Helaers and Milinkovitch BMC Bioinformatics 2010, 11:379
http://www.biomedcentral.com/1471-2105/11/379

SOFTWARE

BMC
Bioinformatics

Open Access

MetaPIGA v2.0: maximum likelihood large
phylogeny estimation using the metapopulation
genetic algorithm and other stochastic heuristics

Raphaél Helaers! and Michel C Milinkovitch*2

Abstract

availability of specific functionalities.

of multiprocessor and multicore computers.

Background: The development, in the last decade, of stochastic heuristics implemented in robust application
softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences.
Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the
raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the

Results: Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny
inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and
the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate
heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the
Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models
that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and
command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters
setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses
standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage

Conclusions: The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high
inter-population variation even under strong intra-population selection. Implementation of the metaGA together with
additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a
meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high
customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-
specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive

user-manual are freely available to academics at http.//www.metapiga.org.

Background

Phylogeny inference allows, among others, detecting
orthology/paralogy relationships among gene family
members (e.g., [1,2]), estimating divergence times and
evolutionary rates (e.g., [3-5]), reconstructing ancestral
sequences (e.g., [6-9]), identifying molecular characters
constrained by purifying selection or prone to positive
selection (e.g., [10]), uncovering hidden biodiversity (e.g.,
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[11]), and mapping the evolution of morphological, phys-
iological, epidemiological, biogeographical and even
behavioral characters [12,13]. Molecular phylogeny infer-
ence is now a mature science, and an important part of
the maturation process pertained to the realization (in
the last 10 years) that the quest for the Holy Grail of abso-
lute best tree should be abandoned for a much more
meaningful goal: the inference of clades and trees robust-
ness. Still, that objective remained intractable in practice
because of (a) the NP-hard nature of optimality-crite-
rion-based phylogeny inference (i.e., no algorithm can
solve it in polynomial time; [14,15]) and (b) the comput-
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ing-time requirements of using complex substitution
models (and rate heterogeneity across sites) in the frame-
work of what had been identified as the probable most
robust optimality criterion: Maximum Likelihood (ML;
[16-18]). Today large phylogeny inference is incorporated,
across biological disciplines, as an essential step in most
comparative studies involving nucleotide or protein
sequences. This has been made possible thanks to both
theoretical and practical developments.

First, one key advance that made large phylogeny infer-
ence tractable is the implementation in this field of sto-
chastic heuristics with inter-step optimization, ie., a
family of approaches that existed for decades in physics
and computer science and explore multidimensional
solution spaces in a much more efficient manner than the
older intra-step optimization hill-climbing methods.
Indeed, in the latter, one prime parameter (typically, the
topology of the tree) is modified and all other parameters
are optimized before the new solution is evaluated
whereas, in stochastic heuristics, all free parameters are
optimized while the search proceeds. Inter-step optimi-
zation methods include MCMC approximations of the
Bayesian approach [19,20], stochastic simulated anneal-
ing [21], and genetic algorithms [22-26]. The efficiency of
stochastic heuristics is quite counter-intuitive but can be
explained by several factors: (a) poorer solutions are
accepted with a non-null probability (contrary to hill-
climbing that strictly restricts moves toward better likeli-
hood values) such that valleys in likelihood space can
eventually be crossed; (b), parameters are not over-opti-
mized (e.g., starting and intermediate trees are generally
largely sub-optimal, hence, optimizing model parameters
on these topologies is a clear example of over-fitting). We
think that avoiding over-optimization at every topology
evaluation generates a flatter likelihood space shape, such
that valleys are more easily crossed and local optima
more easily escaped. This suggestion however requires
further investigation.

Second, several stochastic methods have been incorpo-
rated into robust application softwares. The importance
of that point should not be underestimated. For example,
the recent success of Bayesian methods is probably due as
much to its incorporation into a robust and efficient soft-
ware (MrBayes; [27]) as to the theoretical appeal of gen-
erating marginal posterior probabilities [19]. The
software RaxML [28], enjoys well-deserved popularity
because it is one of the fastest ML phylogeny inference
programs available to date (despite that it does not incor-
porate stochastic methods) thanks to the implementation
of approximations to rate heterogeneity across sites and
of smart computer science tricks speeding up likelihood
computation: optimized parallel code and 'Subtree Equal-
ity Vectors' (i.e., the extension of character compression
to the subtree level). Similarly, highly efficient parallel
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code has recently been implemented for the evaluation of
phylogenies on graphics processing units (GPUs), result-
ing in about 100-fold speed increase over an optimized
CPU-based computation [29]. This efficient use of new
hardware, existing stochastic heuristics (in this case, an
MCMC approach in a Bayesian framework), and smart
code parallelization for efficient harnessing of the hun-
dreds of GPU processing cores, allowed the authors to
successfully use a 60-state codon model on a dataset of 62
complete mitochondrial genomes [29].

The availability of multiple excellent softwares imple-
menting different robust heuristics is clearly an asset for
the end user: reliable results might be identified because
they remain stable across softwares and methods. How-
ever, most users chose one single main software for their
analyses, and this choice is sometimes dictated by avail-
ability of functionalities of importance but that do not
pertain to the performances of the specific heuristic
implemented (e.g., ability to perform batch analyses,
availability of GTR nucleotide substitution model [30] or
of rate heterogeneity [31-33], possibility to partition
data). Finally, given that the need to infer large trees is
critical in multiple biological disciplines, the non-special-
ist can be baffled by the large number of available heuris-
tics, parameters, and softwares, such that the most user-
friendly tools are often preferred even if more robust or
more efficient (but less user-friendly) softwares are avail-
able. There is therefore a challenge to supply softwares
that are easy to use for the non-specialist, provide flexi-
bility for the specialist, and allow fast and robust infer-
ence for both.

The Metapopulation Genetic Algorithm (MetaGA;
[23]) is an evolutionary computation heuristic in which
several populations of trees exchange topological infor-
mation which is used to guide the GA operators for much
faster convergence. Despite the fact that the metaGA had
been implemented in a simple and unoptimized software
(metaPIGA v1) together with simple nucleotide substitu-
tion models, an approximate rate heterogeneity method,
and only a low number of functionalities, is has been
shown as one of the most efficient heuristics under the
ML criterion [23,34,35]. Furthermore, it has been sug-
gested that multiple metaGA searches provide an esti-
mate of the posterior probability distribution of possible
trees [23] although this proposition clearly warrants
much further investigation. Here, we present MetaPIGA-
2.0 the first phase of a robust implementation of the
MetaGA (and other stochastic methods such as a classi-
cal Genetic Algorithm and Simulated Annealing)
together with complex substitution models, rate hetero-
geneity, and high parameterization for the phylogeneti-
cist, as well as an ergonomic interface and easy-to-use
functionalities for the non-specialist.
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Implementation and Results

ML framework

Trees are estimated in MetaPIGA-2.0 with the Maximum
Likelihood criterion (ML) using any of 5 nucleotide sub-
stitution models ([2] and refs therein, [30]): Jukes Cantor
(JC), Kimura's 2 parameters (K2P), Hasegawa-Kishino-
Yano 1985 (HKY85), Tamura-Nei 1993 (TN93), and Gen-
eral Time Reversible (GTR). Analyses can be performed
with rate heterogeneity among sites using a proportion of
invariant sites (Pinv) [33] and/or a discrete Gamma dis-
tribution of rates (y-distr) [31,32]. All parameters of the
model (transition/transversion ratio or components of
the rate matrix, the shape parameter of the y-distr, and
Pinv) can be set by the user or estimated from a Neighbor
Joining (NJ) tree [36]. The same parameters plus branch
lengths and among-partition relative rates can experience
intra-step optimization either periodically during the
search and/or at the end of the search.

Datasets can be partitioned into character sets ("char-
sets") either using a graphical tool (see below) or by writ-
ing the corresponding commands in a batch file. In
MetaPIGA-2.0, we assume that all partitions evolve on
the same topology (we therefore consider, like in the vast
majority of phylogeny inference programs, that the analy-
sis is performed on a non-recombining piece of DNA,
such that the phenomena of hybridization and incom-
plete lineage sorting are ignored), but all other parame-
ters (base frequencies, substitution matrix rates, shape
parameter of y-distr, and Pinv) are optimized separately
for each partition. Among-partition rate variation param-
eters are introduced in the likelihood equation as a factor
that modifies branch length for the corresponding parti-
tion. Branch lengths are optimized as usual, but the rela-
tive rates of partitions are optimized separately (with the
constraint that the weighted average of among-partitions
rates is 1; weighting is according to each partition size).

Tools shared among heuristics

Phylogeny estimation is an NP-hard problem [14,15],
with unknown search space topography. MetaPIGA-2.0
implements four different heuristics for searching solu-
tion space (see below). A set of tools is shared by all these
heuristics: the starting tree generators, the operators, and
some of the stopping rules.

A Tree Generator is used to produce the starting tree(s)
either as NJ tree(s) [36] or as random tree(s) (i.e., with
random topology and random branch lengths) or as
"Loose Neighbor Joining" (LNJ) tree(s), i.e., a pseudo-ran-
dom topology (modified from [23]). For generating a LN]J
tree, the user specifies a proportion value (p = [0-1]) and,
at each step of the NJ algorithm, the two nodes to cluster,
instead of corresponding to the smallest distance value,
are randomly chosen from a list containing the
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w smaller distances, where NTax is the

number of taxa (sequences) in the dataset. Branch
lengths are computed as in the NJ method [36]. In other
words, the LNJ tree is a NJ tree with some topology ran-
domization which amount is defined by the user. This
approach is a particularly useful compromise between
random starting topologies (p = 1) that require long runs
of the heuristic for optimization, and a good but fixed
topology (the NJ tree, i.e., p = 0) that is prone to generate
solutions around a local optimum. The distance matrix
used for building NJ or LNJ starting trees can be com-
puted using any of the 5 substitution models (see above)
and with or without Pinv and/or y-distr. Arbitrary start-
ing trees can also be imported by the user.

At the core of all stochastic heuristics are the Opera-
tors, i.e., the topology and parameters' modifiers allowing
the heuristic to explore solution space. In MetaPIGA-2.0,
we implemented 5 operators for perturbing tree topology
(Nearest Neighbor Interchange, NNI; Subtree Pruning
Regrafting, SPR; Tree Bisection Reconnection, TBR; Taxa
Swap, TXS; Subtree Swap, STS; see [37] and [23] for
details) and 6 operators for perturbing model parameters
(branch lengths, internal branch lengths, rate matrix
parameters, y-distr shape parameter, Pinv, and among-
partitions rate variation). These operators can be used in
any combination, either at equal or user-defined frequen-
cies. The user can choose for these frequencies to change
dynamically during the search, i.e., MetaPIGA periodi-
cally evaluates the relative gains in likelihood produced
by each operator and adjusts their frequencies propor-
tionally. Minimum frequencies can be set such that oper-
ators that are inefficient early in the search remain
available for increased use later in the search.

All stochastic heuristics require a stopping condition.
In MetaPIGA-2.0, the user can choose any combination
of the following criteria: number of steps, elapsed time,
likelihood stability, and convergence of branch support
distribution (for replicated searches). When using the
metaGA heuristic, one can additionally use a stopping
condition, within each replicate, based on convergence of
the populations of solutions (see below).

The heuristics

We implemented four heuristics in MetaPIGA-2.0: a Sim-
ulated Annealing algorithm (SA; [21]), a classical Genetic
Algorithm (GA; [22,24,25,38]) and the metapopulation
Genetic Algorithm based on the Consensus Pruning
principle (metaGA; [23]). As a reference, we also imple-
mented a simple Hill Climbing (HC) algorithm that gen-
erates a new solution tree at each step (using available
operators) and accepts it only if its likelihood is better
than the current solution. HC algorithms are fast but tend
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to generate solutions trapped in local optima and are
therefore highly dependent on the starting tree localiza-
tion in tree space as well as on the (unknown) tree space
topography.

The simulated annealing (SA)

The SA algorithm uses statistical mechanics principles to
solve combinatorial optimization problems [39]; i.e., it
mimics the process of minimal energy annealing in solids.
SA starts with some initial state (the starting tree) and
randomly perturbs that solution (using available tree
operators). If the new state is better (lower energy, better
likelihood), it is kept as the new current state; if the new
state is worse (higher energy, worse likelihood), it is
accepted as the current state with the Boltzmann Proba-
bility eA£/T, where AE is the negative difference in energy
(here, the difference of likelihood) between the two
states, and T is the so-called 'temperature’ of the system.
If T is lowered slowly enough, the algorithm is guaran-
teed to find the optimal solution. The obvious asset of the
algorithm is its ability to momentarily accept suboptimal
solutions, allowing it to escape local optima whereas its
obvious drawback is the difficulty to define the shape and
speed of the "cooling schedule" (i.e., the rate of the
decrease in T). Efficient schedules highly depend on the
dataset. We implemented 14 highly-parametrized cooling
schedules in MetaPIGA-2.0, including one specifically
developed for phylogeny inference [40]. The user can
control all cooling schedule parameters: the starting tem-
perature computation method, the maximum acceptance
probability, the temperature decrease frequency, and the
possibility of 'reheating'.

The Genetic Algorithm (GA)

The GA is an evolutionary computation approach that
implements a set of operators mimicking processes of
biological evolution such as mutation, recombination,
selection, and reproduction (e.g., [41]). After an initial
step of generating a population of trees, the individuals
(specific trees and model parameters) within that popula-
tion are (i) subjected to mutation (a stochastic alteration
of topology, of branch lengths or of any model parameter)
and/or recombination, and (ii) allowed to reproduce with
a probability that is a function of their relative fitness
value (here, their likelihood). Because selection preferen-
tially retains changes that improve the likelihood, the
mean score of the population improves across genera-
tions. However, because sub-optimal solutions can sur-
vive in the population (with probabilities that depend on
the selection scheme), the GA allows, in principle, escap-
ing local optima. In MetaPIGA-2.0, we implemented 5
alternative selection schemes ("Rank", "Tournament",
"Replacement", "Improve", and "Keep the Best", see [23])
and one recombination scheme where each sub-optimal
individual has a probability (determined by the user) to
recombine with a better individual. Recombination is
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performed by exchanging subtrees defined by one (if any)
of the identical taxa partitions in the two parental trees
(i.e., one internal branch that defines subtrees including
the same taxa but with potentially different sub-topolo-
gies). A recombination can be viewed as a large number
of simultaneous topological mutations. Beside the selec-
tion scheme, the major parameter in the GA is the popu-
lation size (set by the user).

The metapopulation Genetic Algorithm (metaGA)

This approach relies on the coexistence of P interacting
populations [23] of I individuals each (P and [ defined by
the user): the populations are not fully independent as
they cooperate in the search for optimal solutions.
Within each population, a classical GA is performed:
trees are subjected to evaluation, selection (5 alternative
selection schemes are available as in the GA, see above),
and mutation events. However, all topological operators
are guided through inter-population comparisons
defined and controlled by 'Consensus Pruning’ (CP; [23]):
topological consensus among trees across populations
defines the probability with which different portions of
each tree are subjected to topological mutations. These
comparisons allow the dynamic differentiation between
internal branches that are likely correct (hence, that
should be changed with nil or low probability) and those
that are likely incorrect (hence, that should be modified
with high probability). Although CP allows for the elabo-
ration of many alternative inter-population communica-
tion procedures [23], we implemented in MetaPIGA-2.0
the two that we identified (data not shown) as the most
useful: 'Strict CP' (internal branches shared by all trees
across all populations cannot be affected by topological
mutations; all other internal branches are unconstrained)
and 'Stochastic CP' (topological mutations affecting a
given branch are rejected with a probability proportional
to the percentage of trees across all populations that
agree on that branch).

As constraining entirely an internal branch from being
affected by topological mutations necessarily increases
the likelihood to be trapped in a local optimum, a toler-
ance parameter t (defined by the user) is implemented,
allowing any internal branch to be affected with a proba-
bility ¢ even if the branch is shared by all trees. The user
of MetaPIGA-2.0 has the choice between a 'blind’ and a
'supervised’ procedure for handling constrained parti-
tions. In the former, a topological mutation that affects a
constrained branch is simply aborted and the tree is left
unchanged, whereas in the latter, topological operators
exclusively target branches in a pool of acceptable
(unconstrained) candidates.

The MetaGA allows for two, non-mutually exclusive,
recombination flavors: 'intra-population recombination’
where each sub-optimal individual at each generation has
a probability (instead of being mutated) to recombine
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Figure 1 The MetaPIGA-2.0 heuristic setting window. The user can set the parameters of the chosen heuristic: here, for the metaGA, the consensus
type, the selection scheme, the operator behavior, the number of cores/processors (here, 2 cores) onto which the populations are distributed, the
number of populations and the number of individuals per population, the tolerance parameter (frequency with which internal branches are affected
by mutational operators even if that branch is present in all trees across all populations), and the frequency of hybridization among populations. See
text for details.

with a better individual from that population (as in the
GA above), and 'inter-population hybridization’ (Figure 1)
where, at each generation, there is a probability (defined
by the user) that all sub-optimal individuals from one
random population are recombined with one individual
from another population; sub-optimal individuals from
other populations experience the normal mutation proce-
dure.

Comparing, across generations, the frequencies of
internal branches shared among the P*[ trees (irrespec-
tive of how the trees are assigned to populations) pro-
vides a means for assessing whether the populations
converge towards a stable set of solutions, i.e., towards a
consensus with stable branch frequencies. Hence, a stop-
ping rule, not available to other heuristics, can be used
under CP: the user can choose to stop the search when a
series of mean relative error (MRE) values remains,
across generations, below a threshold defined by the user.
To increase independence among samples, consensus
trees are sampled every n > 1 (i.e., non-successive) gener-

ations. For example, given two consensus tree, T;and T},
corresponding to the consensuses among the P*/ trees at
generations 5000 and 5005, respectively, the MRE is com-
puted as follows:

P _oP
nPartition q)Ti q)T]'

p=1 max(qﬂ’,,cp’%,)
1

MRE(T;, Tj) = nPartition

tion is the sum of taxa bi-partitions observed in T;and 7|

, where nParti-

(but identical partitions are counted once), and ®4; and

QD% are the consensus values of bi-partition p in trees T;

q)p —IDP
T, ~ T,
Lo o if

and T), respectively. Note that | ————"—|=
max(d)p_,(bf,;,‘)
t ]

either both ®%. and CI)%- are nil, or if the corresponding

internal branch does not exist in either T, or 7). Internal
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Figure 2 The MetaPIGA-2.0 model setting window. The user can choose a substitution model and set the corresponding parameters: here, the
GTR model (and estimated starting values of the rate matrix) with rate heterogeneity (discrete Gamma model) and no proportion of invariable sites
has been selected automatically after performing a likelihood ratio test (lower left buttons). The user can also choose how and when intra-step opti-
mization of target parameters (here, branch lengths, rate matrix parameters, and the alpha shape parameter of the Gamma distribution) will be per-
formed (here, at the end of the search, using a genetic algorithm). Note that, as the metaGA is a stochastic heuristic, most of the parameters
optimization occurs inter-step, i.e., across generations under the effect of operators (see Figure 3).

E] Branch lengths
E Rate matrix parameters
@ Shape of Gamma distribution

Proportion of invariable sites

Among-partition rate variation

’f & .
I\ Estimate starting parameters

branches that are absent from both T;and T}are not con-
sidered. If the MRE(gen5000, gen5005) is above the user-
defined threshold (e.g., 5%), it is discarded and a new
MRE is computed for the comparison of generations 5005
and 5010. On the other hand, if MRE(gen5000, gen5005)
is below the threshold, a counter is incremented and a
new MRE is computed for the comparison of generations
5000 with the next sample (here, corresponding to gener-
ation 5010). The user defines for how many samples the
MRE must remain below the specified threshold before
the search stops.

Replicates

For any heuristic chosen by the user in MetaPIGA-2.0,
the search can be repeated many times, generating a
majority-rule consensus tree among the replicates. Note
that when the metaGA is the selected heuristic, it has
been suggested that the frequencies of clades in the
among-replicates consensus might approximate the cor-
responding posterior probabilities [23]. The user can

either fix the number of replicates, or specify a range of
minimum and maximum number of replicates and let
MetaPIGA-2.0 stop automatically, exploiting the MRE
metric in a similar way as the consensus across popula-
tions in a single metaGA search (see above). Here, how-
ever, the MRE is computed using consensuses across
replicates, i.e., T;is the consensus among the final trees
that have been obtained in replicates 1 to i. No additional
replicate is produced when the MRE among N replicates
(one can use consecutive replicates because they are
independent) remains below a given threshold. As an
example, if N is set to 10, and the first MRE below the
user-defined threshold (e.g., 5%) involves replicates 1-241
and 1-242, the MRE is computed 9 additional times, i.e.,
between the reference consensus 7' »,; and T}, for j corre-
sponding to replicates 1-243, then 1-244, then 1-245, etc.
The search stops if the inter-replicates MRE remains
below 5% for 10 consecutive replicates. On the other
hand, the counter is reset to zero as soon as the MRE
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Figure 3 The MetaPIGA-2.0 operators setting window. The user selects the operators (affecting topology, branch lengths, and model parameters),
their frequencies (unless they are ordered or randomly selected; upper right radio-button panel) and whether their frequencies are dynamically adapt-
ed (here, every 100 generations but never set below 4%) depending on their relative efficiencies in improving the best-tree likelihood. See text for

details.

exceeds 5%, and the new reference tree for computing
MRE is then set to T]-current replicate*

The inter-generations (= intra-replicate) MRE stopping
rule can be used in combination with the inter-replicate
MRE stopping rule, letting MetaPIGA decide both when
to stop each replicate and when to stop executing addi-
tional replicates (i.e., when to stop the entire analysis).

Language, formats, and interface

MetaPIGA-2.0 is written in Java 1.6 such that the single
code runs on 32 and 64-bits platforms under MacOS X,
Linux, and Windows. Computing and storing the likeli-
hood of large trees requires large amount of Random-
Access Memory (RAM). Whereas 32-bits systems can
allocate a maximum of ~2Gb of memory to the Java Vir-
tual Machine (JVM), 64-bits systems are virtually limited
only by the amount of memory installed on the computer
(as the theoretical limit is about 18 billions gigabytes).
MetaPIGA-2.0 uses the Java Multi-Threading technology
to take advantage of multiprocessor and multicore com-
puters, such that some tasks can be run in parallel. As

replicates are independent, they are particularly prone to
parallelization: any number of different cores/processors
can be assigned to different replicates. In addition, the
metaGA heuristic itself is well suited to parallel imple-
mentation because processes such as mutation, selection,
and likelihood computation are unrelated to CP and are
therefore independent across populations. Hence, differ-
ent metaGA populations can be distributed to different
cores/processors. Parallelization of metaGA populations
can be combined with parallelization of replicates (e.g., 16
cores allow running simultaneously 4 metaGA replicates
with 4 populations/replicate).

MetaPIGA-2.0 uses standard formats: reading and
writing datasets in Nexus format [42] and trees in Newick
format http://evolution.genetics.washington.edu/phylip/
newicktree.html. All search settings can be saved in a
metaPIGA block incorporated into the Nexus file, allow-
ing easy management and command line runs. A Nexus
file without a metaPIGA block will be correctly inter-
preted by MetaPIGA-2.0 and will run with default param-
eters.
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Figure 4 The MetaPIGA-2.0 run window. Here, a metaGA search with multiple replicates has been chosen. Hence, the run window shows, for 3
successive replicates (lower left panel), the current best-tree likelihood progression in each population, as well as (right panel) the current topology,
metaGA branch support values, and average branch lengths of the consensus among the best trees (one for each population) from all replicates.

MetaPIGA-2.0 can be run in command line but it also
offers an extensive graphical user interface (GUI) for
access to all search settings: defining and managing char-
sets; including/excluding taxa, characters, and charsets;
managing dataset partitions; choosing and parametrizing
heuristics (Figure 1); defining substitution models and
their parameters (Figure 2); choosing starting tree
options; controlling operators (Figure 3); defining stop
criteria and replicates. All settings are associated with an
interactive "mouse-over" help system. MetaPIGA-2.0 also
implements three statistical methods (Figure 2) for
selecting the substitution model that best fits the data
([43]; and refs therein): the Likelihood Ratio Test, the
Akaike Information Criterion, and the Bayesian Informa-
tion Criterion. The MetaPIGA-2.0 GUI provides a
detailed run window showing graphs specific to the cho-
sen heuristic (e.g., for a metaGA search with replicates:
current best likelihood progression of each population as
well as the current topology, branch support values, and

the average branch lengths of the consensus tree; Figure
4).

Batch files are particularly useful for running sequen-
tially a single data set under multiple different settings
and/or several datasets with the same settings.
MetaPIGA-2.0 supports the use of batch files which can
be written manually or generated using tools available in
the GUI: datasets and their settings can be duplicated,
settings can be copy-pasted from one dataset to another,
and multiple combinations of datasets and settings can be
saved in a batch file that can be run either in the GUI
(with various graphical information on search progress)
or using command line.

Input and result trees are manipulated in Newick for-
mat but visualized graphically in the GUI and can be
exported for other programs. MetaPIGA-2.0 also inte-
grates a Tree Viewer (Figure 5) that allows viewing,
rerooting, and printing trees as well as computing the
likelihood of any tree (under any substitution model) and
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optimizing its model parameters. Three other tools are
implemented in MetaPIGA-2.0: a tree generator (using
the starting tree settings), a consensus builder (using user
trees and/or trees saved in the Tree Viewer), and a mem-
ory setting tool defining the maximum amount of mem-
ory allocated to the program.

Discussion and Conclusions

The metaGA resolves the major problem inherent to clas-
sical GA approaches: should one use a soft or a stringent
selection scheme? Indeed, strong selection produces
good solutions in a short computing time but tends to
generate sub-optimal solutions around local optima,
whereas mild selection schemes considerably improve the
probability to escape local optima and find better solu-
tions but greatly increase computing time. As the
metaGA involves several parallel searches, initial inter-
population variation can be very high (especially if ran-
dom or LNJ pseudo-random starting trees are used), and

somewhat maintained during the search, even under
extreme intra-population selection.

Although the metaGA has been shown to perform very
well [23,34,35], it had not been implemented together
with complex substitution models, discrete Gamma rate
heterogeneity, and the possibility to partition data. Here,
we performed such an implementation together with a
hill climbing, a classical GA, and a SA algorithm. This
implementation into a single software will allow a rigor-
ous identification of the optimal parameters' values under
each of these heuristics as well as a meaningful compari-
son of performances among these algorithms. Comparing
the performances (speed and accuracy) between
metaPIGA-2.0 and other popular softwares such as,
among others, MrBayes [27], RaxML [28], Garli [38], and
PhyML [44] is well beyond the scope of the present man-
uscript. However, our preliminary analyses (data not
shown) with large datasets indicate that metaPIGA-2.0
and MrBayes-3.1.2 generate very similar candidate trees
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and consensus cladograms (under stopping rules based
on the inter-replicate MRE metric or average standard
deviation of split frequencies, respectively) and require
similar running times.

An in-depth assessment of the statistical significance of
metaGA branch support values is warranted. There
might be some correspondence between metaGA branch
support values and posterior probabilities [23] but theo-
retical and additional empirical analyses are required. For
example, it would be important to asses how changing
metaGA (versus MCMC) settings would affect sampling
and estimates of probability distributions.

MetaPIGA-2.0 will constitute a platform on which we
will incorporate additional functionalities (e.g., amino-
acid and codon substitution models, and inference of
ancestral sequences), improve performances (e.g., by par-
allelization on graphics processing units), identify opti-
mal combinations of default parameters values, improve
current heuristics, and possibly combine them for the
development of higher-level metaheuristics. Meanwhile,
MetaPIGA-2.0 already gives access both to high customi-
zation for the phylogeneticist, as well as to an ergonomic
interface and functionalities assisting the non-specialist
for sound inference of large phylogenetic trees using
nucleotide sequences.

Availability and Requirements
Project name: MetaPIGA-2.0

Project home page: http://www.metapiga.org and
http://www.lanevol.org

Operating systems: Platform independent

Programming language: Java

Other requirements: Java 1.6 virtual machine

License: Free for Academics, license needed for non-
academics.
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