
METHODOLOGY ARTICLE Open Access

A method for automatically extracting infectious
disease-related primers and probes from the
literature
Miguel García-Remesal1,2*†, Alejandro Cuevas2†, Victoria López-Alonso3†, Guillermo López-Campos3†,
Guillermo de la Calle2†, Diana de la Iglesia2†, David Pérez-Rey1,2†, José Crespo2,4†, Fernando Martín-Sánchez3†,
Víctor Maojo1,2†

Abstract

Background: Primer and probe sequences are the main components of nucleic acid-based detection systems.
Biologists use primers and probes for different tasks, some related to the diagnosis and prescription of infectious
diseases. The biological literature is the main information source for empirically validated primer and probe
sequences. Therefore, it is becoming increasingly important for researchers to navigate this important information.
In this paper, we present a four-phase method for extracting and annotating primer/probe sequences from the
literature. These phases are: (1) convert each document into a tree of paper sections, (2) detect the candidate
sequences using a set of finite state machine-based recognizers, (3) refine problem sequences using a rule-based
expert system, and (4) annotate the extracted sequences with their related organism/gene information.

Results: We tested our approach using a test set composed of 297 manuscripts. The extracted sequences and
their organism/gene annotations were manually evaluated by a panel of molecular biologists. The results of the
evaluation show that our approach is suitable for automatically extracting DNA sequences, achieving precision/
recall rates of 97.98% and 95.77%, respectively. In addition, 76.66% of the detected sequences were correctly
annotated with their organism name. The system also provided correct gene-related information for 46.18% of the
sequences assigned a correct organism name.

Conclusions: We believe that the proposed method can facilitate routine tasks for biomedical researchers using
molecular methods to diagnose and prescribe different infectious diseases. In addition, the proposed method can
be expanded to detect and extract other biological sequences from the literature. The extracted information can
also be used to readily update available primer/probe databases or to create new databases from scratch.

Background
Molecular technologies are used in routine clinical prac-
tice to identify microorganisms, and evaluate the pre-
sence of virulence factors, antibiotic resistance
determinants and host-microbe interactions [1]. For
instance, numerous nucleic acid assays have been devel-
oped [2] using hybridization or DNA extension techni-
ques that include a wide range of technologies, such as

polymerase chain reaction (PCR) methods [3], gene and
whole genome sequencing [4,5], Luminex [6] and micro-
array analysis [7].
There is a wide range of technologies that provide

specific short base sequences of DNA as probes — used
to detect the complementary base sequence of interest—
or as primers—that guide the DNA amplification pro-
cess—used for different purposes. Primers and probes
are the main components of nucleic acid-based detec-
tion systems and have been the subject of multiple stu-
dies. Therefore, different software programs have been
developed to design these specific sequences of primers
and probes minimizing potential cross-hybridization to
be spotted, for example, as oligonucleotides in cDNA

* Correspondence: mgarcia@infomed.dia.fi.upm.es
† Contributed equally
1Departamento de Inteligencia Artificial, Facultad de Informática, Universidad
Politécnica de Madrid. Campus de Montegancedo S/N, 28660 Boadilla del
Monte, Madrid, Spain
Full list of author information is available at the end of the article

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

© 2010 García-Remesal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:mgarcia@infomed.dia.fi.upm.es
http://creativecommons.org/licenses/by/2.0

microarrays [8] or sequences of primers to amplify a
segment of a unique target gene using reverse-transcrip-
tase (RT)-PCR, or to identify a wide spectrum of human
pathogens [9].
The biological literature is the main information

source on probes and primers for infectious disease
diagnosis and prescription. Primer and probe sequence
data reported in the biomedical literature are an aid for
the laborious task of primer and probe design for micro-
organism identification, genotyping and gene expression
studies. Therefore, researchers need to search this infor-
mation in the biomedical literature. Unfortunately, there
are only a few online databases established as reposi-
tories for empirically validated primer and probe
sequences submitted by researchers. These repositories
include the Molecular Probe Data Base [10]—available
through the Sequence Retrieval System [11]—which
contains information on synthetic oligonucleotides used
as primers or probes, or PrimerBank [12,13], created to
retrieve primer information about humans and mice for
gene expression analysis by PCR and Quantitative PCR
(QPCR) [14]. Conversely, the NCBI Probe Database
[15,16] is a public registry of nucleic acid reagents
designed for use in a wide range of biomedical research
applications. On the other hand, RTPrimerDB [17,18]
and probeBase [19,20] are freely accessible databases
containing empirically validated primer and probe
sequences. All these resources are manually updated
using the primer/probe information submitted by differ-
ent researchers rather than automatically acquiring the
sequences from the available literature.
Over the last few years, text mining, information

extraction and knowledge engineering approaches have
proven useful for automatically extracting, analyzing and
visualizing biological information from the scientific lit-
erature for biomedical research [21-26]. Although text
mining applied to biological data is an active research
field, these techniques have not yet been applied to cre-
ate methods and tools aimed at automating probe and
primer extraction from scientific papers. Thus, to detect
and identify target microorganisms and host-microbe
interactions or design PCR and diagnostic microarrays,
for instance, researchers normally have to manually
review all the literature of interest to identify relevant
primers and probes. This is a tough and time-consum-
ing task.
In this paper we present an original method based on

a combination of text mining, information extraction,
and knowledge engineering techniques aimed at auto-
matically detecting and extracting infectious disease-
related primer and probe sequences from scientific
papers. Given an input of a set of manuscripts in
Adobe’s Portable Document Format (PDF), our method
returns the extracted primer/probe sequences that

appear in the article annotated with information regard-
ing their respective microorganism and gene-specific
regions, if available
The paper is organized as follows. In the next section

we describe the proposed method. Next, we present the
results of the evaluation of the method using a test set
of 297 papers containing 3999 sequences. After that, we
discuss the results of the evaluation. Finally, we outline
our conclusions in the last section.

Methods
The proposed method for automatically extracting pri-
mer/probe sequences from the scientific literature is
composed of four different activities. As shown in Figure
1, the method input is a set of manuscripts in PDF for-
mat, and its output is the set of extracted primer/probe
sequences annotated with their respective organism/
gene information, if available. Experts suggested working
with PDF files since currently the PDF format is a de
facto standard for publishing, archiving and exchanging
electronic articles. However, to broaden the scope of the
implementation of the proposed method, the software
tool optionally accepts two additional input formats:
PubMed Central XML and plain text.
The first activity of the method is aimed at converting

the articles into a suitable format for applying text
mining techniques. The objective of the second phase is
to analyze the manuscript text and extract all the candi-
date sequences. They are filtered, refined and post-pro-
cessed during the third activity. Finally, during the last
phase, we query different public online genomic data-
bases to automatically annotate the extracted sequences
with their associated organism/gene information.
A detailed description of each phase follows.

Phase 1: Pre-processing of Articles
The pre-processing phase is aimed at translating each
paper into a section tree (ST). The ST is a data struc-
ture that represents the structure of a document—i.e.
sections and subsections—and stores its textual contents
hierarchically.
STs are automatically built from the PDF files using a

software tool developed by the authors. To build the ST,
the software tool resorts to custom XML templates each
describing the structure and layout of papers published
in a particular journal or set of journals sharing a com-
mon layout—e.g. publications edited by BioMed Central.
To evaluate our method, we have focused on papers

published in PDF format by several BioMed Central and
PLoS journals since (1) our method requires full-text
articles rather than abstracts to extract relevant informa-
tion and BMC and PLoS papers can be freely accessed
and downloaded, (2) different PLoS and BMC journals
publish papers that are relevant for extracting

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 2 of 14

information regarding infectious disease-related PCR
primers and probes, and (3) most journals published by
the same editorial group—either BMC or PLoS—share a
common layout. Nevertheless, papers published by other
journals can be easily converted into STs by creating a
custom XML template to be used by the software tool
for ST generation. Both the Document Type Definition
(DTD) and the custom XML templates that we created
for BMC and PLoS journals—which can be used as a
guide to create custom templates for other journals—
can be freely downloaded as part of the source code
package at the project’s homepage.
Figure 2 shows the ST for a sample PDF article pub-

lished by the Virology Journal. As shown in Figure 2,
each node represents a single section of the document,
while parent-children links represent meronymy rela-
tionships. Thus, the different subsections represented by
a set of child nodes are all subsections subsumed into a
bigger section represented by the parent node. Regard-
ing the structure of ST nodes, each contains a register-
type data structure that records three different pieces of
information. As shown in Figure 2, ST nodes are repre-
sented by tuples <section_type, section_title, section_-
text>, where section_type denotes the type assigned by
our tool to the target section (i.e. one of the following:

paperTitle, abstract, subAbstract, majorSection, sub-
MajorSection, subSubMajorSection, minorSection,
table and figure), section_title is the title of the section
as extracted from the PDF document by the software
tool, and section_text is the textual content associated
with the target section—if empty, it is represented as
null. There are some special section types such as table
and figure, which are considered by our software tool as
being independent, even though they are usually located
within a definite section in the PDF file. Thus, they are
classed in the ST as children of the root node. We
implemented this behavior since, when manually
inspecting the PDF documents, we realized that (1)
some figures and tables were not necessarily located
within the section in which they are referenced in the
PDF file, probably on layout grounds, and (2) a table or
figure may be referenced by multiple sections.
As primer and probe sequences are often presented in

tables (and text inside tables is organized into cells
rather than paragraphs) they need to be handled differ-
ently from other sections of the papers. To extract and
organize the text from tables we follow the approach
described next. Table cells are processed by the PDF
extractor from left to right and top to bottom. The text
belonging to the current cell is extracted and

Figure 1 Overview of the primer and probe extraction process.

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 3 of 14

concatenated with the text corresponding to the pre-
viously explored cells using an artificial delimiter. The
latter was specifically chosen to ensure that the recogni-
zers used in phase 2 will not merge the contents of two
consecutive cells.
As stated previously, the software tool implementing

our method optionally accepts manuscripts in (1)
PubMed Central structured XML and (2) plain text for-
mat. Building the ST for manuscripts in PubMed Cen-
tral XML format is straightforward, since the XML file
already provides the document structure—including
both tables and figures—that can be easily converted to
a ST. Conversely, if users choose to feed the method
with plain text articles, then the sectioning of the docu-
ment is skipped—i.e. the full text of the manuscript is
stored into a single section (node) of the ST—and users
will be warned that this may decrease the accuracy of
the method. In addition, as the source code of the appli-
cation is freely available, users can write their own for-
mat converters (e.g. HTML) by creating instances of the
Document class (i.e. the Java class implementing a ST)
and filling in the different sections with the correspond-
ing text.
Once the ST has been created, it is possible to fully

reproduce the logical reading order of the original docu-
ment by iterating the ST in depth-first order. This data
structure is the input to the second activity described
next.

Phase 2: Preliminary Recognition of Candidate DNA
Sequences
The next step of our method aims to recognize and
extract DNA sequences appearing in the text. To
address this task, we analyzed 40 papers selected by
domain experts that contained the most common repre-
sentations for PCR primers and probes in scientific lit-
erature. We would like to remark that (1) the training
and test sets were disjoint, and (2) we did not have
access to the test set at this stage. As a result of this
study, we found that primer and probe DNA sequences
are composed of individuals belonging to a 30-symbol
alphabet—including 15 uppercase letters and their low-
ercase counterparts—that we will refer to as ∑ from
now onwards. Similarly, we will denote the set of all dif-
ferent strings composed of one or more symbols from ∑
as ∑+. The latter includes symbols for the four nucleo-
tide bases Adenine (A), Cytosine (C), Guanine (G), Thy-
mine (T), whereas the remaining individuals are
wildcard characters that represent a single nucleotide
chosen from two or more nucleotide symbols. See Table
1 for further details on the wildcard-to-nucleotide
mappings.

Figure 2 ST corresponding to a PDF paper from the Virology
Journal identified by PubMed ID 18234069. Documents are
organized hierarchically. The root node <root, null, null> represents
the entire document. Complex sections (e.g. containing multiple
subsections) are hierarchically decomposed according to the
original paper structure. For instance, the section <abstract,
“Abstract”, null> can be decomposed into its three child sections:
<subAbstract, “Background”, “Dengue is...”>, <subAbstract, “Results”,
“An optimal...”> and <subAbstract, “Conclusion”, “These findings...”>.
Nodes of types table (e.g. <table, “Table 2: Comparison of...”, “M-RT-
PCR\tVirus isolation\nPositive\t96 (15.48%)\t...”>) and figure (e.g.
<figure, “Figure 1”, “1.5% Agarose gel electrophoresis...”>) are
considered as special sections and thus allocated as children of the
root node—the escape sequences “\t” and “\n” denote tab and
newline characters. The natural reading order of the PDF paper can
be reproduced by iterating the ST in depth-first order.

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 4 of 14

Regarding the representation of primer and probe
sequences in scientific articles, we found that they may
be enclosed by the strings 5′ and 3′ (or by 3′ and 5′).
Other papers, by contrast, present the sequences imme-
diately after the string 5′ (or 3′), but they do not termi-
nate the sequence with the string 3′ (or 5′). In both
cases, the occurrence of the “prime” symbol is optional,
since there are several manuscripts where the sequences
are enclosed by strings 5 and 3 (or 3 and 5) rather than
5′ and 3′ (or 5′ and 3′). Similarly, other articles include
sequences that do not appear enclosed between the
strings 5′ and 3′ (3′ and 5′), but, instead, are sub-divided
into n groups of exactly three nucleotides—except for
the last group, which may include less than 3 bases. On
the other hand, other manuscripts include sequences
that do not match any particular pattern apart from
being composed of symbols from ∑, blanks, dashes,
colons and newline characters.
Based on such findings, we created a set of three

sequence detectors. The sequence detectors are applied
to a textual input in a priority-based manner in decreas-
ing order of specificity. If, given an input string, the cur-
rent detector fails to match a sequence, then the input
is forwarded to the next, more general recognizer. If a
detector matches a sequence in an input string,

confidence in the reliability of the matched sequence
will be greater, the higher its priority is. In the following,
we briefly describe the types of sequences detected by
the different recognizers sorted by priority. (1)
Sequences of symbols belonging to ∑ either delimited by
the pairs of strings <5′, 3′>, <3′, 5′>, <5, 3>, <3, 5> or
beginning with the strings 5′, 5, 3′, 3. These sequences
may also contain blanks, dashes and can span multiple
lines. (2) Sequences organized into n-1 groups (with n >
2) of exactly three symbols from ∑ delimited by blanks
plus an additional nth group that may contain three or
less symbols. These sequences can also span multiple
lines. (3) Sequences of symbols from ∑ that can span
several lines and that may also include blanks, colons
and dashes. Table 2 presents some examples of nucleo-
tide sequences that can be recognized by each detector.
As shown in Figure 3, we followed a theoretical compu-
ter science approach to build the different recognizers
using finite state machines [27].
To extract the candidate sequences occurring in a

PDF paper, we feed the set of detectors with the text
corresponding to the main sections of the manuscript—
i.e. sections containing primer and probe sequences.
These include sections whose type is one of the follow-
ing: majorSection, subMajorSection, subSubMajorSec-
tion, table and figure. For instance, sections such as
“Background”, “Methods”, “Results”, “Discussion” or
“Conclusions"—all of type majorSection—are provided
as input to the detectors. Conversely, sections such
as the paper title (paperTitle), authors (authors),
“Abstract” (abstract), “Acknowledgements” (minorSec-
tion) or “References” (minorSection) are discarded. The
text belonging to each section is obtained by iterating
the ST associated with the manuscript being processed
in depth-first order. Recognized sequences are then con-
verted into a sequence of tokens composed of strings
belonging to ∑+. Separator tokens—i.e. blanks, dashes
and newline characters—are not included in the
sequence, since (1) blanks are already implicit in the
structure of the list of tokens and (2) both dashes and
newline characters are no longer required for further
processing. Conversely, colons are not discarded since
they are required for the next stage. For instance, the
string “5-CGT CCM\nARR-GGA-WAC-TGA” would be
recognized by detector #1. This would produce the list
of tokens {"CGT”, “CCM”, “ARR”, “GGA”, “WAC”,
“TGA"}. Table 2 shows a few examples of DNA
sequences recognized by each custom detector, and
their corresponding lists of tokens as provided by the
recognizers.
Once the candidate sequences have been recognized

and recorded, we move on to the next phase that we
describe below.

Table 1 Equivalences between alphabet symbols and
nucleotides

Alphabet
Symbol

Permissible
Nucleotides

Complement Meaning

A A T [A]denine

B C | G | T V Any but
Adenine

C C G [C]ytosine

D A | G | T H Any but
Cytosine

G G C [G]uanine

H A | C | T D Any but
Guanine

K G | T M [K]eto

M A | C K A[M]ino

N A | C | G | T N A[N]y nucleotide

R A | G Y Pu[R]ine

S C | G S [S]trong (3 H-
bonds)

T T A [T]hymine

V A | C | G B Any but
Thymine

W A | T W [W]eak (2 H-
bonds)

Y C | T R P[Y]rimidine

This table (adapted from http://www.geneinfinity.org/sp_nucsymbols.html)
shows the mappings between wildcard symbols used to represent DNA
sequences in scientific papers and their permissible nucleotide types.

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 5 of 14

http://www.biomedcentral.com/1471-2105/11/410

Phase 3: Automated Refinement and Post-Processing of
the Recognized DNA Sequences
This phase is aimed at automatically refining and post-
processing the sequences—i.e. lists of tokens—extracted
during the previous activity. This includes: (1) discarding
false positives, i.e. list of tokens that despite including
strings belonging to ∑+, do not represent any sequences
occurring in the paper—e.g. {“standard”, “assay”—; (2)
refining noisy sequences that include residual prefix or
postfix expressions belonging to ∑+—e.g. {"ACG-
TACCCGTACGAT”, “TAMRA”, “T”—, and (3) splitting
incorrectly merged sequences, which are composed of
two or more different sequences linked by infix expres-
sions belonging to ∑+—e.g. {“ACGTACCCGTACGAT”,
“and”, “CGTACCGTACCAGGCTAC”}. Besides, the
refined sequences—still represented as lists of tokens—
need to be converted into singletons whose only ele-
ment belongs to ∑+, a format suitable for the sequences
to be used for querying the BLAST tool.
To address these issues, we have adopted a knowledge

engineering approach. We have created a rule-based
expert system [28] to automatically refine and post-pro-
cess the extracted sequences. Table 3 shows the com-
plete knowledge base, composed of eight rules, whereas
Table 4 provides the description of functions, actions
and symbols used by the different rules. Each rule was
specifically designed to address a different issue. R1 is
aimed at discarding sequences whose size—in terms of

the number of symbols—is smaller than a predefined
threshold Lmin. These sequences are unlikely to be true
primer/probe sequences, and are thus discarded. We set
the parameter Lmin to a size of seven symbols. On the
other hand, R2, R3, R6 and R7 are aimed at refining
noisy sequences by removing residual suffixes (rule R2)
or prefixes (rule R3) and even English words incorrectly
appended by the detectors either at the beginning (rule
R6) or the end (rule R7) of a sequence. The key differ-
ence among the pairs of rules <R2, R3> and <R6, R7> is
that <R2, R3> resorts to a list of problem affixes that
can be composed of several tokens—e.g. {“TAMRA”,
“T”)—whereas the <R6, R7> removes single words
belonging to a custom English dictionary created by the
authors and composed of words belonging to ∑+. Both
the dictionary (see additional file 1: dictionary of pro-
blem English words) and the list of problem affixes (see
additional file 2: list of problem affixes) are provided as
additional material. By contrast, R4 aims to remove false
positives—i.e. lists of tokens, all belonging to ∑+, that do
not represent any real sequences. The rule resorts to the
same dictionary used by rules R6 and R7 to discard all
sequences—i.e. list of tokens—all of whose elements are
in the dictionary. On the other hand, R5 is focused on
splitting lists of tokens that contain two or more real
sequences that were incorrectly merged by the detectors
during the previous phase. This happens since two
sequences may appear linked in the manuscript by

Table 2 Sample sequences recognized by each detector

Detector PMID Text String List of Tokens

1 19781080 ...primers AA247 (5′-TGCCATTGCCAAAGAGAC-3′) and pLQ510-rp1... {“TGCCATTGCCAAAGAGAC”}

1 19664269 ...mecA gene, mecAR (5′-TTACTCATGCCATACATAAATGGATA-
\nGACG-3′) and mecAF...

{“TTACTCATGCCATACATAAATGGATA”, “GACG”}

1 19379498 ...specific primer pair traD-F (5′-caatgcttgatctatttggtag-3′)
and traD-R...

{“caatgcttgatctatttggtag”}

1 19758438 ...MY 09, 5-CGT CCM\n ARR GGA WAC TGA TC-3; where M = A/C,
W = A/T...

{“CGT”, “CCM”, “ARR”, “GGA”, “WAC”, “TGA”, “TC”}

2 19799780 B-globin outside R @ CTC AAG TTC TCA GGA TCC A @ 1st round
PCR primer for Human Beta globin DNA

{"CTC”, “AAG”, “TTC”, “TCA”, “GGA”, “TCC”, “A”}

2 18847469 btherm @ GAT GTG CCG GGC TCC TGC ATG @ This study {“GAT”, “GTG”, “CCG”, “GGC”, “TCC”, “TGC”, “ATG”}

2 18154687 Stx1 @ GTA CGT CTT TAC TGA TGA TTG ATA GTG GCA CAG GG @
35 @ 73.5

{"GTA”, “CGT”, “CTT”, “TAC”, “TGA”, “TGA”, “TTG”, “ATA”,
“GTG”, “GCA”, “CAG”, “GG"}

2 19558693 ...are listed below.\n
EP1- F ATG GTG GGC CAG CTT GTC\n

EP1- R...

{“ATG”, “GTG”, “GGC”, “CAG”, “CTT”, “GTC“}

3 19754958 ...with primer N309 (ACATGCGGATCCCTCGAGCCTTTGAA-
\nGATGACTAACTCCCCA) and N297...

{”ACATGCGGATCCCTCGAGCCTTTGAA”,
“GATGACTAACTCCCCA”}

3 19737401 ...and 3′ AAGCT TGGTA CCTCA CTGCA\nGCAGA GCGCT GAGGC
CCAGC AGCAC. The resulting PCR...

{"AAGCT”, “TGGTA”, “CCTCA”, “CTGCA”, “GCAGA”,
“GCGCT”, “GAGGC”, “CCAGC”, “AGCAC”}

3 19149882 1 @ XAC0340 @ 432 @ gATACCCCATATgAATgCgAT {”gATACCCCATATgAATgCgAT”}

3 19775435 20 @ F:GAGATGGATTAACCAGATGTCTTAAAAACTATCGTAAC {”:”,”GAGATGGATTAACCAGATGTCTTAAAAACTATCGTAAC”}

This table shows some examples of sequences that can be recognized by each detector. The number under the column “Detector” identifies the detector that
recognized the “List of Tokens” from the string “Text String” that can be found in the manuscript whose PubMed Identifier (PMID) is shown under the “PMID”
column. The symbols /n and @ denote the newline and the table cell separator characters respectively.

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 6 of 14

words belonging to ∑+—e.g. the particle and—and thus
the recognizers are unable to detect the end of the first
sequence. To properly separate the sequences, the rule
resorts to the list of affixes used by rules R2 and R3.
Our approach can successfully separate incorrectly
merged sequences composed of more than two real
sequences by recursively applying rule R5. The aim of
the last rule is to convert a sequence defined by a list of
tokens into a singleton whose only element is the conca-
tenation of all elements in the list—i.e. this is a post-
processing rule. Rules are sorted in descending order of
priority, R1 being the rule with highest priority.
To automatically refine a set of sequences extracted

from a manuscript we proceed as follows: (1) all the
sequences—i.e. lists of tokens—detected by the

recognizers are added to the facts base, (2) the inference
engine attempts to match the antecedents of the rules
to the elements in the facts base, and (3) if there is one
or more matches, then the rule with highest priority is
fired. The execution of the rule changes the state of the
facts base, and then the whole process is repeated from
step 2 until no more rules can be fired. At the end of
this process, the facts base contains only singletons—i.e.
lists of tokens containing just one element—each being
a valid sequence. For further details on the structure
and functioning of rule-based inference engines, see
[28].
Table 5 presents some examples of sequence refine-

ment, including the initial contents of the facts base, the
sequence of fired rules and the final state of the facts

Figure 3 State transition diagrams describing the preliminary sequence recognizers. Circles represent regular states, whereas double
circles stand for final (accepting) states. Edges denote state transitions triggered by the occurrence of any of the symbols drawn on the edges.
These include ‘s’ symbols in blue that represent strings of any length belonging to ∑+, whereas ‘s1’, ‘s2’ and ‘s3′ are strings of symbols from ∑+ of
lengths 1, 2 and 3 respectively. Green items represent different literals such as dashes, colons, newline tokens, etc. States labeled with the
number 0 that are pointed at by an arrow with no origin represent initial states.

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 7 of 14

base. In these examples it is assumed that only one
sequence is being processed at a time.
Once the sequences provided by the detectors have

been refined, we can proceed to the last activity
described below.

Phase 4: Linking the Recognized Sequences to their
Corresponding Organism/Gene Information
In this phase, we use local copies of the nucleotide data-
bases associated to two publicly available online
resources—namely BLAST [29,30] and Entrez Nucleo-
tide [31,32]—to connect the refined sequences to their
corresponding organism and gene information, if avail-
able. To carry out this task, we created local instances
of the BLAST-formatted database—downloaded from
the NCBI website in FASTA format—and of the Entrez
Nucleotide database in relational format. The latter was
created using the BioPerl [33,34] package. The rationale
for using local copies instead of the actual online
resources is that users and tools performing massive

queries of these online resources without express
authorization may be delayed—and even banned—by
the NCBI. Besides, if we query the Nucleotide database
using a concrete GenBank Identifier (GI) via the pro-
vided web service, Nucleotide returns all available infor-
mation about the matched record—sometimes over 4
MB—, whereas we are only interested in the organism/
gene name. Instead, we retrieve just the required infor-
mation from the local relational instance. The Nucleo-
tide database was populated with data on micro-
organisms only, since this method is aimed at detecting
PCR primers and probes related to infectious diseases.
However, the method can be easily adapted for other
species simply by updating or replacing the database
contents with the required data.
To obtain the organism/gene information for a speci-

fic paper, we use the BLAST software tool to query the
BLAST-formatted database with all the detected
sequences for the current manuscript. For each
sequence, we select the best 10 matches provided by

Table 3 The knowledge base in a nutshell (I)

Rules

R1 length discard()s L si
s si

< → ()
∈{ }

∑ min

IF the sum of the lengths (i.e. number of characters) of all tokens si belonging to s is smaller than Lmin, THEN discard s.

R2 ∃i | i = affix_in_sequence_tails(s) ® discard(s) ∧ add(s’)
s’ = {s1,...,si-1}

IF an affix from the list of problem affixes is matched at the tail of s, THEN discard s AND add to the facts base a modified copy of s that does
not include the tokens corresponding to the matched affix.

R3 ∃i | i = affix_in_sequence_head(s) ® discard(s) ∧ add(s’)
s’ = {si+1,...,sn}

IF an affix from the list of problem affixes is matched at the head of s, THEN discard s AND add to the facts base a modified copy of s that
does not include the tokens corresponding to the matched affix.

R4
{ }s s

i
i

s s
∈
∧ () → ()in_dictionary discard

IF all tokens si from s belong to the custom dictionary of English words, THEN discard s.

R5 ∃(i, j) | (i, j) = affix_within_sequence(s) ® discard(s) ∧ add(s’) ∧ add(s’’)
s’ = {s1,...,si-1},
s’’ = {si+j,...,sn}

IF an affix from the list of problem affixes is matched within s, THEN discard s AND add to the facts base the sub-lists of tokens s’ and s’’ that
include all the tokens in s that occur before and after the matched affix respectively.

R6 in_dictionary(s1) ∧ length(s1) ≥ 3 ® discard(s) ∧ add(s’)
s’ = {s2,...,sn}

IF the first token of s belongs to the custom dictionary of English words AND its length (i.e. number of characters) is greater or equal to 3
THEN discard s AND add to the facts base the sub-list of tokens s’, that includes all but the first token of s.

R7 in_dictionary(sn) ∧ length(sn) ≥ 3 ® discard(s) ∧ add(s’)
s’ = {s1,...,sn-1}

IF the last token of s belongs to the custom dictionary of English words AND its length (i.e. number of characters) is greater or equal to 3
THEN discard s AND add to the facts base the sub-list of tokens s’, that includes all but the last token of s.

R8 size(s) ≥ 2 ® merge(s)

IF s contains 2 or more tokens, THEN convert s into a singleton by concatenating all its tokens.

This table shows the complete knowledge base for refining DNA sequences. R1 is designed to discard short sequences. R2, R3, R5 and R6 are designed to refine
noisy sequences, whereas R5 deals with incorrectly merged sequences. R4, by contrast, removes concatenations of dictionary words recognized by the detectors
as valid sequences. Finally, R8 converts a list of tokens containing two or more elements into a singleton whose only element represents the refined sequence.
The symbol s denotes a list of tokens s = {s1, s2,..., sn} of size n. See Table 4 for details on the functions, actions and symbols used by the different rules.

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 8 of 14

BLAST, and then we record (1) their GIs and (2) the
relative positions of the query strings within the
sequences associated with the matched GIs.
Once we have obtained the <GI, position> pair for

each match, we query the relational instance of the
Nucleotide database using the GI to retrieve the asso-
ciated organism name. On the other hand, the position
is used to find the specific location within the GI entry

that contains the gene name(s), if available. For each
processed manuscript, the output of this activity is a
set of tuples <paper, sequence, organism_name,
gene_name>.
Once the sequences have been labeled with the infor-

mation obtained from the BLAST-formatted and
Nucleotide databases, then these results are checked
against the text of the manuscript and automatically

Table 4 The knowledge base in a nutshell (II)

Functions, Actions and Symbols

S = {s1, s2,...,sn} denotes a sequence (list of tokens) as recognized by the detectors during the second phase.

Length(t): function that returns the size—i.e. number of symbols—of a token t Î ∑+

Lmin: minimum required size—i.e. number of symbols from ∑—for a sequence of tokens s not to be discarded. We set this parameter to 7 to enable
the BLAST tool to produce results when queried using s.

discard(s): action that removes the sequence s from the facts base.

add(s): action that adds the sequence s to the facts base.

LA: list of problem affix expressions.

affix_in_sequence_tail(s): function that attempts to match all elements from LA to the tail of sequence s. If one or more matches occur, then the
function returns the position of the first token belonging to the longest matched element. If there are two or more matches of the same length,
then the one occurring first in the sequence is selected. For example, when processing the sequence of tokens
{"TTACTCATGCCATACATAAATGGATA”, “TAMRA”, “T"}, the function would match the subsequence {"TAMRA”, “T"} as the longest suffix belonging to LA
occurring at the tail of s. Thus, the function would return the value 2, corresponding to the position of the token “TAMRA”.

affix_in_sequence_head(s): function that attempts to match all elements from LA to the head of sequence s. If one or more matches occur, then the
function returns the position of the last token of the longest matched element. If there are two or more matches of the same length, then the one
occurring first in the sequence is selected. For instance, when processing the sequence of tokens {"and”, “CTAGTTT”, “ACGTAGGGT"}, the function
would return the value 1, corresponding to the position of the token “and”.

affix_within_sequence(s): function that attempts to match all elements from LA to a subsequence of s—excluding the head and the tail. If one or
more matches occur, then the function returns a tuple <p, s>, where p denotes the position of the first token of the matched element and s is the
size—i.e. number of tokens—of the match. If there are two or more matches of the same length, then the one occurring first in the sequence is
selected. For example, when processing the list of tokens {"ACGTTTACGT”, “TAMRA”, “and”, “CGATGGGA"}, the function would return the tuple (2, 1),
corresponding to the subsequence {"TAMRA"}.

in_dictionary(t): function that searches the token t Î ∑+ in a custom dictionary created by the authors and composed of words belonging to ∑+. The
function returns true if t is found in the dictionary and false otherwise.

size(s): function that returns the number of elements in the list of tokens s.

merge(s): function that returns the concatenation (preserving the original order) of all the elements in the lists of tokens s. For instance, if s = {"AAC”,
“TCG”, “A"}, then merge(s) = {"AACTCGA"}.

Table 5 Some examples of automated sequence refinement

List of Tokens Execution
Trace

Refined Singleton(s)

{“CATATTCACCTTTTCAGGCGTTTTGACCGT”, “TAMRA”, “T"} <R2> {"CATATTCACCTTTTCAGGCGTTTTGACCGT"}

{“ATAAC”, “TCGAG”, “GTGGA”, “ATTCA”, “TGGCA”, “TCTAC”, “TTCGT”,
“ATGAC”, “TATTGC”, “and”, “AAGCT”, “TGGTA”, “CCTCA”, “CTGCA”,

“GCAGA”, “GCGCT”, “GAGGC”, “CCAGC”, “AGCAC"}

<R5, R8, R8> {"ATAACTCGAGGTGGAATTCATGGCATCTACTTCGTATGACTATTGC"},
{"AAGCTTGGTACCTCACTGCAGCAGAGCGCTGAGGCCCAGCAGCAC"}

{"than”, “standard"} <R4> -

{"DNA"} <R1> -

{"TTCTTTTGGTGGACGATGTG”, “and”, “GAGGGACGC”, “TTGGTAACG”,
“TAMRA”, “and”, “TCGCAAGCC”, “AAGCAAATAC”, “TAMRA”, “T”,

“and”, “GAGATAGGGTGCGATGGTTG”, “TCGGCGATGACTACGACA"}

<R5, R3, R5,
R5, R3, R8,
R8, R8>

{"TTCTTTTGGTGGACGATGTG"},
{"GAGGGACGCTTGGTAACG"}, {"TCGCAAGCCAAGCAAATAC"},
{"GAGATAGGGTGCGATGGTTGTCGGCGATGACTACGACA"}

{"RNA”, “strand"} <R7, R1> -

{":”,"GCGGCCTGATAAGGGATATTGGAAGC”, “R”, “:”,
“GGCGAAATTCATTAAAGAGGATCCTGACAC"}

<R3, R5> {"GCGGCCTGATAAGGGATATTGGAAGC” },
{"GGCGAAATTCATTAAAGAGGATCCTGACAC” }

This table shows the results of using the knowledge-based system to refine some sample lists of tokens produced by different recognizers in phase 2. Each row
of the table presents the refinement process of a single list of tokens, including: (1) the initial contents of the facts base, (2) the execution trace and (3) the final
state of the facts base. All singletons in the facts base at the end of the execution are considered as valid and refined sequences.

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 9 of 14

assigned a confidence score (CS) ranging from 0 to 100
points. The CS is assigned as follows. For each <paper,
sequence, organism_name, gene_name>tuple, we search
the paper for (1) all occurrences of the string gene_name
and (2) different automatically generated spelling var-
iants of the string organism_name—e.g. for “Brucella
Mellitensis 16M” we would generate the variants “Bru-
cella Mellitensis”, “Brucella”, “B. Mellitensis 16M” and
“B. Mellitensis”. Gene names are assigned a CS of 80
points if the string gene_name appears in the text, plus
20 additional points when the string gene_name co-
occurs with the detected sequence in the same section.
It is assigned a null CS otherwise. Conversely, the orga-
nism_name is assigned a score that depends on the size
of the longest matched variant(s)—hereinafter denoted
l—when compared to the full length L of the organism
name provided by the Nucleotide database. The CS cor-
responding to a match—or matches—of length l ≤ L is
calculated using the following function:

CSL

j L l

L

l

l

j
l L

l L

() =

=

+
⎛

⎝
⎜

⎞

⎠
⎟ ≤ <

=

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

= −

−

∑
0 0

40
40

2
1

80

1

Figure 4 shows the plot corresponding to the CSL
curves for 2 ≤ L ≤ 10. Each curve presents the assigned
CS values for each allowed value of l. Besides, 20 addi-
tional points are added to the computed score if any of
the matches of length l co-occurs in the same section
with the sequence. An example of CS assignment fol-
lows. Let us suppose that the current sequence was
labeled by the Nucleotide database with the organism
name “Brucella Mellitensis 16M“, thus L = 3. After
searching the text for the different automatically gener-
ated strings we obtain matches for the following var-
iants: “Brucella” (l = 1), “Brucella Mellitensis” (l = 2)
and “B. Mellitensis” (l = 2), where “B. Mellitensis”
appears in the same section as the detected sequence.
Thus, the size of the longest match—matches in this
example—is 2. Therefore, the CS value is calculated as
CS3(2) = 70. As one of the matches of length 2 co-
occurs in the same section with the sequence, we add
an extra 20 points to the calculated value. Thus, the
final CS value for the organism name “Brucella Melli-
tensis 16M” related to the sequence sequence in the
paper paper is 90—a value denoting high confidence in
the reliability of the assigned organism name.

Results
The software implementing the four-phase method for
sequence extraction and annotation was developed using

the Java programming language and the Apache
PDFBox open source library [35]. The software, includ-
ing both the binaries and the source code, can be freely
downloaded from the project website. See the Availabil-
ity and requirements section for further details.
To evaluate the performance of our method, a panel

of experts composed of three senior molecular biologists
from the Institute of Health Carlos III in Madrid (Spain)
created a test set composed of 297 papers published in
(1) several BMC journals (e.g. Virology Journal, BMC
Microbiology or BMC Molecular Biology) and (2) differ-
ent PLoS journals (e.g. PLoS One, PLoS Neglected Tro-
pical Diseases or PLoS Genetics) containing 3999
primer and probe sequences. The papers in the test set
were manually collected by the experts. They did not
follow any specific criteria other than availability, pro-
vided that the manuscripts contained actual primer and/
or probe sequences.
Experts were asked to manually analyze all the manu-

scripts in the test set to identify all valid DNA
sequences occurring in the papers. They were also asked
to specify which of the identified DNA sequences were
actual primers and probes. According to the experts,
less than the 2% of the DNA sequences occurring in the
manuscripts were regular DNA sequences (i.e. not pri-
mers or probes), thus suggesting that papers reporting
primers and probes rarely contain regular DNA
sequences.
Each manuscript from the test set was fed through the

method’s pipeline to output a list of detected
sequences—together with the context in which they
appear within the documents—annotated with organ-
ism/gene information. These results were manually ana-
lyzed and assessed by the panel of experts.
Table 6 shows a summary of results of the sequence

recognition and refinement activities. As shown in Table
6, our method achieved precision/recall rates of 97.98%
and 95.77%, respectively. For a single PDF paper, our
method required on average 397 milliseconds to com-
plete the first three phases—i.e. 322 ms for phase 1 and
75 ms for phases 2 and 3—using a single PC equipped
with an Intel® Core™ 2 Quad Q6600 processor at 2.4
GHz and 2 GB RAM.
On the other hand, Table 7 summarizes the results of

the evaluation of the annotation phase. As shown in
Table 7, our method correctly annotated 76.66% of the
3830 detected primer/probe sequences. Conversely,
4.38% of the sequences were assigned incorrect organ-
ism names, whereas the Nucleotide database did not
return any results for the remaining 18.96%. According
to the experts, this happens because these are either
human or chicken instead of microorganism sequences,
and the local instance of the Nucleotide database cur-
rently contains information regarding microorganisms

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 10 of 14

alone. Regarding the annotation with gene-related infor-
mation of the 2936 sequences previously tagged with
correct organism names, the Nucleotide database also
returned 46.18% with correct gene names. The Nucleo-
tide database did not return any results for the remain-
ing 53.82%. Regarding performance issues, the
annotation of all sequences appearing in a single manu-
script took on average 15 minutes to complete.

Discussion
To our knowledge, the most recent biomedical text
mining and information extraction research using

scientific papers as a source of information does not
accept manuscripts in PDF format as input. Instead
these works resort to the plain-text or HTML versions
of the documents, if available, or to tools, such as PDF
to text/HTML converters or optical character recogni-
tion software, to extract the text to be processed from
PDF files. However, these tools do not normally pre-
serve the structure of the documents, and frequently fail
to sort the sentences in the correct reading order. This
hampers the information extraction and text mining
activities. This problem is particularly serious when the
target documents have a multiple column layout. To
address these issues, our PDF-to-ST converter automati-
cally creates a data structure that preserves the original
organization of the document, including sentence order.
This facilitates the text processing tasks, since the text
corresponding to any section of the document can be
easily retrieved from the ST data structure in the correct
order. However, our approach requires a custom tem-
plate to be created for each type of document to be pro-
cessed—e.g. different journal layouts—to enable the PDF
analyzer to properly build the ST structure. At the time
of writing this paper these templates are created by

Figure 4 Plot showing how CSs are assigned to the matched organism names depending on the length of the match. Unlike regular
English noun groups, where the meaning of the noun is narrowed by the preceding words, organism names are made more specific by post-
positive words. The plot shows the CSs assigned to matches of length l for different values of L. This figure shows that the more specific—i.e.
the longer—the matches are, the higher the assigned CS.

Table 6 Summary of results of the evaluation of activities
2 and 3

No. of
sequences

in the test set

Recognized
(True

Positives)

Not Recognized
(False

Negatives)

False
Positives

3999 3830 169 79

Precision 97.98%

Recall 95.77%

F-measure 0.9686

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 11 of 14

manually inspecting the document layout. However, we
are currently developing a tool to help users to create
custom templates. We believe that both the ST data
structure and the template creation tool are potentially
valuable tools for biomedical informaticians working on
text mining or information extraction and retrieval
research.
Regarding the recognition and refinement of the pri-

mer/probe sequences present in the papers, our method
achieves high precision and recall rates, as stated in the
results section. In addition, the knowledge engineering
approach we followed for sequence refinement success-
fully handles the different issues caused by the large
number of English dictionary words belonging to ∑+

that appear in the manuscripts. Our approach is also
flexible, since the knowledge base will not normally
have to be modified to refine sequences not currently
being properly recognized—e.g. noisy sequences that the
knowledge-based system fails to adequately refine due to
words from ∑+ that occur in the text but are missing
from the dictionary or from the list of problem affixes
—. Instead, the expert system can be easily adjusted by
adding the required elements to the list of affixes or to
the dictionary. This can be done manually or even auto-
matically following an adapted relevance feedback-based
approach [36]. Besides, the simplicity of the preliminary
recognizers and the size of the knowledge base for
sequence refinement—only eight rules—enables our
method to achieve high throughput rates in sequence
detection and refinement. Our method automatically
recognizes sequences—with large precision/recall rates—
as primers or probes, provided the system is fed with
papers known to contain primer and probe sequences
alone. The expansion of this feature to recognize and
discriminate the different types of DNA sequences is a
topic for future research. Besides, most major
approaches for DNA/RNA sequence recognition in bio-
medical text focus on efficiently detecting—or aligning—
sequences built upon the symbols A, C, G and T only
[37-40]. On the other hand, the Kangaroo system [41] is
a web-based pattern matcher that reports back all Gen-
Bank records that match a user query—i.e. a regular
expression that may contain any of the symbols reported
in Table 1. Conversely, our approach addresses a

different issue, i.e. recognizes DNA sequences occurring
in non-structured text.
Regarding the automated annotation of the detected

sequences with their corresponding organism/gene
information, the method assigns a valid organism name
for most sequences (83.29%), as shown in Table 7. Con-
versely, for some sequences (15.45%), the method could
not find any information in the database regarding the
organism, since, according to the panel of experts, the
sequences belonged to either humans or chickens. These
results can be explained since the local copies of both
the BLAST-formatted and Nucleotide databases were
populated with microorganism-related information only.
We did not load the information corresponding to other
organisms since the method was initially designed to
detect primers and probes related to microorganism-
caused infectious diseases. However, we plan to populate
the database with information related to other organ-
isms in the near future. Regarding gene-related informa-
tion, the system assigned correct gene names for 44.32%
of the sequences that were properly annotated with
their corresponding organism name. For the remaining
sequences, the database did not provide any results.
According to the panel of experts, this deficient gene-
related information is due to the fact that the database
does not contain this information, or even, that it is cur-
rently unknown. Regarding performance issues, annotat-
ing the sequences with their related information is
computationally expensive, since multiple queries of dif-
ferent databases have to be launched. To address this
issue, other distributed processing approaches may be
helpful. This will enable the proposed pipeline to pro-
cess a large number of documents in parallel, using
multiple copies of the local databases.

Conclusions
In this paper we present an original method for automa-
tically extracting primer and probe sequences from
scientific papers and annotating them with their corre-
sponding organism/gene information. Our method can
be used by biomedical researchers using molecular
methods to diagnose and prescribe infectious diseases to
facilitate tasks such as detecting the presence of a parti-
cular microorganism, or designing diagnostic PCR or

Table 7 Summary of results of the assessment of activity 4

Number of Sequences
for Annotation

Correct Tagging Incorrect Tagging Information Not Found
in the Nucleotide database

Organism only 3830 2936
76.66%

168
4.38%

726
671 human
55 chicken
18.96%

Both organism and gene 2936 1356
46.18%

0
0%

1580
53.82%

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 12 of 14

microarrays. On the other hand, the extracted informa-
tion can also be used to update the different existing
primer/probe databases or to create a new data resource
from the scratch. The proposed method can be
extended to detect other types of biological sequences.
In addition, the PDF-to-ST converter is a potentially
valuable tool for different kinds of bioinformatics
research using PDF files as a source of information.

Availability and requirements
• Basic implementation of the proposed method:
PrimerXtractor
• Project website: http://www.gib.fi.upm.es/en/

PrimerXtractor
• Operating systems: Platform independent, tested on

Windows Vista and Ubuntu Linux 9.10 (Karmic Koala).
• Programming language: Java.
• Other requirements: Java 1.6, MySQL Community

Server 5, ActivePerl 5.8.8, BioSQL and BioPerl. See the
online documentation at the project website for further
details.
Documentation, source code (under GPL license) and

binaries of PrimerXtractor are available in the project
website. Other required software components are avail-
able at their corresponding sources.

Additional material

Additional file 1: Dictionary of problem English words. list of English
dictionary words belonging to ∑+ used by the expert system for
sequence refinement.

Additional file 2: List of problem affixes. list of problem affixes used
by the expert system for sequence refinement.

Acknowledgements
The present work has been funded, in part, by the European Commission
through the ACGT integrated project (FP6-2005-IST-026996) and the
ACTION-Grid support action (FP7-ICT-2007-2-224176), the Spanish Ministry of
Science and Innovation through the OntoMineBase project (ref. TSI2006-
13021-C02-01), the ImGraSec project (ref. TIN2007-61768), FIS/AES PS09/
00069 and COMBIOMED-RETICS, and the Comunidad de Madrid, Spain. The
authors would also like to thank Carmen Ramirez for collaborating in the
evaluation process, Rachel Elliot for her editorial assistance and the
anonymous reviewers for their valuable comments and suggestions.

Author details
1Departamento de Inteligencia Artificial, Facultad de Informática, Universidad
Politécnica de Madrid. Campus de Montegancedo S/N, 28660 Boadilla del
Monte, Madrid, Spain. 2Biomedical Informatics Group, Facultad de
Informática, Universidad Politécnica de Madrid. Campus de Montegancedo
S/N, 28660 Boadilla del Monte, Madrid, Spain. 3Bioinformatics Unit, Institute
of Health Carlos III, Carretera de Majadahonda a Pozuelo Km. 2, 28220
Majadahonda, Madrid, Spain. 4Departamento de Lenguajes y Sistemas
Informáticos, Facultad de Informática, Universidad Politécnica de Madrid.
Campus de Montegancedo S/N, 28660 Boadilla del Monte, Madrid, Spain.

Authors’ contributions
MGR participated in the creation of the method and in the design of the
experiment, drafted the manuscript and supervised the work. AC

participated in the creation of the method and in the design of the
experiment, wrote the software tool implementing the presented method,
and helped to draft the manuscript. VLA and GLC helped to draft the
manuscript and led the evaluation process. GC, DDL, DPR, JC and FMS
participated in the design of the experiment and helped to draft the
manuscript. VM helped to draft the manuscript and to coordinate the work.
All authors read and approved the final manuscript.

Received: 17 March 2010 Accepted: 3 August 2010
Published: 3 August 2010

References
1. Bravo LT, Procop GW: Recent advances in diagnostic microbiology. Semin

Hematol 2009, 46(3):248-58.
2. Mothershed EA, Whitney AM: Nucleic acid-based methods for the

detection of bacterial pathogens: present and future considerations for
the clinical laboratory. Clin Chim Acta 2006, 363(1-2):206-20.

3. Ratcliff RM, Chang G, Kok T, Sloots TP: Molecular diagnosis of medical
viruses. Curr Issues Mol Biol 2007, 9(2):87-102.

4. Woo PC, Lau SK, Teng JL, Tse H, Yuen KY: Then and now: use of 16 S
rDNA gene sequencing for bacterial identification and discovery of
novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect
2008, 14(10):908-34.

5. Enright MC, Spratt BG: Multilocus sequence typing. Trends Microbiol 1999,
7(12):482-7.

6. Pabbaraju K, Tokaryk KL, Wong S, Fox JD: Comparison of the Luminex
xTAG respiratory viral panel with in-house nucleic acid amplification
tests for diagnosis of respiratory virus infections. J Clin Microbiol 2008,
46(9):3056-62.

7. Miller MB, Tang YW: Basic concepts of microarrays and potential
applications in clinical microbiology. Clin Microbiol Rev 2009, 22(4):611-33.

8. Li F, Stormo GD: Selection of optimal DNA oligos for gene expression
arrays. Bioinformatics 2001, 17(11):1067-1076.

9. Huang YC, Chang CF, Chan CH, Yeh TJ, Chang YC, Chen CC, Kao CY:
Integrated minimum-set primers and unique probe design algorithms
for differential detection on symptom related pathogens. Bioinformatics
2005, 21(24):4330-7.

10. Campi MG, Castoldi M, Romano P, Thüroff E, Maniello MA, Iannota B,
Rondanina G, Ruzzon T, Santi L: Molecular Probe Data Base (MPDB).
Nucleic Acids Res 1997, 25(1):92-95.

11. Sequence Retrieval System. [http://crisceb.unina2.it/srs5/].
12. Spandidos A, Wang X, Wang H, Seed B: PrimerBank: a resource of human

and mouse PCR primer pairs for gene expression detection and
quantification. Nucleic Acids Res 2010, , 38 Database: D792-9.

13. PrimerBank. [http://pga.mgh.harvard.edu/primerbank/].
14. VanGuilder HD, Vrana KE, Freeman WM: Twenty-five years of quantitative

PCR for gene expression analysis. Biotechniques 2008, 44(5):619-626.
15. National Center for Biotechnology Information: The Probe Database Makes

its Debut in Entrez. NCBI News 2005, 14(2):1-5-6.
16. The NCBI Probe Database, Reagents for Functional Genomics. [http://

www.ncbi.nlm.nih.gov/sites/entrez?db=probe].
17. Pattyn F, Speleman F, De Paepe A, Vandesompele J: RTPrimerDB: the real-

time PCR primer and probe database. Nucleic Acids Res 2003,
31(1):122-123.

18. RTPrimerDB. [http://medgen.ugent.be/rtprimerdb/].
19. Loy A, Maixner F, Wagner M, Horn M: ProbeBase-an online resource for

rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids
Res 2007, 35:D800-4.

20. probeBase. [http://www.microbial-ecology.net/probebase/].
21. De la Calle G, García-Remesal M, Chiesa S, De la Iglesia D, Maojo V: BIRI: a

new approach for automatically discovering and indexing available
public bioinformatics resources from the literature. BMC Bioinformatics
2009, 10:320.

22. Hirschman L, Yeh A, Blaschke C, Valencia A: Overview of BioCreAtIvE:
critical assessment of information extraction for biology. BMC
Bioinformatics 2005, 6(Suppl 1):S1.

23. McDonald R, Pereira F: Identifying gene and protein mentions in text
using conditional random fields. BMC Bioinformatics 2005, 6(Suppl 1):S6.

24. Rice BS, Nenadic G, Stapley JB: Mining protein function from text using
term-based support vector machines. BMC Bioinformatics 2005, 6(Suppl 1):
S22.

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 13 of 14

http://www.gib.fi.upm.es/en/PrimerXtractor
http://www.gib.fi.upm.es/en/PrimerXtractor
http://www.biomedcentral.com/content/supplementary/1471-2105-11-410-S1.TXT
http://www.biomedcentral.com/content/supplementary/1471-2105-11-410-S2.TXT
http://www.ncbi.nlm.nih.gov/pubmed/19549577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16139259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16139259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16139259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17489437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17489437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18828852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18828852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18828852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10603483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18632902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18632902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18632902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19822891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19822891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11724738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11724738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16249263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16249263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9016509?dopt=Abstract
http://crisceb.unina2.it/srs5/
http://www.ncbi.nlm.nih.gov/pubmed/19906719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906719?dopt=Abstract
http://pga.mgh.harvard.edu/primerbank/
http://www.ncbi.nlm.nih.gov/pubmed/18474036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18474036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/sites/entrez?db=probe
http://www.ncbi.nlm.nih.gov/sites/entrez?db=probe
http://www.ncbi.nlm.nih.gov/pubmed/12519963?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12519963?dopt=Abstract
http://medgen.ugent.be/rtprimerdb/
http://www.ncbi.nlm.nih.gov/pubmed/17099228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17099228?dopt=Abstract
http://www.microbial-ecology.net/probebase/
http://www.ncbi.nlm.nih.gov/pubmed/19811635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19811635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19811635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15960821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15960821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15960840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15960840?dopt=Abstract

25. Tamames J: Text Detective: a rule-based system for gene annotation in
biomedical texts. BMC Bioinformatics 2005, 6(Suppl 1):S10.

26. González-Díaz H, Pérez-Montoto L, Duardo-Sanchez A, Paniagua E, Vasquez-
Prieto S, Vilas R, Dea-Ayuela MA, Bolás-Fernandez F, Munteanu CR,
Dorado J, Costas J, Ubeira FM: Generalized lattice graphs for 2D-
visualization of biological information. J Theor Biol 2009, 261(1):136-147.

27. Minsky M: Computation: Finite and Infinite Machines Upper Saddle River, NJ:
Prentice-Hall, Inc 1967.

28. Harmon P, King D: Expert Systems New York, NY: John Wiley & Sons 1985.
29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. J Mol Biol 1990, 215:403-410.
30. BLAST. [http://blast.ncbi.nlm.nih.gov/Blast.cgi].
31. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank.

Nucleic Acids Res 2010, , 38 Database: D46-51.
32. Entrez Nucleotide. [http://www.ncbi.nlm.nih.gov/nuccore].
33. Stajich J, Block D, Boulez K, Brenner S, Chervitz S, Dagdigian C, Fuellen G,

Gilbert J, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall C, Osborne B,
Pocock M, Schattner P, Senger M, Stein L, Stupka E, Wilkinson M, Birney E:
The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002,
12(10):1611-8.

34. BioPerl. [http://www.bioperl.org/wiki/Main_Page].
35. Apache PDFBox. [http://pdfbox.apache.org/].
36. Rocchio JJ: Relevance feedback in Information Retrieval. The SMART

Retrieval System: Experiments in Automated Document Processing New Jersey:
Prentice-HallSalton G 1971, 313-323.

37. Hyyrö H, Juhola M, Vihinen M: On exact string matching of unique
oligonucleotides. Comput Biol Med 2005, 35(2):173-81.

38. Tarhio J, Peltola H: String matching in the DNA alphabet. Software Pract
Exper 1997, 27(7):851-861.

39. Cheng LL, Cheung DW, Yiu SM: Approximate String Matching in DNA
Sequences. Proceedings of the Eighth International Conference on Database
Systems for Advanced Applications: 26-28 March 2003 Kyoto, Japan. IEEE
Computer Society 2003, 303-310.

40. Lee HP, Sheu T, Tang CY: A parallel and incremental algorithm for
efficient unique signature discovery on DNA databases. BMC
Bioinformatics 2010, 11:32.

41. Betel D, Hogue CWV: Kangaroo - A pattern-matching program for
biological sequences. BMC Bioinformatics 2002, 3:20.

doi:10.1186/1471-2105-11-410
Cite this article as: García-Remesal et al.: A method for automatically
extracting infectious disease-related primers and probes from the
literature. BMC Bioinformatics 2010 11:410.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

García-Remesal et al. BMC Bioinformatics 2010, 11:410
http://www.biomedcentral.com/1471-2105/11/410

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/15960822?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15960822?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19646452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19646452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/pubmed/19910366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/nuccore
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://www.bioperl.org/wiki/Main_Page
http://pdfbox.apache.org/
http://www.ncbi.nlm.nih.gov/pubmed/15567185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15567185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20078860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20078860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12150718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12150718?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Phase 1: Pre-processing of Articles
	Phase 2: Preliminary Recognition of Candidate DNA Sequences
	Phase 3: Automated Refinement and Post-Processing of the Recognized DNA Sequences
	Phase 4: Linking the Recognized Sequences to their Corresponding Organism/Gene Information

	Results
	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

