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Abstract

Background: Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip) is used to study
protein-DNA interactions and histone modifications on a genome-scale. To ensure data quality, these experiments
are usually performed in replicates, and a correlation coefficient between replicates is used often to assess
reproducibility. However, the correlation coefficient can be misleading because it is affected not only by the
reproducibility of the signal but also by the amount of binding signal present in the data.

Results: We develop the Quantized correlation coefficient (QCC) that is much less dependent on the amount of
signal. This involves discretization of data into set of quantiles (quantization), a merging procedure to group the
background probes, and recalculation of the Pearson correlation coefficient. This procedure reduces the influence
of the background noise on the statistic, which then properly focuses more on the reproducibility of the signal.
The performance of this procedure is tested in both simulated and real ChIP-chip data. For replicates with different
levels of enrichment over background and coverage, we find that QCC reflects reproducibility more accurately and
is more robust than the standard Pearson or Spearman correlation coefficients. The quantization and the merging
procedure can also suggest a proper quantile threshold for separating signal from background for further analysis.

Conclusions: To measure reproducibility of ChIP-chip data correctly, a correlation coefficient that is robust to the
amount of signal present should be used. QCC is one such measure. The QCC statistic can also be applied in a
variety of other contexts for measuring reproducibility, including analysis of array CGH data for DNA copy number
and gene expression data.

Background
Chromatin immunoprecipitation on tiling arrays (ChIP-
chip) has been widely used to study genome-wide bind-
ing sites of transcription factors [1-5] and other protein
complexes [6,7], as well as histone modifications [8]. To
ensure data quality, ChIP-chip experiments are generally
performed in replicates (two or three), and their repro-
ducibility is used to determine whether the data are of
sufficient quality and whether further experiments or
validations are necessary. A number of factors impact
the reproducibility of ChIP-chip data, including unifor-
mity of cross-linking and sonication, specificity of the
antibody, efficiency of chromatin immunoprecipitation,
quality of the probes, and biological variability.
To assess the reproducibility of ChIP-chip data, a cor-

relation coefficient is most often used to compare the

replicates at the probe level [9]. The Pearson correlation
coefficient (PCC) is the most common, but the non-
parametric Spearman or Kendall correlation coefficient
can also be used. However, while the simplicity of the
standard correlation coefficient is appealing, it suffers
from a serious problem: the statistic depends not only
on the reproducibility of the data but also on the
amount of DNA-protein binding or post-translational
modification (henceforth collectively referred to as “sig-
nal”) present in that experiment, as we will demonstrate
(See Fig. 1). That is, when a large amount of signal is
present, the correlation coefficient tends to be higher
than when a small amount of signal is present. In the
latter case, the background signal contributes signifi-
cantly and leads to a lower coefficient, even though
PCC is generally sensitive to the outlying values. This
lack of robustness to the amount of signal is an undesir-
able property, as it means that correlation coefficients
cannot be properly compared between different
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experiments, except in the likely event that the amount
of binding is exactly the same. A PCC of 0.7 in one
experiment does not indicate the same data quality or
reproducibility as 0.7 in another experiment if the
amount of binding is different between the two experi-
ments. This phenomenon is especially true for two-color
ChIP-chip experiments, in which log-ratios rather than
absolute intensities are used to measure correlation.
When correlation is computed on the absolute intensi-
ties, the low values contribute relatively little to the sta-
tistic because their variability is small compared to the
range of intensities. When a control channel or experi-
ment is used to generate log-ratios, however, these back-
ground probes have large variability around zero and
impact the correlation substantially.
Another way to compare replicates is after further

processing of the data, after regions (or “clusters”) of
binding or modification are identified. While we have
often employed this approach in our previous analysis
[6], this is not a simple process. For instance, the noise
level in each replicate may be different and so the
thresholds for identification of enriched regions must be
defined in each case. Depending on how these thresh-
olds are defined, the results can vary substantially.
Furthermore, the agreement among the identified clus-
ters is difficult to define precisely. One can measure, for
instance, the proportion of enriched clusters that over-
lap above a given percentage, at the expense of introdu-
cing another parameter. But, other complications also
arise, such as a cluster in one experiment that encom-
passes multiple clusters on another array, making it
unclear how to best compute the proportion. One can

also choose to measure the fraction of overlap in base-
pairs, but this quantity becomes biased in favor of data
sets that have broad clusters (e.g., certain histone modi-
fications) rather than sharp marks (e.g., transcription
factors). These complications may be avoided in many
situations if a more robust criterion for data quality and
reproducibility exists. In the end, however, neither
point-wise nor cluster-wise comparison is perfect; the
overall decision on the quality should depend on several
statistics including these two.
In this work, we propose the Quantized correlation

coefficient (QCC) that is more robust to the amount of
signal present. We first use simulated data to measure
the extent to which the PCC is influenced by the
amount of signal in the data (how much of the genome
is covered). This is done at varying levels of enrichment
over background, which we refer to as the signal-to-
noise ratio (SNR). Then we describe QCC and compare
it to the PCC. We also describe the methodological
issues for this statistic and use real data to further
demonstrate its usefulness.

Results and Discussion
Quantized correlation coefficient (QCC)
The Pearson correlation coefficient between two vectors,
(xi, yi), i = 1, ..., n,
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fails to be robust at different signal amounts because
the background noise can have substantial influence on

Figure 1 The PCC is not a robust statistic for measuring reproducibility of ChIP-chip data. (A) A scatterplot between probe signals of two
simulated ChIP-chip replicates. The total number of probes is 300,000; 5% of the probes are assumed to have binding signal, with signal-to-
noise ratio (SNR) of 3. Gaussian noise with standard deviation s.d.= 1 was added to all the probes for each simulated replicate. The PCC is 0.3. (B)
Same as (A) but with 20% of the probes displaying binding signal. The PCC nearly doubles to 0.59. (C) The PCC at the probe level depends on
the amount of binding for range of SNRs. Each point is an average over 100 simulated replicate pairs; error bars represent a 95% confidence
interval. Although the PCC correctly reflects the data quality as defined by SNR, it underestimates substantially when the amount of binding
signal is low for any fixed SNR.
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the statistic when the amount of binding is low. The
main idea behind the proposed quantization and merging
procedure is first to identify the probes containing back-
ground noise with an iterative step and then to reduce
their impact on the correlation coefficient. This involves
quantization-the process of constraining a continuous set
of values by a discrete set-and hence the new statistic is
called the Quantized correlation coefficient.

1. Initial quantization: For each data set, all the
probe-level data are binned into B0 groups of equal
size (number of probes) based on the signal quan-
tiles, starting with 1 for the probes with smallest
intensities. The probes in each group are assigned as
their new values integers 1, 2, ..., B0 that correspond
to their group number. For instance, with B0 = 10,
all probes that were in the 3rd decile in terms of
intensity now have the new values 3. B0 is a user-
specified, initial number of bins for quantization.
The choice of this parameter is discussed later.
2. Merging of two neighboring groups: Given B bins,
There are B - 1 possible ways to merge two consecu-
tive bins. For each possible merging, reassign the
probes with 1, 2, ..., B - 1 based on the new group
configurations and calculate their corresponding
PCC. After PCC is computed for every B - 1 possible
configurations, choose the merging that most
improves the correlation, and update the group
assignment and probe values.
3. Loop: Repeat the above merging procedure until
the correlation coefficient no longer improves. This
defines the final groupings and values of the data
points on which the correlation is computed.

In part, this method resembles the Spearman correla-
tion coefficient, which is the PCCs applied on the ranks
of the original data. Because the correlation is computed
on the ranks, QCC assesses how well an arbitrary
monotonic function captures the relationship between
the two replicates without any distributional assump-
tions. It also assumes that the consecutive ranks are
equidistant (before quantization) and thus suppresses
the effect of outliers in the data. On the other hand,
whereas the Spearman correlation utilize the ranks of all
data points equally in the computation, QCC collapses
the the noisy part of the data (random data points near
the origin corresponding to unbound probes) and
reduces its contribution.

Analysis of simulated ChIP-chip data
We first study the impact of signal amount on the PCC.
We generated synthetic ChIP-chip data with 300,000
total number of probes (close to the number of probes
on the NimbleGen tiling arrays we have used previously

[6,10]), with the probes divided into background and
signal groups. We assume that the SNR is fixed for each
simulation. Gaussian noise is added to each measure-
ment and, without loss of generality, the standard devia-
tion is set to 1. Thus, signal coverage (i.e. percentage of
probes carrying binding signals) and signal intensity
relative to noise level (i.e. signal-to-noise ratio) are the
only two parameters for each ChIP-chip simulation.
Fig. 1A and 1B show two simulated sets of experi-

ments with two replicates each, generated with the same
SNR but with different amounts of binding signal (5%
and 20%, respectively). Because they have the same
SNR, an ideal statistic for reproducibility should be the
same in both cases. However, the PCCs are 0.3 and
0.59, respectively, showing that the PCC depends heavily
on signal coverage. Fig. 1C shows the correlation coeffi-
cients at varying amounts of signal, for five different
SNRs. The correlation coefficient correctly orders the
experiments according to their SNRs at a given signal
amount. But within a single SNR, it varies substantially.
How this fluctuation can lead to misleading assessment
of reproducibility is clear. The two replicates that have
SNR of 4 and coverage of 15%, for instance, have a
higher correlation coefficient between them than the
two replicates with SNR of 6 but coverage of 5%. The
coefficients do plateau after 30% or so, but the signal
amount in most real experiments are much smaller. For
instance, even if a transcription factor binds at 30,000
places in the human genome with 1 kb resolution of
binding on the array, this corresponds to only 1%.
We applied our quantization and merging method to

see whether the new coefficient is more stable. In Fig. 2,
we compare QCC with the Pearson and Spearman cor-
relation coefficients in the simulated ChIP-chip replicate
data at different SNRs. In all three cases, although QCC
(green) is not completely flat, it is substantially more
robust across different signal coverages. For SNR of 3
(Fig. 2A), the Pearson and Spearman correlation coeffi-
cients fluctuate by a factor of 2 and 3, respectively,
while QCC changes by 10-20%. For higher SNR, QCC is
even more stable. Although it is not possible to deter-
mine whether one value of correlation is more correct
or less biased than another, QCC is more robust to the
signal amount. It also appears to reflect the quality of
the data more accurately: when the signal coverage is
low for a given SNR, noise in the background prevails in
PCC but has less impact for QCC. That QCC is consis-
tently higher than the other two does not indicate that
it is less biased, but QCC is closer to the coefficient one
would obtain from the signal part of the data (an exam-
ple is given in the next section). In addition, QCC is
still sensitive to data quality and increases with higher
SNR. This is the case for the Pearson coefficient but not
for the Spearman coefficient.
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As the initial number of probe bins is the only para-
meter we need to specify in the quantization and mer-
ging procedure, we investigate its effect on QCC. Fig. 3
shows the results, which suggest that QCC quickly sta-
bilizes when initial number of bins is large enough, e.g.,
100. We have used 100 bins in the simulations above
based on this result. The only exception would be for
the cases with very high SNRs and low coverage, but
the computation is fast and a larger bin number can be
easily used.

Analysis of MSL complex ChIP-chip data
Dosage compensation is a process in which organisms
attempt to equalize X-linked gene expression when the
X-chromosome copy numbers are different between
males and females. Without this process, gene products
between X and autosomes would not be balanced in

each sex. In mammals, this is achieved by X-inactiva-
tion, which silences gene expression from one of the
two X chromosomes in females. In Drosophila, the
opposite strategy of up-regulating the single X chromo-
some by two-fold is employed. How the entire male X
chromosome is regulated on such a large scale is a fasci-
nating question, which we have studied extensively.
While some aspects of this process are still not clear, a
key step involves the Drosophila male-specific lethal
(MSL) complex. Previously, we have used custom Nim-
bleGen tiling arrays (~50-mer, 100-bp spacing) to exam-
ine the binding of this complex on the X chromosome
as well as on an autosome of similar size (2L) that
serves as an internal control. Our experiments and ana-
lysis identified precise locations on the X chromosome
on which the MSL complex binds to start the process of
up-regulation of the X-linked genes [6,11].

Figure 2 Improved robustness in the QCC in simulated ChIP-chip data. A comparison of different correlation coefficients (the Pearson, the
Spearman, and the Quantized) as a function of signal coverage, for SNR values of 3, 4, and 5, respectively for (A), (B), and (C). The number of
initial bins is 100. The QCC is less sensitive to signal coverage as the nearly flat profile indicates, but it is still sensitive to data quality (i.e., the
SNR in the simulated data). Each point is an average over 100 simulated replicate pairs; error bars represent a 95% confidence interval.

Figure 3 Effect of initial number of bins on the QCC. (A), (B) and (C) correspond to different signal intensities (SNR = 3, 4, and 5). QCC is
robust when initial number of bins is large enough (above 100 or 200), even when a large amount of signal is present. Each point is an average
over 100 simulated replicate pairs; error bars represent a 95% confidence interval.
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The specific binding of the complex on the X chromo-
some makes this data set an ideal one for studying
methodological questions in ChIP-chip data analysis, as
we know that all binding signals must come from the X
chromosome [12]. In Fig. 4A, the scatterplot between
two ChIP-chip replicates is shown for the binding of the
MSL complex (a mutant form of the complex that also
has X-specific binding but at fewer sites, as described in
[13]). Fig. 4A shows the probe values on the X chromo-
some and the autosome in different colors. It appears
that nearly all the high signals come from red points
corresponding to the X chromosome and that they cor-
relate fairly well. Profiles along the chromosomal posi-
tions also indicate that the binding sites are well
reproduced in this data set. However, the standard PCC
at the probe level is only 0.38. Although there is no con-
sensus definition of what a ‘high’ or ‘low’ correlation
coefficient is, 0.38 appears to be lower than what one
may expect from the signal part of the data. This hap-
pens because the binding signal in this data set is very
small (about 2%) as in most ChIP-chip data and the
background noise dominates in the computation of the
coefficient.
We applied our proposed quantization and merging

method with 100 initial number of bins to this data set.
Fig. 4B shows the final configuration (shown with ran-
dom perturbations, sometimes known as jittering, to
view the data points that would be overlapping other-
wise). As expected, almost all the probes from the 2L
autosome are grouped into the background part, and
the X-specific signal probes are grouped separately. The
resulting correlation increases from 0.38 to 0.65. We
believe this is a better indicator for these ChIP-chip data
quality and reproducibility. When we compute the PCC
based only on the intersection of the top 10% probes
from each replicate, it is 0.69, revealing that the signal
portion is well correlated between replicates and that
the reproducibility measured by QCC is a reasonable
estimate. That QCC is not simply a blind inflation of
correlation coefficient can be examined by the QCC for
mock data. When we test QCC for the mock data,
which were available only for the wildtype MSL complex
[6], the QCC is 0.38 while the PCC is 0.37 (for this data
set, the PCC and QCC for the IP experiments were 0.82
and 0.95, respectively).

Comparison to cluster-level reproducibility
We have already described in the introduction some of
the complications that arise if reproducibility is mea-
sured at the cluster level, including how to identify clus-
ters accurately and how to measure overlap between
two sets of clusters. Nonetheless, we carry out one
direct comparison between computing reproducibility at
the probe level versus at the cluster level, both using

simulated data and real data, to get a rough idea
between the two types of comparisons.
Numerous peak callers (e.g., see [14]) have been pro-

posed and their performance varies widely depending on
the type of binding profiles (e.g., sharp versus broad)
and platforms. For our simulated data, we set the size of
every cluster as 5 probes and add noise of varying mag-
nitude to each probe, for a variable number of clusters.
Then a region spanning a minimum of 4 consecutive
probes (~150bp for probes with 50-bp median spacing)
above a quantile threshold is then called as a cluster.
This very simple simulation ensures that the peak call-
ing is done accurately and there is little variation com-
ing from that step. To determine concordance, the
probes identified as part of a peak is replaced with 1
and the rest are replaced with 0, and the Pearson corre-
lation coefficient is computed between the replicates. In
Fig. 5, the results of this simulation is shown on top of
the plots shown in Fig. 2. We see that the cluster-level
reproducibility, if the clusters can be accurately identi-
fied, has a desirable property of not being strongly influ-
enced by the amount of binding signal. This can be seen
by the blue lines that are relatively flat, similar to the
green QCC lines, at varying signal-to-noise levels. We
also see that cluster-level reproducibility is more sensi-
tive in that it has a greater range of values for the three
signal-to-noise ratios.

Figure 4 Scatterplots before and after quantization.
Quantization and merging identifies background signals and
suppresses their effect on the reproducibility measure, as shown in
the case of MSL complex binding in Drosophila. (A) A scatterplot
between replicates shows that the data quality of the replicates is
fairly good, as almost all signal probes are from the X chromosome
(red) rather than an autosome (blue) for the complex that is known
to have X-specific binding [13]. The standard PCC at the probe level
is 0.38, as the background signal makes a substantial contribution to
the statistic. (B) The final configuration (with jittering to view data
points that would otherwise be overlapping) of the quantization
and merging procedure with 100 as the initial number of bins. The
cut-offs are the quantiles to which the iteration converges. Almost
all the probes from the autosome are grouped into the background
as expected, and the correlation of the ranked data at the probe
level increases to 0.65.
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For real data, we compared CTCF ChIP-chip data in
Drosophila S2 cells produced in two laboratories (the
Pirrotta lab and the White lab), as part of the model
organism Encyclopedia of DNA Elements (modEN-
CODE) project http://intermine.modencode.org. Fig. 6A
shows the scatterplot between the two datasets for the
probes on the X chromosome and Fig. 6B shows the
quantized view with jittering, as was done in Fig. 4B.
The PCC is 0.455 while the QCC is 0.606. We com-
puted cluster-level concordance at varying quantile
thresholds (Fig. 6C) and the maximum correlation was
0.546, which was a little closer to QCC than to PCC.
Overall, the probe-level and cluster-level reproducibil-

ity measures are complementary and both types of ana-
lysis can assist in determine the data quality. QCC is
much simpler to compute and is not burdened with the
dependence on the quality of the peak-calling algorithm
or the threshold (generally the false discovery rate or
FDR) used to define peaks. For instance, a low FDR will
select only the most prominent peaks, which tend to be
quite reproducible; a higher FDR will result in inclusion
of less prominent, lower enrichment peaks that are less
reproducible. Thus, for many data sets, the user will get
a different impression on the quality of the data,
depending on the FDR value used. On the other hand,
any subsequent analysis of ChIP-chip data will involve
characterization of the peaks, such as searching for a
shared motif or co-binding patterns with other factors.
Thus, it is reasonable to consider the reproducibility of
data at the cluster-level.

Conclusions
We have shown that standard correlation coefficients do
not properly reflect the agreement between ChIP-chip
replicates, especially when amount of binding is low.
Our proposed procedure groups the background probes

and suppresses their contribution to the correlation so
that reproducibility can be better captured. This proce-
dure requires no a priori knowledge about the features,
such as enrichment/depletion, high/low coverage, and
noise level. The initial number of bins is the only para-
meter involved but we have shown that the results are
stable beyond a sufficiently large number.
As mentioned in Background, there are other ways to

measure reproducibility in ChIP-chip data. In particular,
a correlation analysis approach discussed here comple-
tely ignores the signal locations, and accounting for this
by comparing replicates after identification of enriched
regions is an alternate approach that should be done at
the same time. Other essential steps in quality control
are to visualize the data in a genome browser and to
compare the enrichment at specific loci with qPCR data.
Nonetheless, a simple correlation analysis is often done
in practice and it is therefore important to address the
pitfalls in this approach. Again, we do not claim that

Figure 5 Cluster-level reproducibility in simulated ChIP- chip data. We superimpose the reproducibility measured at the cluster-level (blue
line) on Fig. 2. The cluster-level reproducibility is relatively insensitive to the amount of binding in the data, similar to what is observed for QCC.
See the text for details of the simulation.

Figure 6 Cluster-level reproducibility of data from different
laboratories. Two laboratories independently produced ChIP-chip
data for CTCF in Drosophila S2 cells. (A) A scatterplot between the
two datasets for the probes on the X chromosome (only 3000
points are shown for legibility). (B) After quantization (with jittering
to view data points that would otherwise be overlapping). (C)
Cluster-level concordance at varying quantile thresholds. The
maximum of the cluster-level correlations is 0.546.

Peng et al. BMC Bioinformatics 2010, 11:399
http://www.biomedcentral.com/1471-2105/11/399

Page 6 of 8

http://intermine.modencode.org


QCC is more accurate than PCC for a given set of data.
Such a statement is difficult to make in general and the
maximization steps we take could be overcompensating
the PCC estimate. Instead, we claim that it has the
desirable property of robustness against the varying frac-
tion of signal we observe in real experiments and that it
accurately reflects SNR in the data.
QCC was developed in the context of ChIP-chip data,

but it can be directly applied to other applications in
which estimation of the similarity or reproducibility
between any two sets of measurements is needed, as
long as data can be ordered and binned into subgroups.
As illustrated in this paper, QCC is most useful when a
large part of the data consists of background noise and
its amount is a confounding factor in interpretation of
the standard correlation coefficients. In genome-wide
array measurements, this occurs frequently. In many
gene expression studies, the majority of the genes may
not be expressed or expressed at low levels; in many
array comparative genomic hybridizations (CGH), only a
small fraction of the genomic DNA may display copy
number aberrations. Quality control of these experi-
ments requires a consistent measure of reproducibility
of replicate experiments and QCC is one possible
measure.

Methods
Computational efficiency
The iterative merging of neighboring bins implies that
there are B - 1 possibilities to consider at each step with
B bins, and so the upper bound for the total number of
possible combinations in the procedure is B0(B0 - 1)/2.
This method is a local search algorithm, as the two bins
that are combined at one step cannot be separated
again. A global search can be contemplated, but given
that most merging occurs near zero where the noisy
data are concentrated, it is unlikely to result in any sig-
nificant improvement.

Comparison to other robust correlations
Other correlation measures have been proposed pre-
viously in the statistics literature. The most applicable
one to the current context is an iterative optimization
procedure called alternating conditional expectation
(ACE), developed by Breiman and Friedman [15]. This
was developed in the regression analysis setting in
which nonlinear transformation are sought to produce
the best-fitting additive model. Let the random variables
X1, ..., Xp be predictors and Y the response variable. The
idea behind this method is to find optimal mean-zero
transformation function θ(Y), �1(Xi), ..., �p(Xp) that
minimizes the fraction of variance not explained in a
regression of θ(Y ) on i ii

p
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The ACE procedure uses only bivariate conditional
expectations and converges to an optimal solution.
When only a single predictor is used, estimation of the
optimal transformation becomes a method for estima-
tion of maximal correlation between two random vari-
ables. In genomics, this was utilized previously as a basis
for normalization scheme called simultaneous ACE,
which maximizes correlation between replicate array
experiments [16].
The concept of correlation is such that it is difficult to

determine whether one estimate is superior to another
in a given problem, except in few extreme cases. For
QCC, we present evidence that it is robust with respect
to the signal amount and increases as the signal-to-
noise ratio gets larger (Fig. 2), but we cannot prove that
the absolute numerical value is more correct. In our
assessment, the main advantage of ACE is that it has a
precise formulation and a more theoretical framework.
QCC, on the other hand, is more intuitive in our view
and is a greedy algorithm, yet it appears to work in a
desired manner.
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