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Survival dimensionality reduction (SDR):
development and clinical application of an
innovative approach to detect epistasis in
presence of right-censored data
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Abstract

Background: Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several
computational approaches have been developed to model gene-gene interactions in case-control studies,
however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality
Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets.

Results: The algorithm requires neither specification about the underlying survival distribution nor about the
underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic
epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The
SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated
with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal
effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the FcgRIIa gene and the
rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals.

Conclusions: Simulation studies and application in a real-world setting support the capability of the SDR algorithm
to model epistatic interactions in candidate-genes studies in presence of right-censored data.
Availability: http://sourceforge.net/projects/sdrproject/

Background
The complex nature of human disease has long been
recognized and, with the exception of a limited number
of examples which follow the rules of mendelian inheri-
tance patterns, common disease results from the poorly
understood interaction of genetic and environmental fac-
tors [1,2]. At the same time, gene-gene interactions that
do not result in linearity between genotype and pheno-
type (epistasis), may involve several genes at time, drama-
tically increasing the complexity of the phenomenon.
Epistasis can either be defined from a biological point of
view as deviations from the simple inheritance patterns
observed by Mendel [3] or, from a mathematical point of

view, as deviations from additivity in a linear statistical
model [4].
The study of statistical epistasis by traditional para-

metric models is challenging and hindered by several
limitations. These include, the problem of the sparseness
of data into the multidimensional space [5], the loss of
power when adjusting for multiple testing to decrease
type I error [6,7], the loss of power in presence of multi-
collinearity [8] or genetic heterogeneity [1]. To address
these issues, several non-parameteric multi-locus meth-
ods, essentially based on machine-learning techniques,
have been developed and/or applied to genetic associa-
tion studies with positive results [9]. The application of
data mining algorithms to detect non-linear high-order
interactions in the context of survival analysis is more
complex and thus far limited to a few examples [10-12].
However, the effective ability of these algorithms to
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model gene-gene interactions and their power to detect
epistasis in survival analysis has yet to be determined.
At least two points in modelling non-linear interac-

tions in survival analysis should be taken into account.
The first, is the proper way to handle censored data,
that is those cases for whom the outcome has not yet
happened at the end of the observation time (survival
time) or who did not have the event until the end of
study (including lost cases and missing data), which are
commonly referred to as right-censored cases [13]. The
second, is the optimal performance measure to be used
in assessing a learned model in survival analysis. In this
paper we present an extension of the multifactor dimen-
sionality reduction (MDR) algorithm [14,15], to detect
and characterize epistatic interactions in the context of
survival analysis which was specifically designed to
address the abovementioned issues. Censored data were
directly handled by estimating individual multilocus
cells survival functions by the Kaplan-Meier method
[16]. Multilocus genotypes were then pooled into high-
risk and low-risk groups whose predictive accuracy was
evaluated by the Brier score for censored samples pro-
posed by Graf et al [17].
The power of the method we propose was at first

evaluated in lifetime simulated datasets with epistatic
effects which belonged to the most common survival
distributions and with different degrees of right-censor-
ship. The method was then applied to identification of
single-nucleotide polymorphisms (SNPs) associated with
responses to anti-tumor necrosis factor (TNF) agents in
patients with rheumatoid arthritis (RA) and active
disease.
The notion of pharmacogenetics is not anew in RA

and several candidate-gene studies have demonstrated a
genetically-based individual variability to treatment with
methotrexate or anti-TNF therapy [18-20]. However,
there is no consensus at present as to whether pharma-
cogenomics will allow prediction of anti-TNF therapy
efficacy in RA. So far pharmacogenomics studies in RA
have produced conflicting results and population stratifi-
cation and linkage disequilibrium have been cited as
potential causes for the inability to replicate results of
genetic association studies [21]. Yet, as demonstrated by
Greene et al [22] when main effects fail to replicate,
gene-gene interaction analysis should also be considered
as a potential source of variance.

Methods
Description of the survival dimensionality reduction
(SDR) algorithm
The core of the SDR algorithm is the classification pro-
cedure used to label as “high-risk” or “low-risk” the
multilocus cells that result from gene-gene interaction.
This procedure will be used both for feature selection

and for model validation as described in the forthcom-
ing sections.
SDR assignments and evaluation
The SDR procedure for classification is illustrated in
Figure 1 and it involves 5 steps.
Step 1: We firstly calculate by the Kaplan-Meier

method [16] the survival estimates Ŝ(t) for the whole
population in a dataset or dataset partition:

S t
n

n
t t

i i

i
i

∧
= −

≤
∏( )



where, ni is the number of cases “at risk” of an event
prior to ti, and δi, is the number of events at time ti.
Step 2: We then select n discrete variables from the

dataset and represent all the possible multidimensional
cells resulting from their interaction. For each multidi-
mensional cell, survival estimates at each time interval
Ŝc(ti) are calculated as described above.
Step 3: The difference Dc(ti) between the multilocus

cell survival estimates and the whole population survival
estimates, is calculated for each time interval ti:
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Step 4: All the Dc(ti) for each multilocus cells are then
averaged. As the product-limit estimator is de facto a
geometric progression, Dc(ti) are averaged via the geo-
metric mean (GM) rather than via the algebraic mean.
As it is impossible to calculate the geometric with zero
or negative data point values, these should be trans-
formed to a meaningful equivalent positive number;
being -1 < Dc(ti) < 1, transformation is made adding 1
to any Dc(ti) value. Considering a finite number n of
time intervals and denoting tn as the survival time at the
nth time-interval we thus have:
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Step 5: Cells with GMc(tn) ≤ 1 are classified as “high-
risk” and cells with GMc(tn) > 1 are classified as “low-
risk”. Examples from high-risk cells are pooled into one
group and those from low-risk cells into another.
Once dimensionality has been reduced to one dimen-

sion, SDR predictions may be evaluated via different fit-
ness measure. Herein, we employed the Brier score for
censored data. The Brier score is a metric widely used
for predicting the inaccuracy of a model and in its mod-
ified version proposed by Graf et al [17], it can incorpo-
rate censored samples. The Brier score BS(t) for
censored samples for a given t > 0, is defined as:
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where Ĝ(t) denotes the Kaplan-Meier estimate of the
censoring distribution G(t) which is based on the obser-
vations (ti, 1 - δi) and I stands for the indicator function.
BS(t) depends on time t, hence it makes sense to use the
integrated Brier score (IBS) as an overall measure for the
prediction of the model at all times:

IBS t BS t tn

tn

= − ∫( ) ( )1

0

d

The lower the IBS the less inaccurate or, conversely,
the more precise the prediction is.
Feature selection and model validation
(k-fold Cross-Validation)
From a lifetime dataset, relevant features are extracted
and validated via the k-fold cross-validation method, as
described by Ritchie and co-workers [14].
For feature selection, the dataset is equally partitioned

in k mutually-exclusive testing sets; one k set is retained
for model validation whilst the remaining k-1 parts of

Figure 1 Survival Dimensionality Reduction (SDR) process. Step 1, survival estimates are calculated in the whole population by the Kaplan-
Meier method. Step 2, survival estimates are computed in each multidimensional cell. Step 3, time-point differences in survival estimates
between the whole population and each multidimensional cell are calculated. Step 4, time-point differences are normalized to 1 to take into
account negative values and then averaged via the geometric mean (GM). Step 5, individual data from multidimensional cells with GM ≤ 1
("high-risk”) are pooled and compared via log rank-test statistic, to individual data from multidimensional cells with GM > 1 ("low-risk”).
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the dataset are used as a training set. This process is
then repeated k-times with each of the k testing samples
never included in the feature selection process. In every
training set, all the possible combinations of n-variables
and the multilocus cells that result from their interac-
tions are represented into the multidimensional space.
SDR models are then iteratively built for each combina-
tion of n-variables and training IBS scores are calcu-
lated. For each n-combination of variables, the k
training IBS are then averaged and the n-combination
yielding the lowest mean IBS is selected and considered
for model validation.
In the model validation phase, SDR assignments for

the best n-combination of variables are determined in
every training set. On the basis of training assign-
ments, the instances from the corresponding k testing
sets are labelled as “high-risk” or “low-risk”. From
these labels, a cross-validated IBS is then calculated;
for this purpose, instead of mathematically averaging
the k testing IBS, we merged the testing instances in a
meta-analysis-based on individual patient data-fashion
[23]. Let T1, T2, ... Tk be the k testing sets, the indivi-
dual patients data together by their assigned labels are
merged sort to produce a larger TM testing set. The
IBS (henceforth labelled as meta-IBS) is computed in
the TM set and the n-combination yielding the lowest
meta-IBS is then chosen as the final model. This way
both feature selection and model validation are used to
determine the best epistatic model in lifetime datasets.
Working on the merged dataset (TM), we: 1) still
ensure the independence of the testing sets, as testing
assignments are calculated during the feature selection
phase; 2) reduce the bias in the calculation of the BS
(t), as the Ĝ(t) and G(t) weights used in the BS(t) for-
mula would otherwise be unreliably estimated in test-
ing sets of limited size; 3) avoid to solely rely on a
measure of central tendency (e.g. the mean) to esti-
mate the predictive accuracy of our model, utterly
ignoring any measure of variance.

Data simulation and power calculation
Simulated epistatic datasets were modelled upon five
different survival distributions, described by the logistic-
exponential equation [24]; exponential (EXP), bathtub-
shaped failure rate (BT), upside-down bathtub-shaped
failure rate (UBT), decreasing failure rate (DFR) and
increasing failure rate (IFR):
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where, S(t) is the logistic-exponential survival distribu-
tion, t is the survival time, l is a positive scale para-
meter and � is a positive shape parameter and θ is a ≥ 0
parameter that shifts the distribution to the left. l, �
and θ were adjusted so that the cumulative prevalence
of the event at the end of the observation time tn or
K(tn), was equal to an arbitrary value of 0.750 (see Addi-
tional file 1, Table S1). For data simulation tn was set to
5 time units.
According to Culverhouse et al [25], we then gener-

ated different epistatic models for two biallelic SNPs A
and B, both in Hardy-Weinberg equilibrium (HWE) and
with minor allele frequency (MAF) = 0.2, so that K(tn) =
KA = KB, where KA and KB are the marginal penetrances
for SNP A and SNP B. As these models were adjusted
to fit the cumulative prevalence at tn, their broad-sense
heritability (H2) was considered to be a cumulative esti-
mate of H2 at tn or H2(tn). For data simulation H2(tn)
was set to 0.10, 0.15, 0.20 or 0.25.
Time-point multilocus genotype penetrances- hence-

forth labelled as (Genotype)tI -, were adjusted so that the
cumulative prevalence at each time-point K(ti) would fit
the survival distribution. We assumed that the relation
between SNP A and SNP B is purely epistatic at each
time-interval ti, that is K(ti) = KA(ti) = KB(ti) with 0 <ti ≤
tn, and that the two-locus model is always proportional
at the different ti. Hence, applying the product-limit
estimation, we obtain:

1 1 11− = − −−K t K t Kti i i( ) [ ( )]*( )[ ]

where Kti is the time-point prevalence at ti and;
ti ≤ tn.
From Kti we can calculate (Genotype)ti from the

cumulative multilocus genotype penetrances [Genotype
(tn)] previously used to compute K(tn) and H2(tn):
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Similarly, time-point cumulative estimated multilocus
genotype penetrances [Genotype(ti)] are proportional to
K(ti). These penetrances can be used to derive the time-
point cumulative estimated H2 or H2(ti).
Once (Genotype)ti values had been calculated, a popu-

lation of 65000 individuals was built considering all the
time-intervals 0 < ti ≤ tn. Herein, from 5 survival distri-
butions with 3 different H2(tn) and two tn we obtained
40 populations where the outcome was related to the
epistatic interaction between SNP A and SNP B (see
Additional file 1). To each of these populations 13 unre-
lated SNPs in HWE, with MAF ranging from 0.1 to 0.5
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were added. An additional 5% censoring/year was also
added to account for hypothetical non-event related
causes of withdrawal from observation.
From the simulated populations we finally randomly

draw 100 samples of 200 cases and 200 controls (e.g.
50% censorship) or 120 cases and 280 controls (e.g. 70%
censorship). A total of 4,000 datasets were then gener-
ated for simulation. Power was estimated as the number
of times SDR correctly identified the two functional
SNPs out of 100 datasets/model/degree-of-censorship.
Datasets can be obtained upon request from the
authors.

Application of the SDR algorithm to the RA dataset
The SDR algorithm was then tested in a real-world
dataset which consists of previously unpublished data
about 386 Dutch patients with (1) a diagnosis of RA
according to ACR criteria [26], (2) a disease activity
score (DAS28) >3.2 [27] and (3) previous treatment with
at least two other anti-rheumatics including methotrex-
ate (MTX) at an optimal dose (maximum dose of 25
mg/week) or intolerance for MTX, that underwent
treatment with anti-TNFa agents. These patients were
extracted from the Dutch Rheumatoid Arthritis Moni-
toring (DREAM) registry [28] and genotyped for 39 can-
didate SNPs and evaluated every 3 months to ascertain
whether they had reached a clinical remission, defined
as a DAS28 ≤ 2.6 [27]. Genotyping details can be found
in: Pavy et al [29], Coenen et al [30], Toonen et al [31]
and Alizadeh et al [32]. The choice of the studied SNPs
was motivated by results from previous association and/
or pharmacogenomics studies in RA [18-20,33]. A
detailed list of the analysed genetic variants is provided
in Additional file 2, Table S1. The k-nearest-neighbour
method was used to impute genotypes with missing data
<10% [34]. The open-source Orange data mining soft-
ware (available at: http://www.ailab.si/orange) was used
for imputation. Overall the right-censorship of this data-
set was 68%; 5-fold cross-validation was used for the
SDR analysis. An empirical P-value for the SDR results
was calculated by performing 100-fold permutation test-
ing [35]. A whole SDR analysis, up to the 3rd dimension
was conducted in the permutated datasets during the
permutation procedure.
For all the analyses a modified version of the freely avail-

able SDR algorithm written in Python http://sourceforge.
net/projects/sdrproject/ was used.

Results
Simulated datasets
The penetrance functions for the simulated datasets are
reported in Additional file 1; as it can be observed,
time-point H2 across the different models were consis-
tently low, with a median of 0.017 (interquartile range

[IQR]: 0,011 - 0.025). Power for the SDR algorithm to
correctly identify the causative pair of SNPs in the 20
simulated survival models with 2 different degrees of
censorship is reported in Table 1. Overall, the median
power across all the datasets was 87.5% (IQR, 62.25% -
95%). The relationship between H2(tn) and power fol-
lowed a direct logistic distribution as shown in Figure 2,
(overall, R2 = 0.846; 50% censoring, R2 = 0.886; 70%
censoring, R2 = 0.870). Moreover, the power resulted to
be independent from the survival distribution the
sample was withdrawn from whilst it was inversely
related to the degree of censorship. The H2(tn) values
we employed correspond to mild-to-moderate hazard
ratios (HR) for high-risk vs low-risk combinations in the
different epistatic models: HR = 1.38 for H2(tn) = 0.10,
HR = 1.5 for H2(tn) = 0.15, HR = 1.58 for H2(tn) = 0.20
and HR = 1.69 for H2(tn) = 0.25. Altogether these results
suggest that SDR has a satisfactory power to identify a
pair of causative genes in purely epistatic lifetime mod-
els with mild-to-moderate effect size and for which the
proportionality of hazards holds.

RA dataset
The RA datasets comprises 386 anti-TNFa-treated
patients, aging 45 ± 13.7 (mean ± standard deviation) at
the onset of disease; 78.3% of patients tested positive for
the rheumatoid factor and 262 (67.9%) were females.
One-hundred-forty-five patients (37.6%) were treated
with adalimumab, 201 (52.1%) with infliximab and 40
(10.4%) with etanercept; overall 346 patients (89.6%)
were treated with anti-TNF antibodies (e.g. adalimumab
and infliximab). DAS28 at the beginning of therapy was

Table 1 Power for the Survival Dimensionality Reduction
(SDR) algorithm in models with cumulative prevalence
K(tn) = 0.750

H2(t5)

Model RCR 0.10 0.15 0.20 0.25

UBT 50% 52 81 95 97

70% 59 73 93 93

DFR 50% 52 87 97 98

70% 48 77 87 96

IFR 50% 51 88 92 99

70% 50 87 91 98

BT 50% 46 74 93 97

70% 43 72 91 95

EXP 50% 50 82 95 99

70% 47 80 90 96

Power of the SDR algorithm in simulated datasets modelled using the 5
classes of survival distribution described by the logistic-exponential equation.
Different degrees of right-censoring rate (RCR), and cumulative heritability at
the survival time [H2(t5)] are considered. UBT, upside-down bathtub-shaped
failure rate; DFR, decreasing failure rate; IFR, increasing failure rate; BT
bathtub-shaped failure rate; EXP, exponential.
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5.64 ± 1.09. Clinical remission, based on DAS28, was
observed in 123 cases (31.8%).
Details about the genotyped SNPs along with their fre-

quencies in the studied population are reported in Addi-
tional file 2, Table S1; all the SNPs were in HWE. None
of the single SNPs showed a statistically significant asso-
ciation with response to anti-TNF agents, either under a
dominant or recessive model, as illustrated in Additional
file 2, Table S2 (log-rank-associated p values with 1
degree of freedom, corrected for the number of compar-
ison by Bonferroni adjustment >0.05).
The SDR algorithm sorted out two-way interaction

model, involving the rs1801274 (Fc gamma receptor 2a,
FcgRIIa) and the rs10954213 (interferon regulatory fac-
tor 5, IRF5) SNPs, as the most predictive for responses
to anti-TNF therapy in patients with active RA. Table 2
shows the full analysis conducted by the SDR algorithm
in the RA datasets. As expected, the model overfits in
the training population as the number of SNPs included
in the model increases. Yet, cross-validation prevented
over-fitting as the minimum meta-IBS was observed for
the 2-way interaction, that was thus chosen as the best
epistatic model. This model was significant at the 0.05
threshold after 100-fold permutation testing. Figure 3a

summarizes the multilocus cells for the rs1801274 ×
rs10954213 interaction along with SDR “high-” and
“low-risk” assignments (e.g. “responders” and “not
responders” to therapy). This interaction had the typical
non-linear behaviour of epistatic model. Plotting this
SDR assignments we can observe that patients labelled
as “responders” achieved earlier and higher rates of clin-
ical remission after anti-TNF therapy compared to
patients labelled as “non-responders” (figure 3b) [36].

Discussion
In the present paper we introduce SDR, an algorithm
specifically conceived to detect non-linear gene-gene
interactions in presence of right-censored data. The
need for such a bioinformatics tool comes from the
observation that several studies in the medical field deal
with the loss of data during the period of study, and
that methods that do not take into account censored
data give upwardly biased estimates of failure and/or
suffer from information loss due to reduced sample size.
Cox regression [37], the most popular statistical techni-
que used to analyse time-to-event multivariate model, is
not adequate to detect non-linearities either. Indeed, to
properly model interaction in Cox regression, the user
should have a priori knowledge of the variable relation-
ships and may need to enter nonlinear transforms of the
predictors, but this is often a trial and error approach.
Also, the number of polynomial terms needed to model
complex interactions is inflated as the number of pre-
dictors grows, increasing standard errors and, thus, type
I error [6,7].
Using simulated epistatic lifetime datasets, we demon-

strated that the SDR algorithm retains a fully satisfac-
tory power to sort out a set of causative genes with
mild-to-moderate epistatic effect size from a pool of
candidate genes. These results have been accomplished
by the intrinsic properties of the SDR methodology.
Firstly, SDR is non-parametric, in the sense that it is not
necessary to make a priori assumptions about the
underlying interaction model. Also, SDR requires no
assumptions concerning the nature or shape of the
underlying survival distribution. Secondly, SDR performs
well even in datasets where the right-censorship rate is
high (up to 70% of cases in our simulation). Notably,

Figure 2 Trend of the power for the survival dimensionality
reduction algorithm in the different models. Relationship
between power and cumulative broad-sense heritability (H2)
according to the different degrees of censorship of the sample
datasets (squares = 70%; triangles = 50%). The line represents the
power estimated by the logistic function (R2 = 0.846).

Table 2 Survival dimensionality reduction (SDR) model for the rheumatoid arthritis (RA) dataset

IBS

n-way SNPs (genes) in each dimension Training Testing p

1 rs2327832 (TNFAIP3, OLIG3) 0.263 0.2366 -

2 rs1801274 (FcgRIIa), rs10954213 (IRF5) 0.2339 0.2354 <0.05

3 rs1801274 (FcgRIIa), rs10954213 (IRF5), rs3761847 (TRAF1) 0.2219 0.2393 -

Selection of the best combination of attributes by the SDR method. The model with the minimum testing IBS value in the cross-validated testing sets is indicated
in boldface type. p values associated with the log-rank test statistic calculated by the 100-fold permutation test. SNP, single nucleotide polymorphism.
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when we run MDR ignoring censorship on the same
simulated datasets we observed a dramatic reduction in
the power to detect the causative pair of genes, that ran-
ged from 5% to more than 90% (results not shown).
Beside power, an additional advantage of SDR is that,
combining cross-validation with permutation testing, the
chance of false-positive findings is minimized [14]. Yet,
to generate the simulated datasets we required the
hazards among multilocus cells to be proportional along
the lifetime distribution. Hence, further simulations are
needed to ascertain whether SDR is suitable for situa-
tions where this assumption does not hold, as for
instance in case of additive hazard models. Similarly,
further simulations are needed to establish SDR perfor-
mance in larger datasets, in presence of genetic hetero-
geneity, linkage disequilibrium, or different ranges of
MAF.
SDR is, de facto, an extension of the MDR algorithm

optimized to analyse lifetime distributions, hence it suf-
fers from similar limitations [14] and it shares some
peculiarities with the latter. Namely, the power of SDR
is influenced by the epistatic effect size, which is strictly
related to the (cumulative) heritability of the model [38].
Moreover, as with MDR, the biological significance of
SDR models may be difficult to interpret due to the
non-linear distribution of high-risk and low-risk cells
across the multidimensional space [39]. Finally, SDR
cannot make predictions when multilocus cells contain
no data and GM estimates may be upwardly or down-
wardly inflated when multilocus cells contain few data.
Having demonstrated the capability of SDR to detect

gene-gene interactions in lifetime datasets, we applied
the algorithm to a population of patients with active RA
to identify epistatic interactions that may affect time-
related responses to anti-TNF biological agents. We did

show that among a set of 39 candidate-gene loci, none of
which had a detectable marginal effect on the outcome
variable, the non-linear interaction between the
rs1801274 (FcgRIIa) and the rs10954213 (IRF5) SNPs sig-
nificantly predicted the responses to anti-TNF therapy.
Whilst it is difficult to dissect the biological meaning of

statistical epistatic models [39], it should be noted that
several lines of evidence support a role for Fcg receptors
and IRF5 in rheumatoid arthritis and TNF driven pro-
cesses. Associations between IRF5 polymorphisms and RA
have been described in different populations [40] and a
recent genome-wide association study (GWAS) showed
that the rs4728142 variant in the IRF5 gene, in tight link-
age disequilibrium with rs10954213, is strongly associated
with RA susceptibility [41]. Of interest, functional experi-
ments demonstrated that the rs10954213 SNP significantly
alters IRF5 mRNA expression [42]. The association
between IRF5 gene and RA may be linked, at least in part,
to the ability of IRF5 to regulate the secretion of pro-
inflammatory cytokines. Indeed, Takaoka et al [43] using
mouse models deficient in the IRF5 gene, showed that
IRF5 is generally involved downstream of the toll-like
receptor (TLR)-MyD88 signalling pathway for gene induc-
tion of TNFa and other cytokines relevant to the patho-
genesis of RA. Of interest, the use of anti-TNF agents was
shown to decrease TLRs expression on different cellular
types [44,45]. Similarly to IRF5, the FcgRIIa is involved in
TNFa production in the rheumatoid synovia, as observed
by Clavel and co-workers [46]. The interaction between
the genetic variants of IRF5 and Fcg receptors could thus
influence TNFa production and/or availability, affecting
the clinical response to anti-TNF agents. Additionally, as
postulated by Cañete at al [47], polymorphisms of the
FcgRIIa may alter the clearance rate of anti-TNF antibo-
dies modulating plasma concentrations and consequently

Figure 3 Survival dimensionality reduction (SDR) model for the rheumatoid arthritis dataset. a. Multidimensional matrix for the single
nucleotide polymorphisms (SNPs) interaction; GM, geometric mean of the differences; n, number of cases; e, percentage of events. b. Kaplan-
Meier estimated survival patterns associated with “high-” and “low-risk” assignments. P values are those associated with a chi-square distribution
with 1 degree of freedom.
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their biological effect in subjects with active RA. Theoreti-
cally, this effect should not restricted only to anti-TNF
antibodies, as also anti-TNFa receptors (e.g. etanercept)
contain a Fc portion of IgG1 capable of binding to FCg
receptors to produce biological effects, such as antibody-
dependent cell-mediated cytotoxicity [48].

Conclusions
Herein we introduced SDR, an innovative algorithm to
detect epistasis in lifetime datasets. Simulation studies
and application in a real-world setting, demonstrate the
capability of SDR to detect non linear gene-gene inter-
actions in studies aimed at evaluating the effect of can-
didate genes on time-dependent outcomes. Further
studies are necessary to evaluate its applicability in
large-scale datasets as well.

Additional material

Additional file 1: Epistatic models and simulation specifics. The file
contains the settings used to generate the five survival distributions
upon which epistatic models were modelled. For each epistatic model,
ttime-point and cumulative multilocus genotype penetrances are
reported, along with the time-point and the cumulative broad-sense
heritability and prevalence of the event.

Additional file 2: Genotype frequencies and univariate analysis in
the rheumatoid arthritis (RA) dataset. The file lists in tabular form the
single nucleotide polymorphisms (SNPs) included in the RA case-control
study. It also reports the associations by the log-rank test statistics under
the dominant and recessive model between the studied SNPs and the
occurrence of clinical remission after therapy with anti-TNF agents.
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