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Abstract
Background: Quantitative models for transcriptional regulation have shown great promise for advancing our 
understanding of the biological mechanisms underlying gene regulation. However, all of the models to date assume a 
transcription factor (TF) to have either activating or repressing function towards all the genes it is regulating.

Results: In this paper we demonstrate, on the example of the developmental gene network in D. melanogaster, that 
the data-fit can be improved by up to 40% if the model is allowing certain TFs to have dual function, that is, acting as 
activator for some genes and as repressor for others. We demonstrate that the improvement is not due to additional 
flexibility in the model but rather derived from the data itself. We also found no evidence for the involvement of other 
known site-specific TFs in regulating this network. Finally, we propose SUMOylation as a candidate biological 
mechanism allowing TFs to switch their role when a small ubiquitin-like modifier (SUMO) is covalently attached to the 
TF. We strengthen this hypothesis by demonstrating that the TFs predicted to have dual function also contain the 
known SUMO consensus motif, while TFs predicted to have only one role lack this motif.

Conclusions: We argue that a SUMOylation-dependent mechanism allowing TFs to have dual function represents a 
promising area for further research and might be another step towards uncovering the biological mechanisms 
underlying transcriptional regulation.

Background
Site-specific transcription factors (TFs) that bind to the
regulatory regions surrounding the target gene--so-called
cis-regulatory-modules (CRMs)--are known to interact
with the basal transcription complex to initiate transcrip-
tion [1]. TFs can increase transcription by functioning as
activators, or reduce transcription as repressors, respec-
tively. The frequency and duration of the binding events
is influenced by the concentration of the TF proteins, the
binding affinities and location of the transcription factor
binding sites (TFBSs) in the CRM, and the properties of
the TFs themselves (e.g. effectiveness, competitive inter-
action with other TFs).

Modelling these binding events to quantitatively pre-
dict the resulting transcriptional output of the target gene
has become increasingly successful [2-6]. The approaches

model interaction of TFs and DNA using thermodynamic
equations and predict the transcriptional response of the
target gene as mediated by these interactions. A training
algorithm is used to minimize the difference between the
observed and predicted transcriptional response by
adjusting the model parameters.

In previous research, thermodynamic models have
been trained and tested on only one CRM [3,7]. Because
the flexibility of the model is unlikely to be constrained
sufficiently by the small amount of data from fitting only
one CRM, it is possible that these models over-fit their
input data, which would render them useless for the pre-
diction of transcriptional output of other genes [6].
Indeed, in an earlier paper we showed that a large num-
ber of different model settings were able to produce
nearly identical output, which supports the over-fitting
hypothesis [8]. Gertz et al. [6] showed that the model pre-
dictions are more robust when models are trained on
multiple synthetically generated CRMs. Hence, training
on the regulatory sequence of multiple genes regulated by
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the same TFs should increase the quality of the generated
model. Aiming at increasing the confidence in the trained
thermodynamic model, Segal et al. [5] trained one model
to fit the expression data of 44 developmental CRMs (20
genes) in D. melanogaster. Their model was able to fit
about one third of the 44 CRMs with a correlation coeffi-
cient (CC) larger than 0.85 (where CC = 1 is perfect cor-
relation and CC = 0 means no correlation). For the
majority of the CRMs, however, the model fails to pro-
duce as good a fit, and the CC values are below 0.5 for a
third of the data. They argue that the failure of their
model can be attributed to missing higher-order interac-
tion rules (like positive synergism) or missing input fac-
tors (especially activators).

An alternative explanation, however, is that not all 44
CRMs are regulated in the same way. Though all CRMs
seem to be regulated by the same eight TFs, the role
(repressor or activator) that the individual TFs have in the
regulation of some CRMs might differ. Several experi-
mental studies point to such "context-dependent" regula-
tion for CRMs of developmental genes in D. melanogaster
[9,10]. For example, Hunchback (Hb) is involved in regu-
lating the even-skipped gene (eve), which is expressed in
seven stripes along the body of the D. melanogaster
embryo. It has been postulated that Hb takes the role of
an activator in the CRM responsible for the expression of
the second stripe, while being a repressor in the CRM
regulating the third stripe [11].

To date, it is unclear what biological mechanism in D.
melanogaster might explain how a TF switches from acti-
vator to repressor or vice versa (see Reinitz et al. [12] for a
review). One hypothesis is that the TF itself does not
switch its function, but that the altered outcome is an
emergent property of the complex interactions of the sys-
tem. For example, if a strong and a weak activator share a
similar DNA binding profile, at high concentrations the
weak activator can out-compete the strong activator and
ultimately reduce transcription despite its role as activa-
tor [10]. However, this type of interaction should be fully
captured by current thermodynamic models. Another
hypothesis is the concentration-dependent switch, which
proposes that a TF that is an activator at low concentra-
tions can function as repressor at high concentrations
(e.g. due to excessive aggregation) [13]. Yet another
hypothesis is cooperativity, where the complex of two dif-
ferent TFs exert the opposite function as its individual
components [10]. However, a protein-protein binding
experiment of TFs and colocalization studies of the
TFBSs failed to support this hypothesis [9,14,15].

In this article we suggest an alternative mechanism by
which the developmental TFs in D. melanogaster can
switch their regulatory roles. It has been shown that
SUMOylation of individual TFs can lead to a loss or
reversal of the regulatory function [16,17]. SUMOylation

is a post-translational modification that attaches a small
ubiquitin-like modifier (SUMO) covalently to a target
protein [18].

The aims of this paper are twofold. Firstly, we investi-
gate the validity of a SUMOylation-driven switching
mechanism for the eight regulatory TFs in D. melano-
gaster. Secondly, we identify the role for each of the eight
regulatory TFs that best describe the developmental gene
network in D. melanogaster. To achieve this, we investi-
gate the evidence for one or more TFs to have dual func-
tion, that is, function as activator for some CRMs and as
repressor for others.

Results and Discussion
Analyzing the issues with state-of-the-art models
We first establish the ability of existing thermodynamic
models of expression (Segal model [5] and Reinitz model
[2]) to fit the Drosophila gap-gene expression data when
only one role per TF is assumed. In order to measure the
performance of a model, we record the correlation coeffi-
cient (CC) achieved when fitting all 44 developmental
CRMs simultaneously. We assign Bicoid (Bcd), Caudal
(Cad) and Torso-Response-Element (TorRE) as activator
and Hunchback (Hb), Giant (Gt), Knirps (Kni), Krüppel
(Kr) and Tailless (Tll) as repressor [5]. We herein refer to
this particular role assignment as literature configuration.
Simulated annealing (SA) is used to optimize the Reinitz
model on the 44 CRMs and the accuracy is calculated
from the resulting model. The accuracy of the Segal
model on the same data is taken from predictions pro-
vided by Segal et al. [5].

Table 1 shows that neither the Segal model nor the
Reinitz model are able fit all of the 44 CRMs simultane-
ously, with neither model achieving a CC of more than
0.6. The CC of the Segal model is more than twice as high
as the one achieved by the Reinitz model. However, as
indicated in the table, the Segal model has also far more
free parameters. In particular, the Segal model learns the
PWM parameters from the data. Since there has not been
a detailed study examining the influence of the different
model components on the ability to fit the data, one can
only speculate to what degree the higher accuracy of the

Table 1: Ability of the Segal model and Reinitz model to fit 
the Segal single-time data.

model 
type

number of free 
parameters

mean simultaneously CC 
(SE)

Segal 344 0.59 (0.009)

Reinitz 18 0.27 (0.008)

The second column shows the number of free parameters used in 
the models. The third column shows the average CC over all 44 
developmental CRMs. The standard error is given in parentheses.
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Segal model results from the large number of additional
free parameters. It should be kept in mind that internal
flexibility can lead to good fitting-accuracy despite wrong
biological assumptions also known as "over-fitting" [8].
Note, as shown in the Additional file 1 Section 5 using
these PWMs learned by the Segal model also improves
the accuracy of the Reinitz model in fitting the 44 CRMs
compared to the standard PWMs used in previous
research [7]. Because we believe that the Reinitz model
may be less prone to over-fitting when trained on small
data sets, and because it is far faster to train, we use it in
the subsequent experiments.

Determining the regulatory role for each TF
Our next objective is to determine which of the 2|TFs| =
256 possible configurations of how to assign the roles--
activator or repressor--to each of the eight TFs fits the
available data best. We consider an upper bound on accu-
racy by allowing the roles of all TFs to (potentially) be dif-
ferent for each CRM. A more reasonable upper bound
would be given by allowing CRMs to choose from only a
small number of configurations. Preferences for a certain
role by a TF from each of these scenarios can suggest its
true role for a given CRM. We also explore a sensitivity-
based approach that measures the effect of changing the
role of an individual TF.

There are 44 CRMs and 256 possible TF role configura-
tions. We would like to consider all possible assignments
of configurations to CRMs, and train models simultane-
ously using all CRMs. However, due to the huge number
of possible assignments, this is technically infeasible.
Instead, we train the Reinitz model using each CRM-con-
figuration pair independently, and record the correlation
between the observed CRM output and the model. This
results in a 44 × 256 matrix of CC values, one for each
CRM-configuration pair. We use this matrix in our three
upper-bound and sensitivity analyses as described in the
following paragraphs. We expect models trained this way
to be heavily over-fitted and the CC to be overly optimis-
tic. However, as described in Methods Sec. 0.4, by focus-
ing on the strongest signals in the data, we are only
extracting candidate role assignments for further testing
in Sec. 0.1, where we train on all 44 CRMs again. We do
not use the accuracy estimates otherwise.

We first establish an upper bound on fitting accuracy
by finding the best possible TF role configuration for each
CRM independently. We do this using what we call the
SMALLEST-OPTIMAL method, �, which identifies the TF
role configuration(s) with best CC for each CRM individ-
ually and takes the union. The the smallest subset con-
taining at least one optimal configuration for each CRM
has size 17, with an average CC of 0.71 (standard error
0.006). Since the average CC is calculated over the set of
optimal configurations with an individually trained

model for each CRM, it represents the upper bound
regarding the accuracy that can be achieved with freely
altering the TF roles between CRMs (Figure 1, dashed
line). We next look for a small set of configurations that
most accurately fit the data. We are able to find optimum
sets (in terms of total CC) with up to 4 configurations
using an algorithm we call the best-n method, β. This
method searches for the set of n configurations such that
the total CC is minimum when each CRM is assigned one
of the n configurations and trained independently from
the other CRMs. As seen in Figure 1, the single best role
assignment (n = 1) identified by the method already
reaches 76% of the upper bound (average CC = 0.54,
0.007 standard error). By comparison, the literature con-
figuration of TF roles achieves far lower accuracy (aver-
age CC = 0.45, SE = 0.009). These two configurations
differ only in the role of Kr, which is a repressor in the lit-
erature configuration. Also shown in Figure 1, the accu-
racy converges to the upper bound with the number of
additional configurations allowed. We use four configura-
tions in the subsequent parts of the paper, which achieves
an average CC of 0.67 (0.006), already 94% of the best CC
achievable by the model on this data (upper bound).

Finally, the SENSITIVITY method, Δ, determines the role
for each TF individually by identifying which change in
role causes the largest change in accuracy between some

Figure 1 Accuracy achieved using the configurations suggested 
by the role-determining methods. The figure shows the average CC 
achieved when a Reinitz model was allowed to use as many different 
configurations as suggested by the different role-determining meth-
ods. BEST-N means the n  [1-4] configurations where chosen that have 
the best overall accuracy. SMALLEST-OPTIMAL means the model was al-
lowed to use as many different configurations as necessary to fit each 
CRM optimally (here 17). Also shown is the average CC achieved over 
the 44 CRMs when the literature configuration was used. The standard 
error is ≤ 0.009 in all cases, hence no error bars are shown.
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pair of configurations. This is done independently for
each CRM. This method results in 17 configurations
(note, these 17 configurations are not identical with the
17 obtained by the smallest-optimal method). The aver-
age accuracy achieved by the optimal configurations is
CC = 0.64 (SE = 0.006), slightly below the upper bound
(Figure 1). For ten out of the 44 CRMs all three methods
predict the same best configuration (see Additional file 1
Section 6. For the other 34 CRMs, the configuration pre-
dicted by at least one of the methods disagrees with those
predicted by the other two. The agreement between the
three methods is demonstrated for six CRMs in Table 2
(see Additional file 1 Section 6 for the full table).

The disagreement between the methods calls for the

construction of a voting ensemble. We aim to integrate

the different properties of best accuracy (), smallest

number of different configurations (β) and strongest sig-

nal (Δ) in an ensemble by combining the three methods

using majority vote. Table 2 shows the role assignment

over all CRMs as determined by this ensemble (Table 2,

last row). To define a single role for each TF we first com-

bine for each method individually the evidence for all

CRMs and then build the majority vote from them. We

combine the evidence by defining a TF to be an activator

or repressor if for more than  of the CRMs the TF was

favoured as activator and repressor, respectively (see

Methods Sec. 0.4.2). If for fewer than  of the CRMs the

function agreed, we define the TF to switch roles. Based

on this approach we propose that Cad is consistently an

activator, Tll and Kni are consistently repressors, and

Bcd, Hb, Gt, Kr and Torre function as switching or "dual-

functioning" TFs. As shown in Table 2, Hb and Kr are the

TFs with the "strongest" role predictions (see Methods

Sec. 0.4) and provide hence the strongest evidence for

dual function. We use both TFs as candidates to address

the question how the dual function impacts on the model

accuracy.

0.1 Improving the data fit using dual roles
The above results based on fitting the Reinitz model to
individual CRMs strongly suggest that TFs Hb and Kr
may play different roles for different CRMs. In this sec-
tion, we further explore this possibility by training mod-
els simultaneously on all 44 CRMs. We train three
models, which we call HbDual, KrDual and HbKrDual,
that allow one or both of Hb and Kr to be assigned a spe-
cific role (activator or repressor) for each individual
CRM. For each CRM, the role of Hb, Kr or both is deter-
mined by their roles predicted by the SENSITIVITY method
(see Additional file 1 Section 3 for the list of CRMs to
which Hb or Kr is attributed as activator). The roles of the
other TFs are fixed at the literature configuration. As
before, we use the CC of the fit of the model to the data as
a measure of accuracy.

2
3

2
3

Table 2: Assigning TF roles for different CRMs.

CRM Bcd Cad Hb Tll Gt Kr Kni Torre

Kr_CD1_ru - (Δ) + (�) - (�) - (β) - (β) + - NA

eve_37ext_ru - + + (β) + + (Δ) NA - -

eve_stripe2 + + (Δ) - (Δ) - - - - NA

hb_anterior_actv + NA + (β) - - (Δ) - - NA

kni_+1 + (β) - (Δ) - (β) - + - (Δ) + -

run_stripe5 + + - - - - - - (β)

roles s + (�) s (β) - (�) s s (β) - (Δ) s (β)

confidence 111 110 127 94 110 117 103 104

The first rows give the predictions for the TF roles for six of the 44 CRMs (see Additional file 1 Section 1 for the complete set of predictions). 
The roles for each TF (columns) are determined by majority vote of the three methods: "�" - SMALLEST-OPTIMAL, "β" - BEST-N and "Δ" - 
SENSITIVITY. "+" means activator, "-" repressor, respectively and "NA" indicates that no "strong" role prediction could be made for the CRM. 
The disagreeing method, if any, is shown in brackets. The second last row gives the overall prediction of the role of the TF: activator, repressor 
or switcher, "s" (see main text for method). The last row shows the number of "strong" role predictions summed over the 44 CRMs and three 
methods (total of 132).
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Table 3 shows that allowing for dual function improves
the ability of the Reinitz model to fit the data substan-
tially. Allowing Kr to switch its role boosts the accuracy
by 30% to CC = 0.35 compared to the Reinitz model using
the literature configuration (CC = 0.27). An even better
fit is obtained when Hb adopts dual function (CC = 0.37).
Allowing both Hb and Kr to switch roles further
increases the data fit, however to a lesser degree, result-
ing in a best accuracy of CC = 0.38 (40% improvement).

For each TF that is allowed to switch, one additional

free parameter is added to the model, since the model

must contain an "effectiveness" parameter, , for each

role of switching TFs. The complexity of the model is

increased further by the fact that it is essentially cluster-

ing the CRMs into two or four classes (according to the

roles of Hb and/or Kr), and modeling each class sepa-

rately. However, each of these class models shares all but

at most two of its free parameters with the other class

models.
The relatively small gain from HbDual to HbKrDual

has two implications. Firstly, there must be a large set of
CRMs that benefit from either switch. This is most likely
due to TFs now developing their full effectiveness rather
than compromise to limit the negative effects from
wrongly assigned roles. Hence, the effect of assigning the
"correct" role to a particular CRM can also prove benefi-
cial for other CRMs. The second implication is that
despite the global improvement, there are TF-specific
gains observable, which can only be achieved if both TFs
can serve their CRMs correctly. The accuracy of each
individual CRM are provided in Additional file 1 Section
1.

Additional file 1 Section 3 shows the expression profile
of the CRMs attributed to Hb (or Kr) as activator, demon-

strating that the assignment is not "trivial", that is CRMs
with activation coinciding with the protein expression of
Hb are not all assigned to the Hb activator set. For exam-
ple, kni_+1 and kr_CD2_ru have a transcriptional output
at the AP position where Hb is expressed, yet they do not
require Hb to be an activator.

These three effects are visualized in Figure 2. A model
with literature configuration assignment achieves a CC of
0.13 for kr_CD1_ru, which can be improved by HbDual
to 0.41, however the peak of the prediction is clearly
shifted posterior by both models. KrDual corrects this
shift considerably increasing the accuracy to 0.676, how-
ever has an extension of the activation anterior, which
can only be corrected by the HbKrDual model. The latter
allows for a stronger repressing Hb at the required posi-
tion (40% AP), achieving a CC of 0.681. Similarly, the ini-
tial accuracy of hb_anterior_actv of 0.36 can be improved
by KrDual reducing the falsely predicted posterior peaks
but only HbDual and HbKrDual can improve the accu-
racy to capture the shape with CC = 0.93 correctly. The
CRM kni_+1 is an example for which accuracy improve-
ment from HbDual, KrDual and HbKrDual are identical.
For these three models the role of either Hb or Kr or both
deviated from the literature configuration. There are also
accuracy gains due to indirect effects such as a more
accurate parameter estimation, as shown with
run_stripe5, for which the roles of Hb and Kr do not
change with regard to their respective literature configu-
ration. eve_37ext_ru is an example where only the switch
of one TF increases accuracy, while (additional) switching
of the other TF results in negative effects. The Reinitz
model initially achieves a CC of 0.22 on eve_37ext_ru,
which improves to 0.58 by HbDual but then decreases to
0.48 in HbKrDual. This might be due to a wrong role
assignment obtained by the SENSITIVITY method for Kr.
The same reason may be responsible for a decrease in
accuracy on a specific CRM for any investigated Dual
model as exemplified with eve_stripe2. The question

�E

Table 3: Improvement in the ability to fit the data when dual function for Hb and Kr are allowed.

model type number of configurations number of free parameters mean simultaneously CC (SE)

Reinitz 1 18 0.27 (0.008)

Reinitz KrDual 2 19 0.35 (0.009)

Reinitz HbDual 2 19 0.37 (0.007)

Reinitz HbKrDual 4 20 0.38 (0.007)

Segal 1 344 0.59 (0.009)

Each row shows the CC for the Reinitz model using the literature configuration, and additionally Hb, Kr or Hb and Kr as switching TFs, 
respectively. The results are contrasted to the Segal model given in the last row. The second column shows the number of different 
configurations in the approach. The third column indicates the number of free parameters in the model. The fourth column shows the 
average CC when training on all 44 CRMs simultaneously. The reported results for the Reinitz model are averaged over five independent runs.
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remains if other TFs than the investigated eight are
involved in the regulation of developmental genes and
can account for the observed behavior of Hb and Kr.

Determining the involvement of other TFs in the regulation
In this section we test if other regulatory TFs might be
involved in the regulation of developmental genes. Since
these (additional) TFs are not included during the train-
ing of the model, the proposed dual-functioning TFs
might mimic or compensate for their task rather than
being indeed dual-functioning in vivo.

If such a site-specific TF is missing from the set of regu-
lators, it should have TFBSs in the regulatory regions of
D. melanogaster. Searching in the sequence of all 44
developmental CRMs for enriched sites might indeed
retrieve a yet unknown TF that is involved in the regula-
tion. However, without the TF's expression profile we

would not be able to make any inferences whether the
TF's involvement is a better explanation for the observed
regulatory differences than the dual-functioning of one of
the eight regulatory TFs. Finding a motif that is enriched
in one set of CRMs relative to the other set, however,
would be a potential explanation for why the CRMs act
differently.

In the previous section, we already identified two sets
of CRMs with different regulatory mechanisms, one with
Hb favoured as activator and the other where Hb is pre-
ferred a repressor. If a missing TF, rather than the dual
role of known TFs, is responsible for the difference in reg-
ulation between the two CRM sets, the TFBSs of this
unknown TF should be enriched in one set, while under-
represented or background distributed in the other. The
enrichment should be more pronounced than when com-
paring to non-regulatory sequence. The same should be

Figure 2 Performance improvement of models using dual functioning TFs. Each panel shows for six representative CRMs the observed output 
of the CRM (solid grey) compared to the normalized predicted shape using different TF roles in the Reinitz model. The grey dashed line shows the 
prediction for the best role assignment and individual training on the CRM. In dashed red is shown the performance when using the literature con-
figuration and trained simultaneously on all 44 CRMs. The solid coloured lines show the prediction of HbDual KrDual and HbKrDual, respectively, 
trained simultaneously. The model with the best over-all performance is displayed from the five independent repeats.
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the case with the set of CRMs favouring divergent roles
for Kr. We use CLOVER [19] to identify which Droso-
phila TFs with known binding profiles are statistically
overrepresented or underrepresented in the sequences of
the Hb_act set, compared to the Hb_rep set (see Methods
Sec. 0.6 for more details), and we do likewise for Kr.

The enrichment p-values for the Hb and Kr sets, com-
pared to all regulatory genomic regions in D. melano-
gaster, are shown in Table 4 We identify 12 out of the 76
known site-specific TFs to be over-represented in one of
the four sets of CRMs. Only three are differentially
enriched--that is overrepresented in the activator set and
underrepresented or background distributed in the
repressor set (or vice versa).

For the Hsf and Kni motifs, one set of sequences was
enriched for the motif with a CLOVER[19]p-value (uncor-
rected) of 0, which actually represents a p-value of "no
greater than 0.001" [19]. Since 76 motifs were considered,
the corresponding Bonferroni corrected p-value is 0.076,
so we can state that these motifs are enriched at that sig-
nificance level. For these motifs, the other sets of
sequences had uncorrected p-values greater than 0.5, and
corrected p-values close to 1, so these motifs were defi-
nitely not enriched in the alternate sequence sets. In the
case of the Br-Z4 motif, one set of sequences has an

uncorrected p-value of 0.006, which is not significant
when corrected. Nonetheless, we suspect that this motif
is enriched in that set of sequences, and not enriched in
the other set, where the uncorrected p-value is 0.821.

However, based on prior knowledge of the functions of
these three candidates, none of them seems to be a miss-
ing TF for the regulation during development. Hsf does
not seem to be present during gastrulation, according to
staining images from http://www.flyexpress.net, and
hence cannot influence the expression of the develop-
mental genes. Br-Z4 has a binding profile similar to Bcd
(TOMTOM[20] p-value = 0.0091, see Additional file 1 Sec-
tion 2), which is enriched in both sets. The under-repre-
sentation of Br-Z4 is hence likely due to the higher
proportion of the Bcd-version of the motif rather than the
true absence of any binding sites of Br-Z4. Finally, the
under-representation of Kni in the Kr_act set can be
explained by the observation that a large proportion of
the CRMs that prefer Kr to be an activator produce
expression that coincides with the AP position of highest
Kni concentration (see Additional file 1 Section 3). Since
Kni is consistently a repressor, its binding would inhibit
activation, which makes the absence of Kni TFBSs in
those CRMs favourable and explains the under-represen-
tation of Kni sites in the Kr_act set. It is noteworthy that

Table 4: TFs with enriched TFBSs in CRMs where Hb or Kr are activators or repressors.

TF Hb Kr

p-value for set p-value for set

act rep act rep

# of CRMs 17 27 11 33

Abd-B 0.0 0.0 0.0 0.0

Deaf1 0.079 0.005

His2B 0.048 0.0 0.0 0.058

Hsf* 0.085 0.008 0.0 0.231

Kr 0.0 0.0 0.0 0.0

Bcd 0.0 0.0 0.0 0.0

Br-Z4+ 0.821 0.006

Cad 0.002 0.0 0.0 0.0

Hb 0.032 0.0 0.0 0.0

Kni 0.032 0.01 0.702 0.0

Tll 0.003 0.0 0.0 0.0

Ttk 0.02 0.0 0.003 0.0

The first row shows the number of CRMs in each set. Each following row shows a TF out of the 76 tested for which a Clover [19] analysis 
resulted in a significant over- or under-representation in the sequences where Hb is preferred as activator (second column) or repressor 
(third column) or Kr preferred as activator (fourth column) or repressor (fifth column), respectively. Highlighted in bold are the cases with 
differential enrichment between the activator and repressor set. The TF marked with "*" is not expressed during the developmental time 
points C13 and C14 as determined from in-situ staining images http://www.flyexpress.net. The TF marked with "+" has a binding profile that 
is very similar to Bcd. Empty cells indicate that the TF was not significant for the sequence sets of Hb.

http://www.flyexpress.net
http://www.flyexpress.net
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binding sites for Slp1, which was suggested by Andrioli et
al. [21] to be involved in the regulation of some of the
CRMs studied here, are neither over- nor under-repre-
sented) in any of the CRMs (data not shown). Hence, reg-
ulation by Slp1 appears not able to account for the
(apparent) differing regulatory function of the other TFs.

Analyzing SUMOylation as the mechanism for dual-
functioning TFs
As described in the previous section, we failed to find an
enriched TF binding motif, which strengthens the
hypothesis of dual-functioning TFs. In this section we
explore the protein sequences of the TFs proposed to be
dual-functioning to see if there exists a biological marker
that discriminates them from proteins proposed to have a
single role. We therefore search for short motifs (≈5 aa)
common in all protein sequences of TFs with dual func-
tion using MEME [22] for finding one occurrence per
sequence, "OOPS". In order to identify motifs that gener-
ally appear in the eight regulatory sequences, we also
scan the protein sequences of TFs predicted to have sin-
gle roles.

The results of these scans are shown in Figure 3. As
motifs 2 and 10 appear also in the protein sequence of
TFs predicted to have a single role (motifs 1 and 5), they
can hence be disregarded as marker. Motif 4 does not
have a high information content because no sequence
position was fully conserved amongst the five protein
sequences, which indicates that the motif may only repre-
sent noise. This narrows the search for a marker down to
two motifs: Motif 6, which is Ψ K. E, where "Ψ" represents
a aliphatic amino acid (I, L, V) and "." represents any
amino acid, and motif 8, which is ΦC. I, where "Φ" repre-
sents a hydrophobic amino acid (K, L, Y). While a litera-
ture search revealed no information about motif 8, motif
6 was in fact identified as the known SUMOylation con-
sensus motif. SUMOylation is the post-translational
modification, where a SUMO protein, is covalently
attached to the target protein. As a matter of fact,
SUMOylation has been described to alter the transcrip-
tional function of a TF. Additional file 1 Section 4 shows
the positions of the SUMOylation consensus motifs with
respect to other protein domains in the eight TFs [23].

Table 5 summarizes for each TF the roles as suggested
by this research and the presence of SUMOylation con-
sensus motifs. All of the TFs predicted to switch roles
contain a SUMOylation consensus motif and all TFs pre-
dicted to have a single role lack this motif. The suggested
role for Cad, Hb, Tll, Gt and Kr is in agreement with the
literature, which used distinct methods to derive this
information.

It is believed that the functional role of a TF can be
mediated by the SUMO-dependent interaction with dif-
ferent cofactors. Valin et al. [24] validated this hypothesis

for Sp3, a Zinc finger C2H2-protein like Hb, where
SUMOylation promotes the interactions with a corepres-
sor protein causing the complex to repress transcription,
whereas a non-SUMOylated Sp3 protein promotes tran-
scription. SUMOylation has also been shown to increase
transcriptional activation [25,26]. Another related exam-
ple is Ikaros, the human homologue of Krüppel (Kr),
whose ability to repress is reduced when SUMOylated
[27]. The loss or reduction of repressor function in con-
cert with the competition for binding sites with a stronger
repressor can result in overall activation [10]. Further-
more, Stielow et al. [28] showed that a SUMO-modified
TF can silence genes by triggering the formation of local
heterochromatin-like structures. Specifically, they
showed that a modified Sp3 protein recruits chromatin
remodelling proteins. It remains to be shown whether
one of these mechanisms can account for the postulated
functional change in the role of the TFs and whether an
interaction with SUMO is both protein-concentration
and CRM dependent.

Conclusions
In this study we investigated the developmental gene net-
work of D. melanogaster. Using a thermodynamic model,
we studied the effect of TFs taking opposite roles for dis-
tinct sets of CRMs. We identified five TFs with poten-
tially dual roles from the data and investigated the two
TFs that provide the strongest evidence for having dual
function, Hunchback (Hb) and Krüppel (Kr). Our identi-
fication of these two TFs as potentially acting both as
activators and repressors agrees with previously reported
evidence [9,29]. We show that the accuracy with which
our chosen thermodynamic model can be fit to existing
gene expression data increases by 40% when both Kr and
Hb are allowed to have dual function, and by 30% and
37% respectively when Kr or Hb are allowed to switch.

Our results do not support the previously hypothesized
role of Hb as a repressor in the CRM regulating the third
and seventh stripe of eve expression, MSE3+7 [11]. We
predict that Hb is an activator for MSE2 and MSE3+7 and
a repressor for the remaining eve stripes. Interestingly,
MSE2 and MSE3+7 are located upstream of the eve gene,
while the other MSEs are located downstream. Our find-
ings also disagree with the concentration-dependent
switching mechanism proposed by Papatsenko et al. [13],
as CRMs requiring Hb to act as repressor do not drive
peaks in expression at locations in the embryo with the
highest concentration of Hb protein.

We also explore in silico the possibility that another
known site-specific TF might be binding to the CRMs
used in our study. No known TF DNA-binding motif is
differentially enriched in the CRMs in which Hb (or Kr)
appears to act as an activator compared with those where
it appears to act as a repressor (or vice versa). This of
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Figure 3 Motifs found in protein sequences according to MEME. Each panel shows the logo representation of a motif found in the protein se-
quence of all eight regulatory TFs (left column) or all TFs predicted to have dual function (right column). Motifs were found using MEME [22] in "OOPS" 
mode with a minimum sequence length of four and a maximum of six.
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course does not rule out the possible involvement of
some other TF whose DNA-binding motif is not yet
known; Nor does it address the possibility of an unknown
non-DNA-binding TF being the mechanism required to
explain the inability of the thermodynamic model to suc-
cessfully fit the data. We hypothesize a SUMOylation-
propelled mechanism for the TF role-switch in the differ-
ent CRMs. Support for this idea is provided by the fact
that SUMO consensus motifs are present in exactly the
subset of TFs that our thermodynamic model-based
study predict to be role-switchers. Our hypothesis is in
line with prior evidence linking SUMOylation to the
modulation of transcriptional activity of TFs [30-32].
This previous work has shown that the SUMOylation sta-
tus of a TF affects which cofactors it can interact with,
thus modulating its affect on transcription. Our hypothe-
sis is also made more plausible by the fact that the SUMO
homologue in Drosophila, Smt3, is uniformly distributed
throughout the embryo [17,33]. In conclusion, our results
suggest that current assumptions of a uniform, fixed reg-
ulatory mechanism for all developmental CRMs should
be revised towards a model allowing for dual roles to
improve prediction accuracy. Furthermore, our proposed
mechanism of a SUMOylation-dependent switch repre-
sents a promising area for further research, and might be
another step towards uncovering the biological mecha-
nisms underlying the transcriptional regulation of the D.
melanogaster developmental network. A full knowledge
of this system will be one of the breakthroughs needed for
a quantitative understanding of transcription and ulti-
mately the development of accurate predictive models of
gene expression from DNA sequences.

Methods
0.2 Static, thermodynamic models of transcription
We consider two thermodynamic models referred to as the
Reinitz model [3] and the Segal model [5]. In a nutshell,
both approaches model the transcription rate of a gene as a
function of a vector of free model parameters, Θ, and a
vector of model inputs, X. The model inputs comprise the
set of regulatory TFs, the protein concentrations of these
TFs and a set of log-odds (base two) scores describing the
TF binding affinity along the controlling CRM. Latter is
obtained by scanning the sequence of the CRM using a
position weight matrix (PWM) representation of the TF
binding preference and a PWM scanner, e.g. FIMO [22]. In
addition, the Reinitz models requires a pre-specified role -
activator or repressor - for each of the TFs as input, while
the Segal model optimizes the role during training. We
represent the role of the n TFs by a binary vector f = ·r1, r2,
<, rnÒ, where ri = 1 indicates TF i is an activator, and ri = -1 a
repressor, respectively. We refer to f  as a "configuration".

While the Segal model uses the log-odds binding scores
at all positions in the CRM, the Reinitz model discretizes
them by identifying individual (high-scoring) TFBSs
when applying a PWM score threshold, t. We call a set of
positions and log-odds scores "TFBS-map".

The set of free parameters, Θ, of the Reinitz model is

considerably smaller than that of the Segal model. Rein-

itz's set of parameters comprises a maximum association

constant (K), an "effectiveness" constant (E) for each TF,

the Gibbs free energy threshold (G0) of transcription and

the maximal transcription rate (R0). This comes to 2n + 2

parameters in ΘReinitz, where n is the number of TFs. In

Table 5: Role of TFs in comparison with presence of SUMOylation consensus motif and the role reported in the literature.

Bcd Cad Hb Tll Gt Kr Kni TorRE

roles s + s - s s - s

Number of SUMO 
sites

1 0 2 0 1 2 0 1

Perkins et al. [29] + + s - s s - NA

Schroeder et al. [9] + + s - - (s) - +

Rivera-Pomar et al. [35] + + s - - s - NA

Sanchez et al. [36] + + s - - - - NA

Jaeger et al. [37] + + s - s s s NA

The first row indicates the role we assign to the TFs, where "+" indicate activators, "-" indicate repressors, and "s" indicates a TF switching 
roles. The second row shows the number of sites found in the protein sequence of the TF that match the SUMO-consensus motif. The last 
rows summarizes the roles for the TFs previously reported in the literature.
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contrast, |ΘSegal| = 3n + 3|W| + |C|, where |W| is the

overall sum of the length of each PWM for the TFs and

|C| is the number of CRMs. The three parameters per TF

comprise the concentration scaling factor, which is com-

parable to K, and the expression contribution, which is

comparable to E, while the third free parameter is the

self-cooperativity value, which has no counterpart in the

Reinitz model as synergy between TFs is not modeled

there. The second term of the sum covers free parameters

for the PWM, which are optimized for each TF during

training. Finally, for every CRM, c, in the data set there is

a free parameter describing its basal transcription rate,

.

Data sets

We use the D. melanogaster gap-gene data set [5]. The

data set comprise spatial and temporal concentration pat-

terns of eight TF proteins: Bicoid (Bcd), Caudal (Cad),

Giant (Gt), Hunchback (Hb), Knirps (Kni), Krüppel (Kr)

Tailless (Tll) and Torso-Response-Element (TorRE). The

data set also contains estimates of the transcriptional

response mediated by 44 CRMs, as measured by mRNA

levels generated by lacZ-reporter constructs containing

each of the CRMs. The protein and mRNA measure-

ments are made at the same developmental time points at

multiple points across entire D. melanogaster embryos.

The data set also contains the DNA sequence for each of

the 44 CRMs. We use a PWM describing the binding

preferences of the TF and the motif scanning program

FIMO [22] to predict discrete TFBSs within the regula-

tory regions. As described in Sec. 0.2, an important fea-

ture of the Segal model is to adjust the known PWMs.

Altering the binding preference of each TFs allows the

model to better describe the observed data but may, at

the same time, introduce a bias towards the data set at

hand. We use both the standard ("off-the-shelf") PWMs

[7], and the "tweaked" PWMs to generate a TFBS-map.

Since Segal et al. [5] used a uniform background fre-

quency to calculate the log-odds score we also use a uni-

form background for the tweaked PWMs, and a D.

melanogaster specific background frequency, FA = FT =

0.297 FC = FG = 0.203, when using the "off-the-shelf"

PWMs. The Reinitz model normalizes the PWM scores

for the TFBSs of TF a in the data set by the maximal pos-

sible score, , which is the sum of the largest log-odds

score in every column of the PWM. We use a PWM

threshold t = 9 bits.
The Reinitz model allows for distance-dependent

repression, where the effect of activators are reduced
when they are within d base pairs of an occupied repres-
sor site. The Segal model does not have a distance-depen-
dent repression mechanism. Instead, a repressor reduces
the effect of all bound activators within the CRM. If the
distance parameter in the Reinitz model is set to a num-
ber larger than the extent of the CRM, the two models
should exhibit the same behavior with respect to the
repressor function.

0.3 Training on multiple CRMs and different configurations
To measure how well each configuration can fit each
CRM in the Segal single-time data, we train one Reinitz
model for each possible configuration and each of the 44
developmental CRMs individually using the SA opti-
mizer with geometric cooling schedule [23]. SA was
allowed to optimize for 1000 iterations and the resulting
CC is averaged over five independent repeats. This gener-
ates a 44 × 256 matrix with the average CC values of each
configuration on each CRM.

By training a Reinitz model on each CRM individually,
rather than training one model on all CRMs simultane-
ously we obtain an upper bound of how well the Reinitz
model can fit each CRM. The small size of the training
data set almost certainly causes the model to over-fit and,
hence, the resulting CC values are likely overly optimistic.
So, failure to produce good CC values is hence an even
stronger indication for that the model is not able to fit the
CRM with a given configuration of TF roles. To deter-
mine the roles for a TF from the CC matrix, we use the
vote of three different methodologies, each focusing on a
different aspect of the data, therefore avoiding the bias
and isolating the signal picked up by the majority. These
methodologies are called "Role-determining methods"
and are described in the next section.

0.4 Role-determining methods
We employ three different role-determining approaches:
the SMALLEST-OPTIMAL method, �; the Best-N method, β;
and the SENSITIVITY method, Δ. Each of these approaches
is based on analyzing how well the Reinitz model fits the
data for an individual CRM and configuration.

Gc
0

Smax
a
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Smallest-optimal (set of configurations)
The smallest optimal set of configurations is chosen such
that each individual CRM is assigned to its optimal con-
figuration, determined by the best individual training
accuracy (CC). If a particular TF has no influence on the
regulation of a CRM, that is if all the configurations-pairs
with the TF in different roles have a similar CC--that is, if
the difference in CC between the two methods, Δ, is less
than a constant, Œ--the role of the TF is set to "NA". We
use Œ = 0.1. Any role predictions other than "NA" are
defined as "strong" in this method. While this method is
guaranteed to identify the configurations with the abso-
lute best accuracy, we expect the achieved CC values to
be over-fitted, hence identifying the best performing CC
might be noisy.
Best-N

The BEST-N method chooses the set of n different config-

urations that jointly achieve the optimal performance on

all CRMs. This greedy approach is computationally

expensive since there are  combinations to test

and hence, in this form, it is only feasible up to n = 4.

However, since we assume that a small set of different

configurations is able to explain the regulation of the 44

CRMs, there may be no need for an exhaustive calcula-

tion for n > 4. This approach always assigns a CRM to a

configuration, we therefore receive "strong" role predic-

tions for each TF in every CRMs. Similar to the SMALL-

EST-OPTIMAL method, the reliance on the accuracy

measure might be a problem given that we assume them

to be over-fitted.
0.4.1 Sensitivity
The SENSITIVITY method identifies a particular role for
each TF in a CRM rather than the best (set of )
configuration(s). The role r is chosen for TF t in CRM c if
it is "critical"--that is, if switching to it causes the largest
increase in fitting accuracy. For a given CRM-TF pair, we
compute the difference in performance between all pairs
of configurations that differ only in the role of the TF, and
assign the TF the role that causes the maximum increase
in fitting accuracy. This is described in detail in the next
paragraph. Let f be a configuration specifying the roles of
each of the 8 TFs. Let A(f, t) be f with the role of TF t set
to "activator", whereas R(f, t) sets the role of t to
"repressor". Let CC(c, f ) be the correlation coefficient of
the expression model fit to CRM c using configuration f.
Then, for CRM c, the maximum improvement in fit
accuracy we can obtain when we switch t from

"repressor" to "activator" is given by

We assign the role of t according to the sign of the max-
imum difference in accuracy, making no assignment if the
difference is too small:

We define a role prediction as "strong" in this method if
the absolute value of ΔCC >0.1.
0.4.2 Defining single- and dual-functioning TFs

To identify if a TF has a single role for each CRM, we first

combine for each method individually the evidence for all

CRMs by counting how many times this particular TF

was preferred as activator and repressor and calculating a

fold-change over one or the other role. We translate this

fold-change to mean the TF is a consistently an activator

or repressor if more than  of the CRMs favoured the TF

as activator and repressor, respectively. If for less than 

of the CRMs the function agreed, We define the TF to

switch roles. We then combine the evidence for single- or

dual-function obtained for the role-determining methods

individually by building a majority vote over the assigned

functions.

0.5 Training the model when dual-function is allowed
To perform the training with dual-functioning TFs, we
first use the SENSITIVITY method (described in Sec. 0.4.1)
to determine the set of CRMs for which the TF was
favoured in one or the other role by training a model on
every CRM-configuration pair. CRMs where no role was
determined by the SENSITIVITY method were assigned to
configurations using the TF in its literature configuration.
The TFBS-map is then adjusted such that only the appro-
priate version of the TF--activator or repressor--can bind
to the TFBSs in the map according to what the SENSITIV-
ITY method had determined for this CRM. Note, the pro-
tein concentrations remain the same for the TF
irrespective of its function. We then train on all 44 CRMs
simultaneously as described in Sec. 0.3, except that now
two free parameters describe the effectiveness of the TF
as activator, Eactivator, and repressor, Erepressor, respectively.
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0.6 Enrichment analysis
We perform motif enrichment analysis in order to dis-
cover if other site-specific TFs might be involved in the
regulation of the developmental genes in D. melano-
gaster. The assumption is that if a TF is either directly
involved in the regulation of the genes, or mediating role-
switching by one of the eight TFs, it will have more bind-
ing sites in the set of CRM sequences that require the TF
to be an activator compared to the set of sequences that
require it to be a repressor (or vice versa). We call TFs
that are over-represented in one set of CRM sequences
compared to the other "differentially" enriched.

We use CLOVER [19] to calculate the p-value for over-
or under-representation of TFBSs given a specific TF and
a set of sequences compared with all intergenic regions in
D. melanogaster. We collect two sequence sets, which
were predicted to be subject to a different regulatory
mechanism: set A were Hb was predicted to be an activa-
tor and set R where Hb was predicted o be a repressor, for
Kr respectively. For each of these sequence sets we run
CLOVER [19] to identify TFs whose TFBSs are enriched
in one or the other set. We call a TF to be over-repre-
sented if the p-value is below 0.01 and under-represented
if the p-value is above 0.99. We report all TFs with known
binding specificity taken from http://www.danielpol-
lard.com/matrices.html and Slp1 from JASPAR [34] (76
in total) that are overrepresented in set A or R. For those
TFs to be called "differentially" enriched we require the
difference in p-values between set A and R to be larger
than 0.2.
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