned in
the first step. In principle, one could have optimized for
orientation and position together, however, our two
steps process simplifies the algorithm.
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One additional constraint is that distinct contigs can-
not be assigned to the same or overlapping positions.
This should be true for every possible pair of vertices.
This means that if we want to impose this condition in
the contig connectivity graph, every possible pair of ver-
tices will be connected by an edge representing this
non-overlapping condition. In other words, every vertex
will be directly connected to all other vertices. In this
sense, the Markov random field structure on the contig
connectivity graph is violated. We first solve for orienta-
tions and positions ignoring the non-overlapping con-
straints. The resulting solution typically includes some
scaffolds for which the non-overlap condition is not
satisfied. We segment these scaffolds into smaller scaf-
folds satisfying the non-overlap condition using another
Markov random field model living on a new graph
obtained by augmenting the contig connectivity graph
with additional edges between apparently overlapping
contigs.

Determining the relative orientation

We indicate the two possibilities for the orientation of
contig i by S; = 1 and S; = - 1. If two contigs i and j are
connected through mate pair links, we associate a num-
ber to it, denoted by J;;. The sign of J; is positive if the
links suggest that two contigs have the same orientation,
otherwise it is negative. The absolute value of J; is equal
to the number of links that connect the two contigs. If
all the mate pairs connecting two contigs do not agree
with each other, we require that at least a significant
majority do. To be a significant majority, we require the
percentage of the mate pairs in the dominant group to
be higher than a certain threshold, which is a parameter
in the software. Otherwise, all the links between those
contigs are ignored.

The reason for rejecting all these links is as follow.
For two close-by genuine contigs, not belonging to
repeats, the source of orientational conflicts is the pre-
sence of spurious mate pairs. Usually, these inconsistent
spurious links form a small minority. However, when a
part of a contig belongs to repetitive regions or one of
the contig is chimeric, the nature of the orientational
conflicts is different. For example, it is likely that part
of the mate pair information suggests the contig belongs
to one strand while some other part of the information
suggest it belongs to the other strand. In such cases, the
majority group and the minority group can have com-
parable number of links. If a significant majority of
links do agree, the minority links are ignored suspecting
that they are spurious. If the numbers are comparable,
then all links are ignored for the reason mentioned
above.

For each configuration of orientations, S = (S1,S,,...,
Sn), N being the number of contigs, we define the
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following cost function:

E[S] Z]u ivje (1)

<ij>

This quantity, a measure of how many of the mate
pair links are satisfied, could be thought of as the energy
of an Ising spin system with interactions J;. If it were
possible to find a configuration to satisfy all the con-
straints, we would have: sign (J;;) = sign (S; S;), YV i, j
The energy of this configuration would be:

Epin = _Z”u |. As we mentioned before, it is often the

<l]>

case that such a configuration does not exist. Therefore,
our goal is to find the best configuration in which as
many mate pair links as possible are satisfied. Effectively,
we want to find the orientation assignment that mini-
mizes the energy function in Equation (1) (Figure 4A).
This minimization is equivalent to the maximum weight
cut problem, which appeared in the context of shotgun
sequencing [23] and of scaffold assembly [15]. Given
that this problem is NP-complete [24,25], it is natural to
search for heuristic methods. The approach of these ear-
lier studies is to resolve the constraints in the scaffold
assembly problem through particular greedy algorithms
that depend upon ad hoc schemes of ordering the con-
tigs. The contrast between such approaches and ours
will become clear, as we will explain our algorithm in
the Methods section.

Determining the relative position

For determining the relative positions of contigs, we
only use the mate pair links that are orientation-wise
consistent with the optimal configuration found in the
previous section. Consider a set of contigs connected
through mate pair links. Let X = (0,xy,...,x5), denotes the
positions of the start points of these contigs. By putting
x1 = 0, we have chosen a particular system of coordi-
nates. Each mate, r, connecting contigs i and j, provides
us with some information about x; - x;, encoded in the
probability distribution p"(x; - ;). This distribution is
picked around certain value, l,-rj , which can be deter-
mined from the location of the two reads in the corre-
sponding contigs and the insert size of the mate pairs
(the formula is presented in the Methods section).

Had we not assigned the orientations, one could still
define 13(S;,S;), with the orientations only affecting the
sign of the quantity. Note that |I;; | is the suggested dis-
tance between the corresponding contigs, whereas, the
sign determines the ordering (i.e. which one is to the
left and which one is to the right). In Figure 4A, next to
each edge, we just show J;’s. However, each edge also
carries the additional information on the relative posi-
tion of the corresponding contigs (lig ’s). Before
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assigning the orientation, the contig connectivity graph
does not fully capture the ordering of contigs, since, as
we explained, ll-rj is determined up to a sign. After the
orientation assignment, the full information about rela-
tive position of contigs is captured by this graph.
The overall information provided by all the mate pairs
sl
linking contigs i and j is given by []p’(x; - ;). Note
r=1
that | J; | is the number of mate pairs bridging between
contigs i and j. We do not know the exact form of p”

(%; - x); however, if we take it to be a Gaussian centered

around [, we will have:

l]’

—(x,—x,—11)? 262

p (s —xj)ee e T 2)
where o corresponds to the variance in the insert size

of mate pairs. Our approach is to determine the relative

position of contigs by maximizing the joint probability

distribution:

|71

P(X)= HHp (x; _x)xHH ol /207 H Syl -, 10) 207 (3)

<ij> r=1 <ij> r=1 <ij>

I, . .

where 1;=315)/1J;1 is the average suggested distance
between the start points of contigs i and j. Equivalently,
one could minimize the function:

].. _
E[X] :Z|2U|(xi —x; - 1)
<ij>

This function has an alternative interpretation as the
energy of a coupled system. In this analogy, the collec-
tion of mate pairs between two contigs i and j is
replaced by a spring connecting the start points of
those contigs. The spring constant is equal to | ]l, |
and the relaxed length of the spring is given by Ti
this way, the original system of contigs Connected
through a network of mate pairs is modeled as a sys-
tem of objects connected through a network of springs
(Figure 4B). The solution maximizing the probability
given in Equation (3) corresponds to the equilibrium
position (X*) of the objects in the spring system. These
positions could be calculated by solving a set of linear
equations corresponding to the force on each object
being zero.

In the equilibrium position, if the distance between
two contigs is equal to the distance suggested by the
mate pairs connecting them, then the corresponding
spring is relaxed; otherwise, the spring is either
stretched or compressed In other words, we could
define A o x* - x% ;| as a measure of the degree to
which the mate pair Constramts are violated. If all the
suggested distances were self-consistent, all A;’s would
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Figure 4 Modeling constraints on the contig connectivity
graph. (A) For two contigs i and j connected through mate pairs,
the quantity J; encodes the information about relative orientation
(sign of J;) and number of mate pairs connecting those contigs
(absolute value of Jj). Minimizing the energy produces an
orientation assignment that satisfies as many constraints as possible.
The constraints that are not satisfied in the optimal configuration
(shown in red) are ignored in the next part. (B) To determine the
relative position of contigs, we model the collection of mate pairs
connecting contigs / and j as a spring attached to the start points
of those contigs. The relaxed length of this spring, 7, is equal to
the average suggested distance between the start points of those
contigs given by mate pair constraints.

be nearly zero (no stretch/compression in the springs).
In real data, it is possible that some sequences match in
several locations on the genome, and therefore, mate
pair information would not uniquely determine the posi-
tion of contigs. In our model, the sign of this non-
uniqueness is that in the equilibrium solution, X*, some
of the springs will be stretched or compressed. The
same situation can arise because of contig mis-assembly
where two separate regions of the genome are joined
into one contig.

When there is a stretched or compressed spring, we
remove the contigs attached to the end of that spring
from the system and restart the scaffold assembly on
the remaining contigs. In other words, we go back to
the orientation assignment step (Figure 1). The cycle
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stops when in the equilibrium position, all the springs
are close to their relaxed state, namely, all A;/’s are
below a certain threshold. Note that X* is the positions
of the start points of contig. If the orientation of contig
i is positive, it means that it covers the interval
(x;,x: + length; —1) on the scaffold. If i has negative
orientation, we assign the reverse complement of i to
the interval (x; —length; +1,x;) -

The greedy algorithms, previously applied to the
combinatorially difficult problem of assigning relative
positions, consider contigs in a certain order; an order
that depends on the number of links associated with
each contig [13,15]. Potentially, such methods could be
prone to incorporating repeats/chimeric contigs which
could have significant number of links associated with
it. In contrast, our method has the advantage of pro-
viding an unambiguous means for flagging misleading
distance constraints with having to commit to any
such order.

Detecting tangled scaffolds by the contig density profile
We calculated the position of the contigs in a scaffold
from a set of linear equations based on the assumption
in Equation (2). Of course, position intervals corre-
sponding to distinct contigs should be non-overlapping.
However, the solution of these linear equations is not
guaranteed to satisfy this non-overlap condition. In fact,
such overlapping configurations do arise in practice.
Below, we explain some of the causes leading to this
problem.

Consider the scenario described in Figure 5A. There
are two sets of contigs, shown in green and magenta,
belonging to distinct regions of the genome. Contigs
within each set are self-consistently connected through
mate pairs. Assume during contig assembly, contig 3
from the first set and contig 7 from the second set get
mis-assembled into one contig. In this case, we obtain a
scaffold that contains all the contigs and yet, does not
have any stretched or compressed spring.

In addition to contig mis-assembly, existence of repe-
titive regions in the genome is another factor that can
cause improper joining of multiple scaffolds. In that
case, contigs 3 and 7 in Figure 5A are seen as one con-
tig in the assembly, whereas they are really copies of the
same sequence that matches on multiple places on the
genome. Each copy can cause the mis-incorporation of a
new set of contigs from its neighbors.

In order to detect this type of complication, we define
the ‘density profile’, a quantity that represents how
many contigs cover each region of a scaffold. In the
final assembly output, this density should be near one
for all regions of each scaffold (except for gaps where
the density is zero). For a configuration like in Figure
5A most of the points in the problematic region are
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Figure 5 Detecting and resolving scaffold mis-assembly using density profile and Potts model. (A) Two scaffolds, shown in green and
magenta, belong to the different regions of the genome. Mis-assembly of a chimeric contig composed of contig 3 from the green scaffold and
contig 7 from the magenta scaffold causes the two distinct scaffolds to join together. In the new scaffold, many positions are covered by two
contigs. (B) For a genuine scaffold, the density profile (see text for definition) should be close to one (or zero for gaps). The plot shows the
density profile for a mis-assembled scaffold obtained in the assembly process of a real dataset from the E. coli genome. Each point along the x-
axis represents a window of length 1000 bases along the scaffold. The y-axis shows the average density for positions located within each
window. From this profile, we can infer that at least four scaffolds have been mis-assembled together. (C) Our labeling method for dividing
contigs into distinct groups for the case shown in (A) can lead to any of the three possibilities shown here. We use color to present different
labels. Note that the problematic contig (3-7) always lies at the boundary between different groups.
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covered by two contigs, leading to a higher density.
Therefore, by inspecting the density profile, we expect
to detect these cases where two or more scaffolds are
mis-assembled into one scaffold. Figure 5B shows the
density profile obtained in the assembly process of a
real dataset from E. coli genome (discussed below in the
performance comparison section). Notice that there are
two regions with density above the background density
of one, and that those high densities are in fact very
close to integers (3 and 2). The nearly integral values
indicate how many potentially distinct scaffolds have
been joined together.

Scaffold segmentation

After detecting high-density regions, we need a proce-
dure to identify and remove the problematic contigs
that lead to the merger of disjoint scaffolds. We will call
these contigs “junctures” for future references. We wish
to assign the rest of the contigs into distinct scaffolds in
such a way that each scaffold has an acceptable density
profile. With that goal in mind, we provide each contig i
with a variable 0;. One could think of o;’s as a putative
scaffold label. From the density profile, we can deter-
mine g, the total number of distinct labels (scaffolds)
that we need. For example, the profile in Figure 5B
implies g = 4.

We want to assign the labels according to two criteria.
On one hand, we want the contigs that are directly con-
nected by mate pairs to have the same label. On the
other hand, we want the contigs that lie over each other
to have different labels. To present these criteria

mathematically, we define two matrices D and O. If con-
tigs i and j are directly connected by mate pairs, the
matrix element D;; is one; otherwise, it is zero. The
matrix element Oy is a positive number monotonically
increasing with the length of the region that contigs i
and j cover simultaneously. We want to find the label
assignment that minimizes the following cost function:

Eo] = _Z Dby o + Z o . @
i,j i,

Here, 50,.,0-]. is the Kronecker delta; it is one if o; and
o; are equal and zero otherwise. This cost function is
exactly the energy of a q-state Potts model with both
ferromagnetic and antiferromagnetic interactions. We
use a simulated annealing method [21] to find a config-
uration of label assignment that minimizes the above
energy (details explained in the Methods section).

In the minimum energy configuration, neighboring
contigs belonging to the same scaffold prefer to have
the same label while contigs belonging to different scaf-
folds, juxtaposed in position space, prefer to have differ-
ent labels. This is a direct consequence of the two
criteria with which we began. However, these two cri-
teria cannot be satisfied everywhere at the same time.
Around the junctures, namely, contigs joining such jux-
taposed scaffolds, the two criteria are at conflict with
each other. The result of this conflict is the formation
of domain boundaries (change of label) in the neighbor-
hood of the junctures. To get a better sense of this phe-
nomenon, let us revisit the example in Figure 5A. The
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result of label assignment by our algorithm could give
rise to any of the three configurations in Figure 5C (dif-
ferent labels are shown by different colors). Note that
the juncture is always located at the boundary where
different labels meet.

Motivated by this discussion, we form an initial list of
suspected junctures from the contigs located at label
boundaries, namely, contigs having at least one neighbor
with a different label. This list often has much fewer
members than the original set that we started with. Ide-
ally, one would like to consider the result of removing
all the different combinations of suspected contigs from
the original set to check if it resolves the problems in
density profile. An exhaustive search over all combina-
tions becomes possible when the list is small. Otherwise,
one has to limit the list to members located at the den-
sest part of the scaffold. If the list is still too large, we
have to proceed with a randomly chosen subset.

After removing any subset of these suspected junc-
tures from the original set of contigs, the remaining set
of contigs will form one or more connected compo-
nents. We score each subset by combining two num-
bers, one penalizing the formation of too many small
components and the other penalizing the presence of
high-density regions. We choose the best scoring subset
to be removed and focus on the resulting connected
components.

For each connected component, we check whether the
corresponding density profile is free of high-density
regions. All connected components with satisfactory
density profiles are declared to be new scaffolds. For the
rest, we restart the labeling process individually for each
component, and continue this process until all the com-
ponents have satisfactory density profiles. The removed
contigs, either in the Potts model or in the spring
model, are reported as single contigs at the end of the
assembly.

The Potts model based approach is different from the
formulation in terms of non-self-overlapping path intro-
duced in Pop et al. [15]. The method of arbitrarily pick-
ing the longest non-self-overlapping path [15] through
the tangle might end up joining two scaffolds wrongly.
In our method, we remove the problematic contigs,
even if, in some cases, it could lead to some good scaf-
fold breaking up. If there are mate pairs overarching the
removed contigs, it is possible for scaffolds to have the
correct continuation. This is the case for the example in
Figure 5A, since contigs 6 and 8 are connected by a
mate pair overarching contig 7.

Contig joining and gap estimation

In the last stage of scaffold assembly, we decide whether
neighboring contigs in a scaffold are to be joined or be
separated by a gap. Notice that according to the
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computed positions, the end of two neighboring contigs
might still have a small positional overlap (the density
profile is sensitive only to overlaps larger than a few
bases); otherwise, they will be separated by a gap. In
either the case of positional overlap or the case where
the estimated gap is smaller than certain value (e.g. 10
bases), if the ends of neighboring contigs are similar, we
join those two contigs. For the rest of the cases, we
insert a sequence composed of letter ‘N’ between the
contigs. The length of each sequence is decided by
rounding the length of the corresponding gap to the clo-
sest multiple of 50. In the special case where there is no
sequence similarity, despite the positions indicating a
small overlap, we separate the contigs by a 50 base long
sequence of ‘N’

Assembly Performance on Real Data

Metrics of assembly quality

Before we discuss our results, we need to define how we
assess the quality of a de novo assembly. The first
obvious measure of performance is the typical size of
assembled contigs and scaffolds. This quantity is often
reported in terms of an N50 value. Roughly speaking,
half of the bases are covered by contigs/scaffolds that
are longer than the N50 value. However, N50 provides
no indication of the accuracy of the assembled contigs/
scaffolds. In order to evaluate the quality of the assem-
bly, it is common to study the performance of the algo-
rithm on data from known genomes. While comparing
the assembled components to the reference genome, we
need to pay attention to different kinds of errors that
could arise and define the metrics of performance
accordingly.

To define such metrics, let us bear the following ques-
tion in mind: In order to map a contig to the reference
genome, what type of different operations do we need
to do? For example, it might be possible for an entire
contig to be matched to a continuous part of the gen-
ome with a few mismatches and indels. However, it
could also be the case that the contig cannot be
matched to a continuous region of the genome; instead,
different parts of the contig might match to different
regions of the reference genome. Of course, for some
contigs, one might not find any significant match at all.
In addition to errors in the contigs, there would also be
errors in the assignment of relative positions and orien-
tations of contigs in a scaffold.

It is common in the sequence assembly literature to
single out mismatch rates and combine some of the
other kinds of errors in the ‘no-match’ category. The
emphasis of our algorithm is on using the mate pair
information for orienting, positioning and joining con-
tigs. Improper execution of these tasks leads to the for-
mation of chimeric contigs, dislocation and inversion of
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contigs in a scaffold, as well as merger of distinct scaf-
folds. Metrics for quality assembly corresponding to
these categories of errors are essential for fair compari-
son among different algorithms. In general, for each
algorithm, there is a trade-off between building large
scaffolds and making small number of mistakes. For
example, a cautious algorithm might produce smaller
scaffolds rather than keep on joining suspicious frag-
ments together.

Following the spirit of the above discussion, we will
define four categories of errors in order to assess the
quality of the assembly. We used MegaBLAST [26] with
a minimum identity threshold of 92% to align the
sequences against the reference genome (Refseq:
NC_007005 for P. syringae and NC_010473 for E. coli).
The sum of the length of all the contigs for which no
BLAST hit is found, expressed as a percentage of total
assembled bases, is reported as the no-match error rate,
€no_m- Each BLAST hit for a contig comes with a num-
ber of mismatches and short indels. Mismatch error
rate, &,,;s_m» reports the total number of mismatches and
indels as a percentage of total assembled bases. In addi-
tion, if only some parts of a contig do not match to the
reference genome, the total length of those parts contri-
butes to mismatch counts as well.

As we discussed above, there are other types of error
that lead to large-scale ‘rearrangements’ of genomic
sequence. The use of the term ‘rearrangement error’ is
inspired by the analogy with the process of genome evo-
lution. Just as local errors in assembly have similarity to
mutations and indels, the large scale errors in assembly,
have their evolutionary analogues: inversion, transloca-
tions etc.

These rearrangement errors, measured in the unit of
number of events per Mbp of assembly, are divided into
the following categories. The error rate ¢, is associated
with chimeric mis-assemblies, namely, the cases where
two distinct parts of the genome have been joined into
one contig. For chimeric contigs, we would like to dif-
ferentiate between the cases where the real gap between
mis-assembled parts is in the order of few hundred
bases and the cases where this gap is in the order of, for
example, a few megabases. Therefore, overall error rate
€c, is broken down to two parts, ¢, and ¢ gh , account-
ing for chimeric contigs involving gaps smaller or larger
than 500 bases, respectively.

Apart from the issue of chimeric contigs, we also have
erroneous assignment of orientations and positions of
contigs in a scaffold. Each time the relative orientation
of two neighboring contigs on a scaffold disagrees with
that in the reference genome, we have an event contri-
buting to the error rate ¢ . In addition, for any two
consecutive contigs in a scaffold, we have an estimated
separation, which decides the number of ‘N’ bases we
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insert in between those contigs in the final output. For
consecutive contigs with verified relative orientations,
we compare the estimated separation with the real
separation on the reference genome. The last category
of rearrangement error rate, g;;, is associated with the
cases where the difference between those values is
greater than 500 bases. The two categories of error, pre-
sented in this paragraph, keep track of events where two
contigs from different strands or from far apart regions
have been brought together.

Description of the libraries

We present the assembly result for two real datasets,
one being a mate pair library from SOLiD, while the
other is of the paired-end kind from Illumina. In paired-
end technology, mainly used by Illumina, two reads in a
pair come from the opposite strands. In mate pair tech-
nology, both reads in a pair are from the same strand.
The insert size is also typically larger for the mate pair
libraries, which is beneficial for many applications. At
the same time, owing to the particular enzymatic steps
required to make the mate pairs, there is a higher rate
of production of molecules which do not represent true
ends of the large DNA molecule. The sequence informa-
tion from these molecules has to be properly identified
and handled so as not to lead to inconsistent scaffolds.

The first dataset is a 50 bp mate pair dataset, gener-
ated by SOLiD platform, for the 4.7 Mb genome of
Escherichia coli DH10B http://solidsoftwaretools.com/gf/
project/ecoli2x50/. After we used an in-house filter [27]
to remove polyclonal and error-laden reads, we were left
with 7.4 million pairs of 50 bp long sequences. For this
mate pair library, we used the insert size of 1350 bp
(Figure 3). Assembly of these reads resulted in very poor
quality output. Therefore, we decided to trim down the
reads to 35 bp, expecting most of the sequencing errors
are concentrated towards the end of the reads [27].
Even after filtering and trimming, the remaining reads
provided 100x coverage, and produced better assembly
than the raw data set (data not shown).

The other dataset contains 3.5 million pairs of 36 bp
long reads from the Illumina platform, providing 40x
coverage of the 6.09 Mb genome of Pseudomonas syrin-
gae pv. syringae B728a [28]. For this paired-end library,
we used the insert size of 350 bp (Figure 3).

Performance comparison

We compare the performance of our algorithm to that
of Velvet [8]. One reason for selecting Velvet is that sev-
eral studies found that the performance of Velvet was
either better or at least competitive with other available
programs [11,28,29]. The other reason is that we wanted
to study the platform dependence of the performance of
SOPRA. Velvet is the only program among the popular


http://solidsoftwaretools.com/gf/project/ecoli2x50/
http://solidsoftwaretools.com/gf/project/ecoli2x50/

Dayarian et al. BMC Bioinformatics 2010, 11:345
http://www.biomedcentral.com/1471-2105/11/345

Page 13 of 21

A Escherichia coli DH10B B Pseudomonas syringae pv. syringae B728a
10° °
o 10°
|®
=
= S0 o
s 3
4
§ 10 §
4
o 107 A S.SOPRA (unpaired)
o A A ¥ A V-SOPRA (unpaired)
10 A Velvet (unpaired)
A @® S-SOPRA (paired)
A ® V-SOPRA (paired)
® Velvet (paired)
10° 10° :
0 0.1 0.2 03 04 05 06 07 0 0.2 0.4 0.6 08 1
Mismatch rate ( % of total assembly) Mismatch rate ( % of total assembly)
Figure 6 N50 vs. combined mismatch and no-match error rate for de novo assembly of real data. See main text and the caption for
Table 1 for explanation of the error rates.

assemblers that handles color-space data. For P. syringae
dataset from the Illumina platform, the original study
[28] from which we obtained the library has compared
performance of several assemblers. The authors
attempted assembly using EULER-SR [10] and
SHARCGS [5], but they ran out of random access mem-
ory (32 Gb available). It also turned out that Velvet out-
performs SSAKE [7], VCAKE [6] and EDENA [11].
These last two assemblers do not incorporate mate pair
information and were run only in unpaired mode. ALL-
PATHS [9] requires multiple paired libraries with differ-
ent insert sizes. Given the above issues, we decided to
proceed with comparison Velvet.

In many areas, including biological data mining, a
common exercise for assessing the performance of a

binary classifier is to consider the DET or ROC curve
[30,31]. As one reduces the stringency of the classifier,
false negative rate decreases at the cost of increasing the
false positive rate. DET/ROC curves provide a quantita-
tive representation of this trade-off and are essential for
finding optimal operating point that balances the con-
flicting goals of keeping both of these error rates down.
As we mentioned before, in the context of de novo
assembly, there is a similar trade-off between N50 and
the assembly quality [28]. In this analogy, smaller N50
corresponds to having a high false negative rate, while
low quality of the assembly plays the role of high false
positive rate.

The comparative assembly performance, in the form
of N50 versus error rate, is shown in Figures 6 and 7.
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Figure 7 N50 vs. combined rearrangement error rate for de novo assembly of real data. See main text and the caption for Table 1 for
explanation of the error rates.
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Table 1 De novo assembly statistics for P. syringae
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Assembler Eno.m Emis_m e csh e ih & ;’C e Sf’c N50 Genome coverage
% of total assembly No. of events/Mbp of assembly Kbp %

S-SOPRA (unpaired) 2 14 33 525 - - 2.1 984

V-SOPRA (unpaired) 17 01 0 0 - - 6.6 97.7

Velvet (unpaired) 16 01 0 0 - - 7 97.2

S-SOPRA (paired) 3 13 49 558 0.66 3.12 442 984

V-SOPRA (paired) 18 01 33 0 0 0 74 97.7

Velvet (paired1) .16 02 3.28 82 0 0.16 46.7 97.7

Velvet (paired2) 14 81 493 4.1 1.64 7.56 1188 96.6

The error rate ¢p,_n represents the sum of length of the contigs/scaffolds with no BLAST hit as a percentage of total assembled bases. Mismatch error rate eyis_m

reports the total number of mismatches and indels as a percentage of total assembled bases. The error rates g

and g’ are associated with chimeric mis-

assemblies, involving gaps smaller or larger than 500 bases, respectively. The error rate gfc accounts for the number of cases where the relative orientation of
two neighboring contigs disagrees with that in the reference genome. The cases where the estimated separation between two consecutive contigs on a scaffold
differs from the real separation in the reference genome by more than 500 bases are associated with gfc . These last four categories of errors are measure as

the number of erroneous events per megabases of assembly.

Ideally, one would like to be on the top left corners of
these graphs, which corresponds to large sizes and low
error rates. We present the performance of the algo-
rithms both for contig assembly (triangles) and scaffold
assembly (circles).

In the case of E. coli data produced by SOLiD plat-
form, for contig assembly, the mismatch rate for V-
SOPRA is lower than that for Velvet (Figure 6A). This
is partly because of error correcting feature of our algo-
rithm for translating color-space data. In contrast, S-
SOPRA produces much shorter contigs compared to the
other two. Running Velvet with the paired option did
not particularly improve the N50, but it increased the
mismatch rate significantly. In comparison to Velvet,
both V-SOPRA and S-SOPRA perform better in term of
scaffold size and error rate, with V-SOPRA outperform-
ing S-SOPRA.

In contrast to the case of the E. coli mate pair dataset
from SOLID, pairing information helps Velvet generate
much larger scaffolds from the P. syringae paired-end
[llumina dataset. Figure 6B shows the results of running
Velvet, with ‘paired’ option, on the P. syringae reads, for
two different parameter sets. Note that the two-fold
increase in N50 comes at the cost of increasing the
error rate by more than one order of magnitude. This

Table 2 De novo assembly statistics for E. coli

trade-off pattern is consistent with a study comparing,
among other things, the performance of Velvet for
many combinations of parameters [28]. V-SOPRA pro-
duces comparable N50 at a much lower mismatch rate.
For this particular dataset, the contig building perfor-
mance of V-SOPRA and Velvet is nearly identical. Like
in the E. coli dataset, the performance of S-SOPRA is
worse than V-SOPRA.

More or less the same pattern continues with the
large-scale rearrangement error rates. In Figure 7 we
report N50 versus the combined rearrangement error
rates. In the case of Illumina dataset, V-SOPRA did not
produce any errors in certain categories (Table 1).

In general, for both datasets and all categories of
error, our algorithm utilized the mate pair information
to enhance N50 by one or two orders of magnitude
without significantly increasing the error rates (see
details in Tables 1 and 2). The N50 gain from contigs to
scaffolds, for the SOLiD dataset is remarkable for
SOPRA when compared to the corresponding gain for
Velvet. We believe, based on our simulations (data not
shown), that our gain for the Illumina dataset would
have been much larger if, instead of being around 350
bases, the insert size of this library were close to a kilo-
base. Another reassuring aspect of SOPRA as compared

1 0

Assembler €no_m Emis_m & csh Ea Eg & i N50 Genome coverage
% of total assembly No. of events/Mbp of assembly Kbp %

S-SOPRA (unpaired) 2 14 43 2.13 - - 5 92.7

V-SOPRA (unpaired) 02 03 22 0 - - 15 94

Velvet (unpaired) 02 2 22 64 - - 1.5 94.3

S-SOPRA (paired) 2 15 43 213 043 2.55 1255 92.7

V-SOPRA (paired) .02 03 21 0 043 1.7 200.6 94

Velvet (paired) 06 67 255 1.7 0.65 87 23 94.2

For the definition of different error rates, see the caption for Table 1.
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to Velvet is that for SOLiD dataset, the algorithm mana-
ged to keep the mismatch error rate low, partly thanks
to the robust handling of the color-space translation.

We also used MegaBLAST to analyze the contigs which
SOPRA removed from the scaffolding process during the
assembly. The result is presented in Table 3. For the P.
syringae dataset from Illumina platform, most of the
removed sequences were either chimeric or belonged to
repeats (referred to as problematic contigs). For the E.
coli dataset from SOLiD sequencer, slightly more than
half of removed sequences were determined to be proble-
matic. In both cases, the total length of removed
sequences remains a small fraction of the total assembly.
It should be noted that for a removed contig which was
not determined to be problematic, there is a possibility
that it contains a short stretch of sequence belonging to
repeats which was not identified by MegaBLAST.

Conclusion

The goal of scaffold assembly is to arrange contigs such
that most of the mate pair constraints are satisfied.
Given the inconsistencies in the constraints, any solu-
tion strategy inevitably has to decide upon a subset of
constraints to be ignored. In our algorithm, this choice
is made iteratively, going back and forth between the
optimization step and removal of offending constraints.
For example, in the process of assigning the optimal
orientations, we also detect the links that are not satis-
fied and are to be removed. The same was true for the
next step, where, by modeling the links as springs, we
both assign the positions and remove the constraints
that cause stretch/compression in this solution.

Taking the entire set of remaining mate pair con-
straints into account simultaneously at each round of
optimization is critical to the success of our approach.
Some algorithms, at each step, consider only a small
subset of contigs and links in between to improve the
assembly in a particular region [13-15]. This manner of
local processing of mate pair information stands in stark
contrast to our global approach.

In a sequencing project, the issue of large variability in
separation of mate pairs (Figures 3B and 3D) has an
important implication for the choice of the insert size in
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the library preparation. The insert size should preferably
be large enough to bridge over most of the small repeats
or the shallowly sequenced regions. However, as the
typical insert size increases, so does the standard devia-
tion of the separation for individual mate pairs. The
averaging effect from having multiple mate pairs
between two contigs depends upon the number of such
pairs, which, in turn, is limited by the size of the corre-
sponding contigs. Therefore, beyond a certain point, lar-
ger insert size might result in higher uncertainty in
contig positioning. We expect the optimal insert size to
be dependent upon the typical size of the contigs, the
depth of coverage, and most importantly, the ability to
restrict size variation in the library preparation. In our
simulations for assembly of some bacterial genomes, the
optimal insert size is typically around 1 Kb, if we were
to choose only one insert size (data not shown). How-
ever, if the contig assembly mostly produces small frag-
ments, namely, the contig N50 is much less than 1 Kb,
the quality of scaffold assembly suffers significantly.

In our study, we emphasized the possible conflict
between getting larger scaffolds and avoiding mis-assem-
bly. We showed that the N50/error rate trade-off char-
acteristics for V-SOPRA is excellent. In a practical
de novo assembly project, mis-assembly rates are hard
to estimate. As a result, one may be tempted to increase
the N50 without consideration of accumulating inac-
curacies[32]. Therefore, it is important for such projects
to develop a set of independent benchmarks to assess
the accuracy of assembly. The N50/error rate trade-off
curve, based on such benchmarks, can be used to set
the optimal parameters for the assembler.

Currently, SOPRA is quite conservative and it errs on
the side of breaking up things whenever there is any
confusion. As we have seen, this tendency has not
resulted in smaller N50s compared to other algorithms.
However, it is possible that a more sophisticated algo-
rithm could partially reconstruct the structure of repeat
regions while solving the orientation and positions of
different contigs. One may also be able to breakup some
chimeric contigs at the right place rather than remove
the whole contig. We hope to include these features in
the future versions of the algorithm.

Table 3 Analysis of contigs removed from the scaffolding process

E. coli dataset P. syringae dataset

V-SOPRA S-SOPRA V-SOPRA S-SOPRA
Total number of removed contigs 106 338 61 189
Total genomic length of removed contigs (% of total assembly) 192 kb (4.1%) 313 kb (6.7%) 77 kb (1.3%) 272 kb (4.5%)
number of problematic contigs 58 128 60 164
Total genomic length of problematic contigs (% of total assembly) 130 kb (2.8%) 184 kb (3.9%) 76 kb (1.2%) 233 kb (3.8%)

Problematic contigs refer to contigs which are either chimeric, belong to repeats, or do not match to the reference genome. Genomic length means that for

repeats, the length is multiplied by the corresponding copy number.
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The current HTS platforms not only read sequence
fragments but also generate additional information
regarding relative position and orientation of pairs of
reads. Our methodology is particularly adept at exploit-
ing this extra information. The approach developed here
could be easily adapted to any new technology that pro-
vides additional positional and orientational constraints
on multiple reads. Combination of efficient algorithms
for utilization of such constraints and improvements in
accuracy of reads leading to better quality contig build-
ing will bring us closer to the goal of assembling gen-
omes from the next generation of HTS data.

Methods

SOPRA was implemented in Perl and tested both on a
64-bit Linux and on a Mac OS X server machine. The
available memory for both machines was 16 GB. The
code is available freely, under the GNU Public License,
at http://www.physics.rutgers.edu/~anirvans/SOPRA/

Robust Translation of Color-space Data
We saw how the output of our color-space contig
assembly consists of a sequence in color-space, C, plus
some base-space suggestions, F, at certain locations (Fig-
ure 2). However, it may not be possible to find a base-
space sequence that agrees with all the color-space calls
and base-space suggestions. Therefore, we turn the issue
of translating this color-space sequence into a search for
the most likely DNA sequence that gave rise to this data
(C and F). Basically, we set up a hidden variable model.
The hidden states of the model are the real letter bases.
The color calls and letter base suggestions are the
observations. There are two unknown parameters: the
probability that a given color call is wrong, and the
probability that a letter base suggestion is wrong. For
the sake of convenience in Calculations, we parameterize
these two probabilities as |7~ and 5= ,5 , respectively.
We can then ask for a given C, F, r, and r,, what is the
probability for a particular base-space sequence, B, to be
the real DNA sequence? Let ¢; represent the color call
between position i and i + 1 of a contig. At each position,
we can have different first base suggestions (one for each
short read starting at that position). Let f; , denote the
number of times a particular base b € {A, T, C, G} is sug-
gested at position i. If at certain position there is no sug-
gestion for a particular base, the corresponding f; , is
equal to zero. Let us represent a base-space sequence of
length N as By n = b1b,... by, where b; € {A, T, C, G} for
all 1 <i < N. For each sequence, B; p, there is an asso-
ciated sequence C’LN =¢,C,...Ly_y in color-space such
that ¢; is the color associated to the dinucleotide bb;, .
Let us also represent the probability of B; 5 being the real
DNA sequence, given C, F, r. and r;, as:
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p1N(Bin) = prob(By N | C, F, 1., 1y).

Using the above notation, we have:

fi,
N eTsObib |
pin(BiN) = H H T
il be(aT,cGH 1te’s
(5)
N_lerc55i,6i
x| et
i=1 1+e'c

S s the Kronecker delta; it is equal to one if the
color call between position i and i + 1 (i.e. ¢;) agrees
with the color associated with the dinucleotide b;b; , |
(i.e. c;); otherwise, it is zero. dy;p is the Kronecker delta
as well. The next step is to find the base-space sequence
that maximizes the above probability. The particular
structure of this model allows us to efficiently solve for
the optimal sequence using dynamic programming as
follows. Consider an arbitrary position k. Equation 5 can
be written as:

T65~
e Ckrck
pin(Bin) = P1r(Byr) X T
1+e'C

XPjes1,N (Brsi,n)-

The middle term on the right hand side contains ¢,
which depends on both by and by, ;. The term py , 1 n
(Bk + 1,n) does not contain any variable which corre-
sponds to positions smaller than k + 1, however, it
depends on by , ;. Similarly, the term P; x (B x) does not
contain any variable which corresponds to positions
greater than k, however, it depends on b;. There are four
possibilities for by, namely, A,T,C and G. For each of
these possibilities, we can ask what Bz ; = b1by...hy; will
optimize P; 4 (B ). Imagine we know the answer to this
question for some arbitrary k. Then, we can easily find
the answer to the following question: For each of the
four possibilities for by, ;, what By x = b1b,...b; will opti-
mize Py . 1 (Bix + 1)? The reason is that we can write:

Tca“'
eV CkiCk
P11 (B es1) = 1, (By ) X T
1+e'C
r 5 fk+l,b
e'sbp41.b
X —
be{A,T,C,G} I+e’s
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For each particular choice of by, ;, there are four pos-
sibilities for b;. For each of these possibilities, we know
the first term in the right hand side and we can calcu-
late the second and the third term. The information
that we have to save at step k + 1 is that for each by , 5,
what is the maximum value of Py ; , ; (Byx + 1) and
what base by corresponds to this value.

We start with k = 1 where for each of four possibili-
be{AT.CGI\ 1+eS
We continue as explained above to find, for each of four
possibilities for by, what sequence By n.1 = b1bs... by g
will maximize P; 5 (B1n). We have four options for by
and four corresponding values for P; n (Byn). We pick
the by for which the probability P, (B1 ) is highest.
We then go backward and check, for this choice of by,
what base by.; was used. We continue this backward
process until we get the whole optimum sequence.

The only remaining issue is the choice of values for r,
and r,. Ideally, we would like to choose these values

such that the quantity meb(C,F | B.7675) is maxi-
B

ties for b; we can calculate p,,(B,,) =

mized. This quantity represents the probability of obser-
ving the data, namely, the color-space contig and first
base suggestions. One could use iterative methods like
expectation maximization in order to find the optimal
values of error rates. However, the translation result is
robust for a wide range of parameters and training the
rate is not particularly essential in all cases that we
encountered, for simulated and for real data. Intuitively,
the reason for this robustness is as follows. If an error
were propagated, it would disagree with most of the
subsequent base pair suggestions. The relative strength
of r. versus r, decides how many such mismatches
would be tolerated before a color call error is declared.
If the density of first base suggestion is high, color call
errors get found out within a few bases, as long as the
ratio r, over r, is within a reasonable range. The density
of first base suggestions is usually high for short read
data, given the high coverage and the fact that there is
one base suggestion for each incorporated short read.
As a first estimate, we can put the probability for a let-
ter base suggestion to be wrong equal to, e , the
sequencing error rate generated by SOLiD platform.
The rough estimate for the probability of a color call

being wrong would be ef , where d is the average depth

of coverage of the corresponding contig.

Optimization Strategy for Orientation Assignment

We solve the orientation assignment problem by finding
the ground state of an Ising model. In general, this is an
NP-complete problem [24,25]. However, for moderate
quality mate pair data, the typical optimization problems
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that we face have a redeeming feature. In many cases,
most of the vertices in the contig connectivity graph are
connected to only a few neighboring contigs, thanks to
the nearly linear structure of the scaffold. This feature
allows us to partition the graph into smaller compo-
nents on which the optimization can be performed inde-
pendently. We can then put the partitioned components
back together to find the optimal configuration. Below,
we explain this procedure in more detail.

An articulation vertex is defined as a vertex such that
by removing it from the graph, the graph splits into two
or more disconnected components. For each connected
component of the graph, we search for articulation ver-
tices that have more than two neighbors (an articulation
vertex with only two neighbors is just part of a linear
chain in the graph for which the energy optimization
can be solved efficiently). After finding an articulation
point, we split the graph into the corresponding discon-
nected components. We give a copy of the articulation
vertex to each of these newly formed components. We
iteratively continue this procedure on each of these
components until we end up with non-reducible ones
i.e. components without articulation points that have
more than two neighbors. Finding the articulation points
and dividing up the graph takes O(N ?) time, where N is
the total number of the vertices. We can separately opti-
mize the orientation configuration for these non-reduci-
ble components. Notice that, in each component, the
optimal configuration has a degeneracy of two, namely,
if we reverse all the orientations, we get the same energy
(E[S] = E[-S]).

Once we have the optimized configuration for each of
these components, we reverse the process of iterative
partitioning. At each step we join back components
formed by removal an articulation vertex. Each of these
components was provided with a copy of the articula-
tion vertex. Using the freedom of an overall flip within
each component, we arrange to have the same orienta-
tion for the copies of the articulation vertex in different
components. We can stitch the components together by
merging the different copies into a single vertex. The
order of merging the articulation vertices is the reverse
of the order in which they were split. The reason we
can find the global optimum solution by separately opti-
mizing non-reducible components and joining them
back together is as follows. Given the definition of the
articulation points, there is no edge connecting the non-
reducible components in the original graph. In other
words, in the energy function, there is no term that
includes two vertices which belong to different non-
reducible components. As a result, the total energy can
be broken up into sums of energies of the non-reducible
components. Thus, we can optimize the orientational
configuration for each of these components separately,
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up to an overall reversal within each component. The
only set of constraints that has to be satisfied is that the
copies of each articulation vertex should have the same
orientation. This goal can be easily achieved using the
freedom of overall reversal within each component.

In order to optimize the non-reducible components,
we proceed as follow. For a given component, we pick a
random vertex i and name the singleton set {i} to be Z;.
Next, take all the vertices connected to the vertex in Z;
and call this new set Z,. We will then consider all the
vertices adjacent to the vertices in Z,, and for each of
them, if it does not already belong to Z; or Z,, we put it
in a new set called Z3;. We continue until all the vertices
in the corresponding connected component have been
visited.

For a general graph, the size of Z;, denoted by | Z |,
grows exponentially as k increases. However, for the
contig connectivity graph, because of the linear structure
of the scaffolds, in many cases | Z; | remains a small
number and does not grow as k increases. For a given
non-reducible component, depending on the sizes of
Zy's, we choose different strategies. In the case where all
the sizes are smaller than a threshold value (e.g. six), we
use a dynamic programming approach, similar to the
Viterbi algorithm, to optimize the energy, E[S] (Equation
2). In the other case, we use the simulated annealing
method as explained below.

The dynamic programming approach is very similar to
the procedure explained above for translation of color-
space data into base-space. Note that by construction, a
vertex belonging to a set Z; can only be connected to
the vertices belonging to Z;.q, Z; or Z; , 1. In other
words, we can write:

Eyn=Eyp+ E;Sl;zﬁemon + Epa,Ng

where the expressions for Ej E,S‘,’:ﬂr”f“i”” and Ei,q a0
only contain orientations from vertices belonging to the
sets Z1UZ,...UZy, ZyUZy, 1 and Zp 1UZy,5..UZy, respec-
tively. This means that if we fix orientations of all the
vertices belonging to Z; (there are 5%l possibilities for
the choice of these orientations), we can optimize E; 4
without any knowledge of the orientations associated
with vertices belonging to Z;, V [ >k. At this point, it is
clear how we can implement the dynamic programming
procedure.

Let o), = (Sf,S;‘,..., S|kzk|) be an arbitrary set of orien-
tations for all the vertices belonging to Z;. There are
212l possibilities for ox. For each of these possibilities,
we can ask what choice of Oy x; = (01,02,..., 0x.1) Will
minimize Ej ;. If we know the answer to this question
for some arbitrary k, then, we can easily find the answer
to the following question: For each of the 5Ziul possi-
bilities for 04,1, what O; x = (01,05,...,0x) Will minimize
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Eix . 1? The reason is that we can write:
Ei i =E, + E,S‘,);ﬁr"f“i””. For each particular choice of
0k+1, there are 5|2l possibilities for o;. For each of
these possibilities, we know the first term in the right
hand side and we can calculate the second term. The
information that we have to save at step k + 1 is that
for each choice of oy , ;, what is the minimum value of
E; x , 1 and what choice of o corresponds to this value.

We start with k = 1 where for each of 2 possibilities
for o; (note that Z; only has one member), we can cal-
culate E; ; which is equal to zero in both cases. We con-
tinue as explained above to find, for each of ;2xl
possibilities of ox (N being the total number of Z;’s),
what choice of O; 5.1 = 0105...0n.1 Will minimize E; A
We have 5lZn| options for oy and 7l2n| corresponding
values for E; 5. We pick the oy for which the energy
E, y is lowest. Note that because of the degeneracy in
the energy function (E[S] = E[-S]), there are two choices
of op with exactly the same energy. We can arbitrary
pick either one of them. We then go backward and
check, for this choice of oy, what set of orientation o ;
was used. We continue this backtracking until we get
the optimum orientation for all the vertices.

As mentioned before, for a generic graph, size of Z;’s
grow with k and the step of going from k to k + 1
requires a large number of calculations. This is expected
as the problem of minimizing Ising energy on an arbi-
trary graph is NP-complete [24,25]. However, if the
structure of a particular graph allows efficient use of the
dynamic programming approach, then the above proce-
dure results in an exact solution. We might have to
abandon this method and adopt a heuristic one when
there are highly-connected components of moderate or
large size.

Figure 8A shows a typical region of the contig connec-
tivity graph for the E. coli dataset. As one can see, the
contig connectivity graph is mostly quite sparse. Assume
if we only consider a small part of the graph, similar to
the one shown in Figure 8B, and defines the Z; sets
starting from an arbitrary point. Given the typical struc-
ture in the graph, it is clear why the size of Z;’s do not
often grow as k increases. If by removing the articula-
tion points we manage to break up parts of the contig
connectivity graph into small components, the above
exact method can be applied to most of such compo-
nents. Some of the branches in figures 8A are part of
bigger loops which cannot be seen here. When several
such relatively big loops get interconnected, the above
optimization strategy often becomes impractical.

Simulated Annealing Method

We explain the procedure in the context of finding the
optimal orientation configuration. Simulated annealing
[21] is a Monte Carlo method in which one samples the
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Figure 8 A typical region of the contig connectivity graph for the E. coli dataset. (A) The graph typically has a sparse structure. Some of
the branches shown are part of bigger loops which cannot be seen here. (B) The blow up of the region indicated by arrow in (A).

configuration, S, with probability P[S]«exp(-E[S]/T),
while slowly decreasing the temperature parameter, 7,
towards zero. If the energy of the system reaches a value
close to Ej, as the temperature goes to zero, it indi-
cates that most of the orientational constraints are satis-
fied. The advantage of this method over certain greedy
approaches is that in simulated annealing, all the contigs
and the constraints are treated democratically. Also, in
the presence of multiple local optima, one expects simu-
lated annealing to perform better than various domain
specific greedy algorithms. In practice, much depends
on the particular greedy algorithm and the structure of
the graph, as was found in the context of several optimi-
zation problems on graphs ([33]). In that study ([33]), it
was found that for relatively sparse and regular graphs,
simulated annealing did better than some well-estab-
lished greedy algorithms. This fact, along with many
other examples of successful use of simulated annealing
[21,22], motivated our choice.

In simulated annealing, we start from an arbitrary
configuration, e.g. S; = 1, V i. At each step, we randomly

choose a contig and check whether by flipping its orien-
tation the energy would decrease or increase. If the
energy decreases, we flip the orientation. Otherwise, if
the energy increases by A E, we flip the orientation with
probability exp(-A E/T) where T is a parameter. We
start with a large value of T which will allow orientation
flip in most cases. After each step, we slightly decrease
T according to an exponential cooling schedule [21]. As
we go forward, the energy of the system will on average
decrease and get closer and closer to E;,. This con-
tinues until the energy curve reaches a plateau, at which
point the search is stopped.

For the Potts model, the only difference is that,
instead of the variable S;, we assign the variable o; to
contig i. We start with a random label assignment and
at each step we make a decision to whether or not
change the label of a randomly chosen contigs to a new
randomly chosen label. We find that, although the final
label configuration may depend upon the choice of
initial configuration, the domain boundaries are robustly
reconstructed.
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In the optimization problems that we face, if the
inconsistencies were too severe, the degree of frustration
in the system would be very high, and any heuristic
method would typically produce a suboptimal solution.
In our experience, this is not the case as evidenced by
the fact that the energy of the final orientation config-
uration is close to the minimum energy (data not
shown). This fact, on one hand, allows simulated
annealing to find the solution. On the other hand, being
able to satisfy most of the constraints indicates that the
mate pair data is on the whole trustworthy.

Calculation of [;

In a SOLID mate pair library, each pair is composed of
two reads, denotes by R3 and F3. They come from the
same strand and F3 read is located to the right of R3 as
one goes from 5’ to 3'. Imagine the R3 read was used in
contig ir and the F3 read was used in contig ir. Now, let
us define the variables 7z and 7z. If the R3 read itself
(and not its reverse compliment) was used in contig iz,
then 7z = 1; otherwise, 7z = -1. Similarly, if the F3 read
itself (and not its reverse compliment) was used in con-
tig ir, then 7 = 1; otherwise, 7z = -1. The position of
the R3 and F3 reads in contigs iz and ir is denoted by
pr and ppg, respectively. Also, let Ins denote the insert
size of the library. Then, for the suggested distance
between contigs ip and ir (i.e. xp - xz), we have:
liFfiR = TR-SiR-(InS +Tp-Pr —Tp-Pr). Here, SiR . is the
orientation assigned to contig ir. For an Illumina
paired-end library, the two short reads are located on
the opposite strand and face each other. Let us still use
the same notation as above, namely, call the first read R
and the second one F, etc. Then, the above formula
becomes: I;_; =7g.S; .(Ins+7p.pr+7p.pr). Each mate
pair, connecting contigs ir and ir, provides us with its
own suggested distance which we calculate using the
above formula. The average of all these suggested dis-
tances for contigs iz and ir is denoted by iip,ik .

V-SOPRA Parameters

For contig assembly part of V-SOPRA, we directly used
Velvet v0.7 without invoking the paired option. We get
the output in the format of sequence positions in con-
tigs. For base-space data, this information is stored in
the afg file generated by Velvet. For color-space data,
Velvet is part of a pipeline called SOLiD system de novo
accessory tools [34]. In this pipeline, color-space data
has to be preprocessed before inputting to Velvet. Velvet
output also has to go through a post-processing step.
We use the output of this post-processor that contains
the information related to the position of sequences in
contigs (the sequences are still in color-space). There is
one last step in the pipeline that outputs the final con-
tigs in base-space. However, we do not use this last
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step. The parameters used for running Velvet in the
fragment mode as the first step in V-SOPRA are the
same as those described below in the Velvet parameter
subsection.

For scaffold assembly, parameter W determines the
minimum number of mate pairs that have to join two
contigs in order for those contigs to be considered con-
nected. For E. coli data, we set W = 5, whereas for
P. syringae data we put W = 4. Parameter L, determin-
ing the minimum length that a contig must have in
order to be used in the scaffold assembly, was set to L =
150 for both datasets.

On the Linux machine, the first step of the program,
reconstructing the contigs from Velvet output and
recording the mate pair information, took 50 minutes
for both E. coli and P. syringae dataset. The color-space
translation for E. coli data took 14 minutes. The scaffold
assembly part took 1.2 hours for E. coli and 5 minutes
for P. syringae dataset. The runtimes were similar for
the Mac OS X server.

S-SOPRA Parameters

S-SOPRA performs contig assembly based upon our
modification of SSAKE v3.2 which can also handle
color-space data. The crucial parameter for contig
assembly is the parameter that determines the minimum
required overlap length between two reads. For E. coli
data we used m = 16, whereas for P. syringae data we
set m = 17. For scaffold assembly, we set L = 200 for E.
coli data, whereas for P. syringae data we put L = 175.
For E. coli data, we set W = 5, whereas for P. syringae
data we put W = 4.

The first step of the program that builds the contig
based on SSAKE algorithm and records the mate pair
information took 8.5 hours for E. coli and 6 hours for P.
syringae dataset. The color-space translation for E. coli
data took 16 minutes. The scaffold assembly part took
7 hours for E. coli and 1.8 hours for P. syringae dataset.
These numbers are for the Linux machine with similar
runtime for the Mac OS X server.

Velvet Parameters

For Velvet, we tried different combinations of para-
meters and report results for the ones giving the best
performance. For E. coli data, Velvet in the fragment
mode was run with a hash length of 19 and coverage
cutoff of 6x. We ran Velvet in the paired mode using a
hash length of 19, coverage cutoff of 6x and coverage
expectation of 50.

For P. syringae data, Velvet in the fragment mode was
run with a hash length of 21 and coverage cutoff of 6x.
We ran Velvet in the paired mode using two different
parameter sets noted by pairedl and paired2 in Table 1
and 2. Both parameter sets used hash length of 21 and
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coverage cutoff of 6x. The coverage expectation for the
first parameter set was 12, whereas for the second
parameter set we used 50.

Filtering Raw SOLID Data

The performance of any assembler is sensitive to the
sequencing error rate. In many cases, for high coverage
datasets, assembler performance benefits from filtering
the data. The lowered coverage is more than compen-
sated for by the improvement of the data quality. While
Illumina data is filtered on the machine, all SOLiD
reads are reported. We used an in-house filtering
approach for SOLiD data [27] that removed more than
50% of the raw data, still leaving us with 100x coverage.

Abbreviations
HTS: High throughput sequencing.
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