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Abstract

Background: Functional genomic studies involving high-throughput sequencing and tiling array applications, such
as ChIP-seq and ChIP-chip, generate large numbers of experimentally-derived signal peaks across the genome
under study. In analyzing these loci to determine their potential regulatory functions, areas of signal enrichment
must be considered relative to proximal genes and regulatory elements annotated throughout the target genome
Regions of chromatin association by transcriptional regulators should be distinguished as individual binding sites in
order to enhance downstream analyses, such as the identification of known and novel consensus motifs.

Results: PeakAnalyzer is a set of high-performance utilities for the automated processing of experimentally-derived
peak regions and annotation of genomic loci. The programs can accurately subdivide multimodal regions of signal
enrichment into distinct subpeaks corresponding to binding sites or chromatin modifications, retrieve genomic
sequences encompassing the computed subpeak summits, and identify positional features of interest such as
intersection with exon/intron gene components, proximity to up- or downstream transcriptional start sites and cis-
regulatory elements. The software can be configured to run either as a pipeline component for high-throughput
analyses, or as a cross-platform desktop application with an intuitive user interface.

Conclusions: PeakAnalyzer comprises a number of utilities essential for ChIP-seq and ChIP-chip data analysis. High-
performance implementations are provided for Unix pipeline integration along with a GUI version for interactive
use. Source code in C++ and Java is provided, as are native binaries for Linux, Mac OS X and Windows systems.

Background
Next-generation sequencing technologies and tiling
microarrays are frequently employed for genome-wide
identification of regulatory elements and chromatin
modifications. These applications generate vast numbers
of experimental data points, which are compiled into
extensive sets of genomic loci representing the units of
biological activity measured in the particular assay.
Researchers must then discern functionally-relevant
results from these large-scale datasets, a process that
poses significant bioinformatic challenges for research
groups with limited computational support. For exam-
ple, a common aim of transcription factor location ana-
lysis is to determine the relationship between ChIP-
enriched loci and annotated genes; identifying the cis-
regulatory elements occupied by the factor can reveal

the set of genes it is likely to regulate across the gen-
ome. Correlating global transcription factor binding-site
occupancy with target genes quickly becomes intractable
in the absence of software tools to automate aspects of
large-scale data analysis.
Sequence patterns occurring repeatedly among

enriched loci are indicative of regulatory elements such
as transcription factor-binding sites, and can often be
identified by DNA motif analysis. Successful motif dis-
covery relies on a set of candidate loci that exclude
extraneous sequences while still containing the binding
site consensus; however, since many peak-finding utili-
ties merge overlapping areas of enrichment, the result-
ing peaks tend to be much larger than the actual
binding sites. Peak regions often comprise more than
one functional element (e.g. co-located transcription fac-
tor-binding sites or chromatin modifications), and these
must be distinguished into individual loci in order to
accurately interpret experimental results. The ability to
subdivide composite peak regions into a finer-resolution
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set of individual binding sites (subpeaks) can improve
the accuracy of sequence motif analysis.
Here we describe PeakAnalyzer, a set of standalone

tools for the automated post-processing of large-scale
chromatin profiling data. The programs are able to iden-
tify discrete enrichment peaks from loci corresponding
to transcription factor binding or chromatin modifica-
tion, retrieve individual peak sequences and annotate
experimental data against various classes of functional
elements, such as genes, CpG islands, regulatory features
or DNase I hypersensitive sites. Results can also be com-
pared across multiple datasets to report overlapping fea-
tures, as well as those unique to a given experimental
sample. The software is freely available and flexible in
implementation, providing both high-performance solu-
tions for pipeline integration and a GUI version for
desktop users.

Implementation
Program description
PeakAnalyzer comprises two main utilities: PeakSplitter
and PeakAnnotator. PeakSplitter accurately subdivides
experimentally-derived peak regions containing more
than one site of signal enrichment, optionally retrieving
genomic DNA sequences corresponding to subpeak
summit regions. This procedure facilitates more detailed

analysis of individual subpeaks (Figure 1). PeakAnnota-
tor scans the target genome to identify and report func-
tional elements proximal to peak loci and contains three
main subroutines: Nearest Downstream Gene (NDG),
Transcription Start Site (TSS) and Overlap Data Sets
(ODS).
The function NDG locates the nearest downstream

genes on both strands and calculates their distances. If
the peak region intersects a gene, the program deter-
mines if the overlap is within an exon, intron, 5' UTR or
3' UTR. Multiple transcripts or genes overlapping a
given location are all reported, providing a means to
identify putative bi-directional promoters where the
peak is proximal to genes on both strands. TSS locates
the nearest transcriptional start site relative to each
locus, scanning both downstream or upstream of the
experimental peak to account for transcription initiation
on either the sense or antisense strand. The ODS func-
tion calculates the overlap in positions/peaks between
datasets, where peak loci intersecting by at least one
nucleotide on either strand are reported. To compute a
P-value of overlap enrichment, a random dataset is gen-
erated having peak lengths and chromosomal distribu-
tion matching the experimental dataset; the overlap
between experimental and artificial loci is then deter-
mined, and through successive iterations a P-value

Figure 1 Experimentally-derived peak regions subdivided into individual sites of signal enrichment. A) Region of Oct4 binding in the
Abca4 gene locus, subdivided into six individual loci by the PeakSplitter utility. The canonical binding sequences of Oct4, Nanog and Sox2 are
concentrated in the center peaks, while potentially novel motifs or sites of associated co-factor binding may be present in the adjacent three.
Peak splitting is equally applicable to the broader regions of enrichment generated from chromatin modification experiments, where signal
peaks are more variable in size and shape. Depicted is a region of H3K4me3 methylation on chromosome 16 [29], subdivided into four discrete
modification sites.
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representing the statistical significance of experimental
signal over random is calculated.

Software distribution and input requirements
PeakAnalyzer is implemented as a unified Java program
encompassing the software components described above.
Equivalent versions of PeakSplitter and PeakAnnotator
are also implemented in C++ and Java so that users can
choose a distribution suited to their particular require-
ments. Core facilities processing numerous datasets have
the option to incorporate the faster C++ version into a
Unix pipeline, whereas the Java implementations can
either be run as separate command-line utilities or as a
single cross-platform desktop application using an intui-
tive graphical interface.
PeakAnalyzer requires only a single peak file and a

feature annotation file in BED or GTF format; complete
annotation files for the current builds of the human
(HG19) and mouse (MM9) genomes are provided with
the software distribution. The input files required by
PeakSplitter are those commonly generated by peak-
finding programs: a .bed-formatted peak file containing
chromosome start and end locations of signal enrich-
ment loci, and a .wig signal file describing the size and
shape of each peak.

Algorithm implementation
PeakSplitter
We adopted the peak-splitting approach proposed by
Fejes et al. [1] and implemented as the function sub-
peaks in recent versions of their FindPeaks tool. The
method identifies multiple peaks within a given locus
and accurately subdivides those containing more than
one site of signal enrichment. In addition to incorporat-
ing the algorithm into PeakAnalyzer we provide a stan-
dalone version as the PeakSplitter utility, thereby
enabling its application to signal loci called by any such
program (e.g., [2-9]). Local maxima are identified in the
peak region by scanning for relative peak heights, where
those of adjacent maxima are compared and the lowest
value is multiplied by a user-adjustable parameter to
arrive at the read depth required for subpeak division.
Binding sites are most likely to appear at or near sub-
peak summit regions, and these sequences can be
retrieved directly from the Ensembl database [10].
PeakAnnotator
The PeakAnnotator component scans the target genome
to identify and report functional elements proximal to
peak loci. Rather than comparing each peak with all
possible features, PeakAnnotator uses a combination of
binary search and a modified version of the nested con-
tainment list (NCList) algorithm (see below and [11]) to
rapidly identify proximal features among the full set of
annotated elements. Proof of correctness of the

algorithms described below and a discussion of their
runtime complexity can be found in Additional file 1.
Generating a containment list
Determining the set of intersecting genomic regions
across multiple experiments and data sources is not
straightforward, because for a given dataset the regions
queried may not be contiguous and some regions may
be embedded within others. Thus, when sorting the
regions by start position, the corresponding end posi-
tions could be out of sequence. This is more likely to be
the case in higher eukaryotes where some loci encode
overlapping genes.
The NCList algorithm constitutes a solution to this

problem [11]. In this method the set of genomic regions
is partitioned into a primary category of positionally-
independent loci, and all remaining loci are segregated
into a second category. We adopted this approach in
our algorithm, where for each gene in the list PeakAn-
notator creates a sublist of all genes containing it.
A pseudocode description of the process is listed in
Additional file 1, Figure S1.
Finding proximal downstream genes
The NDG utility determines the most proximal non-
overlapping downstream genes on both strands. If a
gene intersects a signal peak it will be stored in a sepa-
rate list of overlapping genes. For simplicity, we define
here a gene that is transcribed from the forward strand
pos_gene, and a gene transcribed from the reverse
strand neg_gene. The algorithm works as follows: the
first non-overlapping gene located 3' to the peak, G3', is
found using a binary search strategy such that G3'-start

>Peakend. If G3' is a pos_gene, it is the closest down-
steam gene on the forward strand; if not, genes located
downstream to G3' are visited until a pos_gene is
found.
Next, the first gene located upstream to G3' that does

not overlap with the current experimental peak is found,
termed G5'. If G5' is a neg_gene it has the potential to
be the closest downstream gene on the reverse strand.
However, if G5' is contained within another gene tran-
scribed from the reverse strand, this gene is potentially
closer to or even intersecting the current peak. Hence,
the next step is to determine the closest neg_gene and
overlapping genes in the set of G5' and the gene(s) con-
taining G5'. If G5' is a pos_gene, genes located
upstream are visited until a neg_gene is found. Finally,
the closest downstream neg_gene is searched within
the set of that gene and those containing it.
Finding proximal transcription start sites
The TSS function works as follows: the first gene
located downstream to the peak’s central position, G3', is
found using a binary search strategy, and its distance to
the current peak is calculated. Genes located downsteam
to G3' are visited until a gene that starts downstream of
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the G3' locus is found. The gene having the lowest
distance from the signal peak is then marked as the closest
downstream gene. Next, the first gene upstream to G3',
termed G5', whose end position <G5'-start (i.e., G5' = G3'-1 )
is found. Its distance, and the distance of all genes that
contain it, is calculated in order to find the nearest
upstream gene. The one representing the minimal
absolute distance to the peak among the set of proximal
downstream and upstream genes will be reported.
Finding overlapping data sets
The ODS function operates on two sets of peaks,
denoted here S1 and S2, and iterates over all loci in S1
to find those intersecting by at least one nucleotide with
loci in S2. For each locus Ln in S1, the first non-overlap-
ping peak from S2 located 3' to L1, termed L23', is found
using a binary search strategy such that L23'-start >L1end.
The algorithm then searches upstream of L23' to deter-
mine if any peak intersects L1, until the first locus in S2,
termed L25', is found having coordinates outside the
boundaries of L1. Peaks containing L25' can potentially
overlap L1, and are also considered.

Results and Discussion
To illustrate typical applications of PeakAnalyzer, we
analyzed the genome-wide binding profiles of a series of
transcriptional regulators (Ctcf, E2f1, Esrrb, Klf4, c-Myc,
n-Myc, Nanog, Oct4, Stat3, Smad1, Sox2, Suz12,
Tcfcp2l1 and Zfx) in mouse embryonic stem (ES) cells,
determined using the ChIP-seq method [12]. We
obtained the primary data from the NCBI GEO database
(series GSE11431), mapped the sequencing reads to the

mouse genome assembly using the Bowtie alignment
program [13], and detected significant peaks of signal
enrichment with MACS [2]. Subsequent analyses were
performed on the set of chromatin-binding regions from
each of these re-processed ChIP-seq datasets.

Identification and subdivision of signal peaks
In characterizing the binding patterns of each transcrip-
tion factor, we first used the PeakSplitter utility to parti-
tion regions of signal enrichment into individual binding
loci. The numbers of putative binding sites resolved for
each factor before and after processing are summarized
in Table 1. As illustrated in Figure 2, the number of ori-
ginal signal peaks roughly correlates with the number of
subpeaks found by PeakSplitter. For some transcription
factor proteins (Ctcf, Stat3, Nanog, Oct4 and Sox2), the
total number of subpeaks is close to the original number
identified; this suggests the presence of either a single
regulatory element bound at each locus, or a small clus-
ter of binding sites such that the combined distribution
of peak regions is too uniform to be accurately parti-
tioned. However, the binding profiles of Etf1 and Esrrb
produced large numbers of additional subpeaks, where
more than twice the original number of Etf1 binding
sites were identified.
A logical assumption when interpreting ChIP-seq data

is that wider areas of signal enrichment may contain
greater numbers of individual binding sites than narrow
peak regions. To test this idea, we plotted the lengths of
the original peaks resolved for each transcription factor
relative to the numbers of subpeaks identified in each

Table 1 Characteristics of transcription factor-bound peaks and subpeaks

Factor Reads mapped Peaks Peak length Subpeaks Subpeak length Motifs

(average/median) (average/median) peaks subpeaks

Ctcf 3446024 46742 398/380 47117 332/319 94/94 95/95

Esrrb 11669746 82552 532/458 122689 315/299 135/166 215/246

Etf1 10245583 27612 1271/946 73888 441/390 -† -

Klf4 6602662 27381 460/413 33781 301/289 45/55 65/68

c-Myc 10586180 8535 466/406 13115 263/249 0/18 12/27

n-Myc 7563562 15824 498/432 22688 284/269 0/32 16/46

Nanog 3201091 11334 412/385 10905 339/320 0/23 6/22

Oct4 7910224 9818 407/380 10928 293/289 8/20 20/22

Smad1 2530783 989 483/439 907 382/369 0/2 1/2

Sox2 8122529 9611 400/379 10159 316/309 14/20 21/21

Stat3 8533107 7069 326/293 7364 251/239 0/15 10/15

Suz12 8327215 5079 1550/1178 17043 430/389 -‡ -

Tcfcp2l1 10962390 46278 436/399 54856 324/310 2/93 102/110

Zfx 7323252 34348 486/406 49069 244/229 0/69 65/99
† Alternate motif identified.
‡ No consensus found.

Summary of ChIP-seq regions occupied by each transcription factor profiled, the numbers of peaks/subpeaks partitioned by PeakSplitter, and the datasets where
previously reported binding motifs could be identified. The number of motifs present in transcription factor-bound peak and subpeak datasets are given in the
last two columns, indicating improved motif detection from subpeak summit regions.
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case by PeakSplitter (Figure 3). Broader peak areas were
indeed subdivided into greater numbers of subpeaks,
indicating the presence of composite binding loci. How-
ever, individual factors were found to exhibit varying
length profiles within peak groups that were partitioned
into the same numbers of subpeaks. For example, for a
given number of subpeaks produced by PeakSplitter,
Etf1 binding sites appear to be considerably longer than
those of Zfx. This would indicate that the distance
between co-localized DNA binding sequences specific to
each transcription factors is different, an observation
that may be related to the size of each transcription
factor protein complex when co-factors are bound.

Genome-wide annotation of transcription factor binding
sites
Binding sites identified from ChIP-based experiments
are usually categorized relative to genomic features,
such as the frequency of binding to promoters, enhan-
cers, gene structures or unannotated intergenic regions.
Of primary interest in determining transcription factor
targets is the location of binding sites relative to known
transcriptional start sites. The relationship between

promoter occupancy and differential gene expression
can often identify genes directly regulated by a factor,
but can also provide insight into the mechanisms by
which it mediates transcriptional activation or repres-
sion. For example, factors that bind close to transcrip-
tional start sites have been proposed to promote gene
expression by stabilizing the association of general tran-
scription factors at the core promoter elements; factors
that bind to distal regions, either upstream or down-
stream of a gene locus, may regulate transcription by
mediating, through a chromatin looping mechanism, the
protein-protein contacts between distal complexes and
the general transcriptional machinery bound at the
promoter.
Here we used PeakAnalyzer to assign the genome-wide

binding sites resolved for each of the 13 transcription
factors to target genes, and profiled these interactions
based on the distance between binding sites and gene
loci. In [12], binding sites were assigned to target genes
based on 17,762 annotated mouse promoters [14], which
correspond to 17,442 non-redundant gene loci. Instead,
we characterized the binding site profile of each factor
separately in relation to all Ensembl-annotated

Figure 2 Correlation between the total number of peaks and subpeaks for 13 transcription factors and the Polycomb group protein
Suz12. PeakSplitter was used to partition the regions of signal enrichment of each factor into individual binding loci. Significant agreement is
observed between the numbers of putative binding sites resolved before and after processing (Pearson correlation = 0.93). Peak profiles
corresponding to Oct4, Sox2 and Nanog are co-localized on the plot, indicating similar patterns of chromatin association across the genome.
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transcripts. Using the TSS function in PeakAnnotator, we
then calculated the percentage of binding sites down-
stream and upstream of Ensembl genes for each tran-
scription factor profiled (Figure 4).
From this analysis, it appears evident that the binding

profile of c-Myc is comparable with that of n-Myc, and
that of Nanog is similar to both Sox2 and Smad1. Over
50% of c-Myc and n-Myc binding sites are located
within or very close to target genes (up to 1 Kb),
whereas only 25% correspond to distal binding sites
(farther than 10 Kb). In contrast, distal binding sites
constitute the predominant fraction (70%) of Sox2,
Nanog and Smad1 loci; fewer than 10% of binding sites
are found within or in close proximity to genes, suggest-
ing that these factors bind preferentially to remote
enhancer elements.
To further investigate the properties of binding sites

located within genes, we used the NDG function of Pea-
kAnnotator and plotted the percentage of sites that fall
within different gene components (Figure 5). The
within-gene composition of c-Myc binding sites approxi-
mates that of n-Myc, whereas the distribution of Nanog
binding sites is most similar to Sox2. Both c-Myc/n-
Myc occupy a large number of sites that fall within 5'
UTRs and first introns (58%), whereas only 20% were
found to intersect higher rank-order introns. In contrast,
Nanog, Sox2 and Smad1 binding profiles are all

characterized by a high percentage (60%) of sites within
introns subsequent to the first, with sites intersecting
the first intron comprising a lesser fraction (30%).
Unsurprisingly, c-Myc and n-Myc exhibit similar peak

profiles, as Myc family members share gene and protein
structural features [15] and function through common
pathways [16-18]. Moreover, when expressed from the
c-Myc locus, n-Myc is regulated in a similar fashion and
functionally complementary to c-Myc in the context of
various cellular growth and differentiation processes
[19]. Although these two regulatory proteins display
similar binding profiles, its not yet clear whether they
share the same binding loci and regulate common target
genes. To address this question we used PeakAnnota-
tor’s ODS utility to determine if c-Myc and n-Myc
occupy the same binding loci in the ChIP-seq profiles
examined. We found 7,039 (82%) of c-Myc binding
sites to overlap those of n-Myc, with P-values < 0.001
compared to random peak locations. This observation
indicates that, in the context of self-renewing ES cells,
c-Myc and n-Myc are likely to participate in tandem to
regulate the transcription of a large number of common
target genes.

Identification of regulated target genes
We next sought to correlate the number of peaks and
subpeaks found either in the promoter regions of genes

Figure 3 Length of signal enrichment peaks relative to subpeaks derived from the same loci. Five representative transcription factors are
shown with ChIP-seq binding regions ranging from 9,000 (c-Myc) to 82,000 (Esrrb). These were subdivided into maximally 10 subpeaks per
locus, and the lengths of the original regions plotted against the number of subpeaks identified.
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Figure 4 Distribution of transcription factor-binding loci relative to 5’ ends of genes. The percentage of loci bound by each transcription
factor downstream and upstream of all Ensembl transcripts was calculated using the TSS function of PeakAnnotator.

Figure 5 Distribution of the central positions of individual transcription factor binding sites located within gene components. Using
the NDG function of PeakAnnotator, the percentage of transcription factor-binding sites falling within specific gene components was calculated.
As illustrated here, some factors have a clear preference for promoters and regions of transcription initiation, while others exhibit a shift in
binding-site occupancy from 5’ regions to introns. Interestingly, the fraction of binding sites in last introns and 3’ UTRs remain relatively constant
among transcription factor-binding profiles, while the widest variation in within-gene composition occurs in the number of binding sites present
in higher rank-order introns.
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(up to 2 kb upstream) or within gene loci, relative to
their corresponding expression levels in mouse ES cells.
For this analysis, we obtained relevant microarray data
from the GNF SymAtlas database [20], where expression
levels from C57BL/6 mice were measured on the Affy-
metrix 430 2.0 array. Microarray probesets were mapped
to 16,595 Ensembl-annotated genes, and these were sub-
sequently partitioned into 7 gene sets based on log2
intensity values (from 2 to 16 in increments of 2).
Figure 6 illustrates the correlation between ChIP-seq

binding sites and target gene expression for three (Etf1,
n-Myc, Ctcf) of the 13 transcription factors. Positive
correlation is observed between the numbers of n-Myc
peaks and subpeaks relative to the abundance of regu-
lated genes, where highly expressed genes have greater
numbers of n-Myc binding sites. These can be identified
in the signal peaks originally determined, and divided
into a larger set of subpeaks by PeakSplitter.
In contrast, Ctcf occupies more binding sites in genes

displaying lower expression levels, suggesting that in
this context Ctcf acts as transcriptional repressor.
Furthermore, the number of subpeaks resolved by
PeakSplitter was much lower in this case, indicating the
presence of single high-affinity Ctcf binding sites, possi-
bly comprising several recognition sequences in close

proximity. Interestingly, Etf1 occupies roughly the same
number of loci per gene at all levels of expression, but
these regions are split into significantly more subpeaks
in highly expressed genes. This suggests that the fre-
quency of binding to regulatory elements may enhance
the expression of Etf1 target genes.

Identification of binding motifs
A common aim in transcription factor-binding site ana-
lysis is to identify known and novel sequence patterns
occurring within peak regions. To determine whether
consensus binding sites are present in a set of ChIP
DNA fragments, statistically over-represented subse-
quences can be found using motif discovery software.
The accuracy of motif analysis relies on the specificity
of the input sequences, as the presence of excessive
flanking regions will often inhibit the detection of com-
mon patterns. It is therefore advantageous to reduce
non-specific sequence content in order to minimize the
amount of uninformative background from which motifs
must be distinguished [21].
The ability to refine the set of input sequences can

improve both the accuracy and success rate of motif dis-
covery. In addition to subdividing signal peaks into dis-
crete loci, PeakSplitter can be used to extract genomic

Figure 6 Correlation between binding sites and target gene expression for three transcription factors. The number of peaks and
subpeaks identified in promoter-proximal regions (up to 2 Kb upstream) and within genes exhibiting different expression levels are plotted.
Darker colors indicate higher expression.
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DNA sequences corresponding to subpeak summit
regions, which can then be used as input candidates for
motif analysis. This feature is particularly useful when
applied in conjunction with peak-calling software that
does not report locations of greatest read depth within
peak regions.
We employed MEME [22] to assess the performance

of motif discovery using the subpeak summit sequences
output by PeakSplitter relative to entire peak regions.
The detection of new sequence motifs has been shown
to plateau with a high number of input sequences [23].
Therefore we divided each ChIP-seq dataset into groups
of 500 peaks, retrieved genomic DNA sequences corre-
sponding to peak regions and used these as input to
MEME. We then repeated this procedure using subpeak
summit sequences as reported by PeakSplitter.
The number of peak/subpeak sets where a pre-

viously identified binding sequence for each transcrip-
tion factor could be found are reported in Table 1.
The consensus motif (Figure 7) was found for all

factors using sequences corresponding to the summit
regions reported by PeakSplitter, which was not the
case when using entire peak sequences. Furthermore,
processing sequences for motif discovery required
significantly less computational time after applying
PeakSplitter, on a high-performance compute cluster
all 246 groups of 500 Esrrb subpeak summit sequences
could be processed in under 3 hours, compared to
2.5 days to perform the same analysis on 166 full-
length peak sets.

Influence of peak-calling methods on motif discovery
The motif analysis described above could potentially be
biased toward subpeak division if a particular peak-call-
ing algorithm consistently reports longer peak regions
than others. To verify whether this is the case, we com-
pared the performance of PeakSplitter and subsequent
motif discovery on the output of several alternative
peak-calling utilities, using the Oct4 ChIP-seq profile as
a representative example.

Figure 7 Motif discovery from subpeak summit regions. Identification of statistically over-represented sequences present in ChIP-seq binding
loci, using the de novo motif discovery tool MEME [15]. The consensus sites are generally in agreement with those reported in [4], although in
some cases (c-Myc, n-Myc, Nanog, Sox2 and Zfx) a shorter core motif was found. Two putative binding motifs have additionally been identified
for Etf1, denoted here Etf1(a) and (b).
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The sequencing data were first processed with six dif-
ferent peak callers: MACS [2], USeq [5], SISSRs [8],
FindPeaks [1], ChIPSeqMini [6,24] and SWEMBL [25].
Default parameters were used in each case, with the
exception of FindPeaks where a height threshold of 5
was applied to the output. The number of peaks
reported by each peak caller is presented in Table 2,
along with the peak length distribution. All peak callers
except SISSRs report peak regions with median lengths
between 261 (USeq) and 1189 (FindPeaks).
We then applied PeakSplitter to subdivide the peak

regions called by each program, and compared the num-
ber of subpeaks reported both with and without filtering
based on minimum read depth. Such filtering is gener-
ally necessary to exclude spurious peaks in regions
where sparse read mapping contributes to low-level
background signal. The numbers of resulting subpeaks
and their length distributions are listed in Table 3. The
relative numbers of peaks differ significantly when the
unprocessed .wig signal was used as input. Interest-
ingly though, the peak length distributions are nearly
identical across different methods.
We next examined the agreement between the output

of each method by comparing the overlap between the
reported peaks and subpeaks. A non-redundant list of
peak loci was created by merging overlapping regions
output by each program; the resulting numbers reflect
how many called a peak within each site. The intersec-
tion is represented in Figure 8. FindPeaks and SWEMBL
reported the highest numbers of peaks not supported by
other methods, whereas USeq called the lowest number
of peaks overall and is excluded from the figure for
clarity. The relative overlap between the remaining five
methods is similar when considering either the original
peaks (Figure 8A) or subpeaks (8B).
Finally, we used these results to determine whether

peak subdivision enhances motif discovery. The merged

peak and subpeak datasets were divided into groups of
300 sequences and used as input to MEME. Since indi-
vidual peak summit information is lost when regions
called by different programs are merged, we used the
entire peak sequences for motif analysis rather than
regions flanking the summit. Following this analysis the
canonical Oct4 binding sequence was not identified in
any of the datasets containing the original peaks. After
PeakSplitter was applied the motif was found in all of
the subpeak datasets, aside from one instance where an
Oct4 half-site was reported. These results indicate that
subdividing signal peaks is essential for accurate motif
discovery, independent of the original peak-calling
method used.

Conclusions
Regulatory elements identified through functional geno-
mic assays are commonly determined based on signal
peaks from tiling array fluorescence data or aligned
reads from massively parallel sequencing. In order to
interpret the results of such experiments, they must be
considered in context with genes and regulatory ele-
ments in proximity to peak regions. Methods to auto-
mate the functional annotation of chromatin binding
and modification loci can greatly ease characterization
of their biological significance in genome-wide analyses.
A variety of tools are available for processing the pri-

mary data generated by ChIP-seq experiments, such as
mapping sequence reads to a reference genome and
identifying areas of significant enrichment. However,
this is not the case for downstream analysis and data

Table 2 Numbers of peaks and length distributions
reported by various peak-calling programs

Program Peaks Length

min Q1 Median Mean Q3 Max

FindPeaks † 38837 301 821 1189 1379 1725 24970

SWEMBL 33475 100 296 381 429 494 8669

MACS ‡ 9818 113 308 380 407 477 5983

ChIPSeqMini 4019 38 200 278 300 375 1291

SISSRs ‡ 3498 40 40 60 82 100 640

USeq ∓ 979 109 207 261 273 318 1521
† Minimum peak height = 5
‡ P-value < 1e-5

∓FDR 1%, fold change = 2

ChIP-seq data for Oct4 [12] were analyzed using six different peak callers. The
numbers of peaks identified by each method along with the respective length
distributions are listed.

Table 3 Numbers and length distributions of subpeaks

Program Subpeaks Length

unfiltered/
filtered

min Q1 median mean Q3 max

FindPeaks 414727/14177 4 41 51 60 65 607

Adjusted
output

118724/45588 37 460 560 590 692 2490

SWEMBL 186472/13056 3 41 52 59 68 351

Adjusted
output

88908/37095 2 145 185 195 233 1237

MACS 61283/8504 4 42 53 60 69 351

Adjusted
output

16989/10928 39 220 289 293 359 1329

ChIPSeqMini 22704/7024 4 41 52 58 69 351

SISSRs 6854/2730 1 36 45 47 55 201

USeq 5100/2851 4 39 54 59 73 350

Experimental signal peaks output by different methods and subdivided using
PeakSplitter. Subpeaks generated with and without filtering based on a
minimal height threshold of 5 are reported, along with subpeak length
distribution. Peak subdivision was applied based on a .wig file produced
from the raw aligned reads, as only MACS, FindPeaks and SWEMBL output
adjusted .wig files. For these methods PeakSplitter was also run using the
modified .wig data generated by the respective program.
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integration. Existing solutions that address these issues
either rely on the transfer of large datasets via the Web
for remote processing [26], require local installation of
target genome databases [27], or operate within a speci-
fic computing environment [28].
PeakAnalyzer is a standalone solution amenable to a

wide range of applications, including comparison of data
generated on different experimental platforms. The soft-
ware can accept any genomic loci as input and therefore
can be used to process datasets spanning various meth-
ods, such as ChIP-seq, ChIP-chip, DamID, MeDIP and
bisulfite sequencing. The PeakAnnotator component
facilitates the automated annotation of numerous
experimental results, and obviates the need to import
large datasets into a genome browser for manual visuali-
zation and assessment.
Subdividing genomic loci with PeakSplitter is particu-

larly useful for discerning individual binding sites that
may be present in aggregate peak regions, and in
extracting candidate sequences for motif analysis. We
observe an increase in both accuracy and efficiency in
motif search when ChIP data are processed by PeakS-
plitter. Partitioning broad signal peaks into discrete loci
enriches the dataset for sequences containing transcrip-
tion factor-binding sites and other regulatory elements,
and can enhance the discovery of new consensus motifs
by providing a more focused set of candidate sequences
for alignment and/or model building.

Availability and requirements
• Project name: PeakAnalyzer
• Project home page: http://www.bioinformatics.org/
peakanalyzer or http://www.ebi.ac.uk/bertone/
software

• Operating system(s): Platform independent
• Programming language: Java, C++
• Other requirements: Java 1.5 or higher, R for
graphical output (optional)
• License: MIT/X Consortium
• Restrictions to use by non-academics: none

Additional material

Additional file 1: Supplemental material. Algorithm proofs, procedural
example of PeakAnnotator functionality, Figures S1 and S2, Table S1.
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