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Abstract

Background: The study of biological systems demands computational support. If targeting a biological problem,
the reuse of existing computational models can save time and effort. Deciding for potentially suitable models,
however, becomes more challenging with the increasing number of computational models available, and even
more when considering the models’ growing complexity. Firstly, among a set of potential model candidates it is
difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the nature of an unknown
model listed in a search result set, and to judge how well it fits for the particular problem one has in mind.

Results: Here we present an improved search approach for computational models of biological processes. It is
based on existing retrieval and ranking methods from Information Retrieval. The approach incorporates annotations
suggested by MIRIAM, and additional meta-information. It is now part of the search engine of BioModels Database,
a standard repository for computational models.

Conclusions: The introduced concept and implementation are, to our knowledge, the first application of
Information Retrieval techniques on model search in Computational Systems Biology. Using the example of
BioModels Database, it was shown that the approach is feasible and extends the current possibilities to search for
relevant models. The advantages of our system over existing solutions are that we incorporate a rich set of meta-
information, and that we provide the user with a relevance ranking of the models found for a query. Better search
capabilities in model databases are expected to have a positive effect on the reuse of existing models.

Background
Importance of model exchange and reuse
The study of a complex biological system now fre-
quently includes the use of modelling and simulation
techniques, in order to help understanding the system
of interest, and to provide suggestions for promising
experimental procedures [1]. The rising complexity of
modelled systems (see Figure 1, number of encoded spe-
cies and reactions in BioModels Database [2]), and the
fact that research activities overlap between different
research groups demand for model reuse. Modellers do
not want, or cannot build their models of biological sys-
tems from scratch, but, on the contrary, need to seek
for existing bits and pieces to build their models on,
especially when composing complex systems by combin-
ing smaller sub-models (see for example [3,4]).

Standard formats for model exchange and open model
repositories are crucial tools to make existing models
available and accessible to the community as it becomes
impossible to actually be aware of all existing models,
and research groups involved in the modelling of a sys-
tem of interest. Some standard formats developed for
model representation are widely accepted. Examples
include the Systems Biology Markup Language (SBML,
[5]), CellML [6], or BioPAX [7]. Computational models
of biological systems (bio-models) in standardised repre-
sentation formats are available from different model
repositories, including BioModels Database [2], the JWS
Online Model Database [8], or the CellML Model Repo-
sitory [9].
However, although getting more frequent, model reuse

is not yet common-place. The reasons are similar to
those hampering code reuse in computer science, where
insufficient code documentation and missing modulari-
sation have been the biggest hindrances [10]. Most
models are created using computational modelling
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environments; the constituents’ names are often gener-
ated automatically and therefore are semantically poor.
Models with unspecific species names such as Po1, Po2,
Pc1, Pc2 (for instance, see model BIOMD0000000060 in
BioModels Database), or unspecific reaction names re1
to re76 (model BIOMD0000000227 in BioModels Data-
base) are common-place. A documentation of the
names’ meaning, amongst other things, is essential.

Standardised meta-information representation helps
grasping models’ nature
To countervail the problems experienced in computer
science, efforts for the documentation of models’ nature
were developed. A minimum set of meta-information
that is requested to be provided by many journals with
each published bio-model is the Minimum Information
Required in the Annotation of a Model (MIRIAM, [11]).

Figure 1 Growing number of Computational Biology models and their components in BioModels Database. Upper chart: Numbers of
models in BioModels Database, as of January 2010. Lower chart: Number of species (black bar) and reactions (gray bar) in BioModels Database,
as of January 2010. BioModels Database started with 20 models and a total of 322 species when it was launched in April 2005. In 2007 it already
reached almost 200 models and 10482 species. The release in January 2010 recorded 453 models with 33702 species and 41069 reactions.
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Such meta-information provides a better understanding
of a bio-model’s complex and diverse semantics and, if
computationally processed, enhances the model reuse.
MIRIAM meta-information encompasses general

information about the model itself, e. g. the model’s
name, authors, or publication reference. But it also
includes detailed descriptions of the model constituents,
including the identification of encoded species, reac-
tions, and compartments. MIRIAM itself is a textual
recommendation, in form of a Minimum Information
guideline following the MIBBI idea of coherent report-
ing guidelines for biological and biomedical investiga-
tions [12].
A technical, standardised way of providing the MIR-

IAM-recommended meta-information is the MIRIAM
standard annotation [11,13]. The proposed format is a
triplet referencing a piece of meta-information, also
referred to as annotation, in an external resource. The
reference to that meta-information is build of (1) the
data type, (2) the identifier, and (3) a qualifier from a
set of pre-defined qualifiers. Here the data type specifies
the namespace within which to interpret the identifier.
Some resources encode their knowledge as controlled
vocabulary or ontologies. Among existing ontologies
that are also used as data types by the MIRIAM stan-
dard are the Systems Biology Ontology (SBO, [14]), the
Gene Ontology (GO, [15]), or the NCBI Taxonomy
http://www.ncbi.nlm.nih.gov/Taxonomy/. One advantage
of using ontologies, i. e. “explicit specifications of a con-
ceptualization” [16], over free text information is the
standardised encoding of biological knowledge that is
then put into relation with other ontology terms. The
MIRIAM standard identifier refers to the actual entry
within the data type. It corresponds to the identifier
(ID) the entry has in the external resource. Finally, the
qualifier is used to characterise the relation between the
annotated model element and the encoded meta-infor-
mation. The possible qualifiers are defined at BioMo-
dels.net and include relationships such as is,
isVersionOf, or hasPart[14].
For example, a species element encoded in a parti-

cular SBML model could stand for the compound
“phosphosphoenolpyruvate” and in the model simply be
called “PEP”, offering little valuable information to the
user. This compound, on the other hand, is described
by the entry CHEBI:18021 in the Chemical Entities of
Biological Interest (ChEBI, [17]) ontology. Referring to
this particular identifier in that data resource by linking
the resource and ID to the species element via the
qualifier is, gives software and users access to a wealth
of information independent of the elements name, such
as synonyms, molecular and structural formulae and
cross-links to other databases. Technically, the link is
encoded in a standard form using URNs, e. g. urn:

miriam:obo.chebi:CHEBI%3A18021 for the given
annotation. Another example is the annotation of a
reaction element in an SBML document. Given a
reaction element in a particular model stands for the
“phosphorylation of glucose by hexokinase during glyco-
lysis”. This enzymatic reaction is also described by the
GeneOntology entry GO:0004396 (hexokinase activity).
Attaching the URN urn:miriam:obo.go:GO%
3A0004396 to the reaction element using the qualifier
isVersionOf, semantically enriches it and again gives
access to further information, like alternative terms and
enzyme nomenclature codes.
Extending the MIRIAM information
In order to enable a fine-grained retrieval of bio-models,
[18] proposes to consider even more information than
MIRIAM’s required one. Among them are versioning
information on both the model and its annotations, but
also information on the model encoding format, and
information that is only related to the model, such as
model behavior under certain conditions, simulation
experiments applicable to the model, or simulation
results available for the model. A detailed description of
different kinds of meta-information considered in this
work, even beyond MIRIAM is given in [19].

Finding models in model repositories using Information
Retrieval techniques
We argued that a crucial step for a computational sys-
tem to return relevant models upon a user’s query is the
availability - and then incorporation - of meta-informa-
tion on top of a model’s structure [18]. With the advent
and growth of Computational Systems Biology research,
the number of bio-models available rapidly increases.
For example, the number of bio-models available from
BioModels Database is steadily growing, doubling about
every 18 month (see Figure 1, number of models in Bio-
Models Database). As a consequence, searching an exist-
ing model base for relevant models can result in a rather
big number of models. Therefore, it is very important to
support the user in finding relevant models in existing
resources. It is common-place to leave the user with an
unordered result set of models, without any explanation
of why a particular model was found. For complex mod-
els the user is typically unable to grasp the model’s nat-
ure at first sight [18]. Having no information to assess
how good a model matched his query, he cannot decide
on its relevance. Information Retrieval techniques, which
have been widely and successfully used in other areas,
offer exactly these benefits for bio-model retrieval.
Information Retrieval is “the process to recover an

information stored in a system (i. e. a database) on users
demand” [20]. One application for which the successful
ranked retrieval of annotated documents has already
been shown is Multimedia Information Retrieval (MIR).
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MIR models describe songs, images or videos annotated
with different kinds of information, including meta-infor-
mation like author or title, but also temporal or spectral
information, as well as keywords. Currently, MIR distin-
guishes three independent classes of similarity measures
depending on the kinds of identified features [21]:
Metadata-based similarity measure (MBSM) defines

queries by connecting keywords gained from the media
object with Boolean operators like ⋀, ⋁. Text retrieval
techniques are then used to compare these query key-
words with features of the multimedia objects.
Content-based similarity measure (CBSM) utilizes

so-called low-level features, i e. automatically extractable
items, such as rhythm. Queries make use of these fea-
tures to search the content of music pieces. Different
methods have been developed to retrieve the items
represented by low-level features, e.g. humming, tapping
or query-by-example.
Semantic-description-based similarity measure

(SDSM) evaluates meta-information on multimedia
objects that are described with predefined words of
different vocabularies.
Motivated by the above observations, we propose a

novel retrieval and ranking framework that takes into
account different model meta-information to perform
similarity-measure-based operations on bio-models. We
are aware that data retrieval techniques have already
successfully been applied to Life Science data in general
[22]. Existing approaches do, however, not consider the
retrieval and ranking of models.

Results and discussion
Here we apply an adapted version of the aforementioned
solutions for MIR on bio-model retrieval. To re-use
MBSM for bio-model retrieval, the MIRIAM required
meta-information on the model and its constituents is
essential. Furthermore, we use parts of the meta-infor-
mation suggested by [19] and [18]. When adapting
CBSM techniques to bio-model retrieval, low level fea-
tures (such as the encoded species, reactions, and so on)
can be used. Finally, SDSM techniques can be used by
tagging the models manually with relevant terms.

Definitions
Our study necessitates a collection of k models from a
pool of bio-models M and associated meta-information
that is sufficient to rank the retrieved results with
respect to a user’s query. An annotated bio-model is
defined as:
Definition 1 (Annotated bio-model). An annotated

bio-model m Î M is described as a tuple m = (mS, mA) of

1. model source code mS in a machine-readable
format

2. annotation information mA describing the nature
of a bio-model, and of its constituents.

In the following, we will not distinguish annotations of
the model m from annotations of the model’s constitu-
ents. All annotations will be processed equally, denoted
as mA. The annotation information mA might be
referred to as third party knowledge linked to mS.
A feature is defined as:
Definition 2 (Feature). A feature f Î F is an attribute

or aspect of a model m instantiated either through its
model encoding mS or its annotation information mA.
Definition 3 (Term). Let T be a set of words called

terms, then ( ) { : }T T= ⊆  is the set of all subsets
of T called power set.
A model collection is then:
Definition 4 (Model collection). A model collection

CM is a representation of M. Each mj Î M can be
mapped on a cj Î CM by splitting the model mj into fea-
tures f Î F and their instances  f T∈( ) . So
c f fj f n fn

= {( , ), . . . ,( , )}.1 1
     

Those Definitions (1, 2, 3, 4) hold for each model mj

Î M classified into features and represented by cj Î CM.
We furthermore define a query as (definition 5):
Definition 5 (Query). A query

q q q Qf fn
= ∈{ , . . . , }

1
     is a set of query parts

q F Tf ∈ × ( ) with qf = (f, rf ); f Î F and  f T∈( ) .
All query parts qf of a query q are pairwise disjoint.
q Î Q represents the user query. The parts qf of q can

either be mapped on the full set of defined features F,
or on a subset of F.
Assuming a collection CM of processed models M and

extracted model features fi, ..., fn Î F, we now define
bio-model retrieval.
Definition 6 (Bio-model retrieval based on [23]). An

Information Retrieval model is a quadruple (CM, Q, FW,
R(q, c)) where

1. CM is a feature-classified representation of M
2. Q is a set of queries q, where each part qfÎF Î q
can be mapped on a f Î F
3. FW is a framework for model representations,
queries and their relationships
4. R(q, c) is a set of ranking functions defining an
order among c Î CM with regard to q.

The framework FW realises the retrieval functionality.
Each ranking function r, when applied to a query q,
returns a ranked list of model representations c. The
order of retrieved results is determined by the ranking
function itself, the underlying collection and by the par-
ticular query. From the ranked list of feature-based
model representations cj, we deduce the ranking of the
corresponding models mj represented by cj.
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Conceptual architecture of the framework
To perform ranked retrieval of annotated bio-models,
we use a combination of text retrieval, ontologies, simu-
lation dependent data, and model meta-data. The con-
ceptual architecture for the developed retrieval and
ranking framework is shown in Figure 2.
For a user-given query q, consisting of a set of feature-

assigned terms (f, r), we return a ranked list of models.
The ordered list of models mj ... mk is inferred from the
order that is defined by the ranking function r(cj, q) > ...
>r(ck, q), where cj is the most relevant model representa-
tion with regard to the query q (see definition 6). To
achieve this order, each query q is first disassembled
into a set of sub-queries q1 to qn. Each sub-query qi
now contains a set of terms that will be mapped on a
particular feature fi. However, the query parts qi are not
directly executed on the data resources, but rather

expanded using the Query Expander. So far we distin-
guish two different kinds of sub-queries:
Semantic sub-query is any query addressing model

constituents. This type of query is applied to the
SEMANTIC INDEX.
Ontology sub-query is any query enriching the user

query by finding related ontological terms. This type of
query is applied to the BIOLOGY ONTOLOGIES.
All expanded sub-queries are assembled into a final

query q* which is sent to the retrieval and ranking sys-
tem. The Extended Boolean Model [23] is used to
select all models that are relevant to the query, and
then the Vector Space Model [24] is used to define the
ranking on those models. Both IR models work on the
MODEL INDEX which contains all models and their
associated URIs. The result of the process is a ranked
list of model IDs.

Figure 2 Conceptual architecture. Overview of the conceptual architecture of the proposed ranking- and retrieval system. A version has been
implemented in BioModels Database. The architecture shows the process of transforming a user given query by creating sub-queries, which are
then assembled by enrichment of structural information and semantic indexing (see also Figure 3). The re-assembled query is then sent to the
retrieval and ranking module, which makes use of the Extended Boolean Model to retrieve a list of matching models, and the Vector Space
Model to rank the list of retrieved models. To determine the ranking, different weight information is used. Those are, however, not shown in the
given Figure.
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Architectural components of the framework
Types of user queries
We process and store information from different
resources, and map them on our internal structures; i. e.
full-text indexes and databases. As a result it becomes
feasible to answer very specific queries. We distinguish
two different types of queries. A query may consist of a
number of terms (query by value, QBV) or of a com-
plete set of features representing a model (query by
model example, QBME).
Query by value (QBV) Using QBV, the user query q

consists of features and free-text terms (f, r). The user
given features f are a subset of all available features F.
Query by model example (QBME) Using QBME, a

model forms the basis of a search for similar results,
i.e. the complete set of features F is aligned.
Questions a user might have in mind are “Which

models describe calcium concentrations in pancreatic
cells?” (QBV), or “Are there any models dealing with the
effects of caffeine on blood pressure in humans?” (QBV).
One could also easily imagine to search for a model that
“is similar to model BIOMD0000000227” (QBME).
Model index: incorporating model meta-information
The MODEL INDEX contains references to all models
mi Î M, as well as encoded information about constitu-
ents and meta-information.
Relevant features representing a bio-model were

defined and grouped into several content-related dimen-
sions to facilitate the creation of the bio-model collec-
tion CM. Each of those dimensions has a certain
importance associated to it, i. e. a measure of how rele-
vant the information it carries is (see Table 1). (1)
Model constituents is an important dimension which
contains several features describing a model’s constitu-
ents, e. g. species or reactions. (2) Information about
authors, encoders or submitters of a model are grouped
into a persons dimension. (3) Publications or published
abstracts are contained in the publication dimension.
The (4) user generated content holds information like
keywords or tags. To restrict search results timewise a

(5) dates dimension holds time information, for example
submission or modification dates. Finally, the (6) admin-
istrative data dimension contains specific information
about the model file or the representation format used
to encode the model.
The concept of dimension is a rather general one.

Each dimension can, however, be refined into features f.
A full list of features that make up the model index for
all aforementioned dimensions can be found in Table 2.
For example, the dimension model constituents is split
into several features, among them species, compartment,
reaction. Limiting a query to certain model features
allows a user to be more specific. For example, it is pos-
sible to restrict a query caffeine to the feature species
- and to disregard a “tribute to caffeine for the writing”
in the publication feature. The values for each defined
feature can be automatically extracted from a bio-model
m if m complies with the given model definition 1. The
additional assignment of weights for each distinct fea-
ture helps to determine similarity values, as will be
explained later.
Semantic index: identifying biological entities
Bio-model entities can be described by annotation infor-
mation mA encoded in MIRIAM standard URIs and
stored in the Model Index. When searching for a model,
a user cannot be expected to know the URIs for each
biological entity of interest. On the contrary, searches
for a constituent or bio-model must be possible using
characterising terms, i. e. keywords. Therefore, the URIs
must be parsed and the extracted information processed.
The textual representation of each known constituent
found in the external resources is resolved from its URI,
and then indexed. By making it available for searching,
keywords describing a model constituent can be used to
retrieve models. For example, when searching for mod-
els dealing with caffeine, one may type either caf-
feine, 1,3,7-trimethylpurine-2,6-dione, or
even C8H10N4O2.
To map the textual descriptions, and also synonyms of

a term, on a set of URIs representing the best matches

Table 1 Importance of different information dimensions

dim Part Importance Description

1 Administrative data low administrative data like id, file
name, file version, encoding formalism

2 Persons medium covers the author, encoder and submitter

3 Dates low submission or modification date

4 Publication high main publication or description of the model

5 Constituents very high information about the model constituents

6 User generated content very high additional user-provided information,
e. g. keywords

Information dimensions sorted by relevance. The information that is relevant for the characterisation of a bio- model’s ranking is grouped into six different
dimensions (dim). Each dimension has a different influence on the ranking. The least important dimension is the administrative data, the most important
dimensions are the one encoding information about the model constituents and the one created from user generated contents.
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for a defining term, a so-called SEMANTIC INDEX is
used (see Table 3 for the structure of the Semantic
Index). This index contains all URIs found in the mod-
els included. It furthermore is build of a column for
each existing qualifier. Every model m that contains a
particular URI is added to the set of model IDs in the
relevant qualifier column. The semantic index therefore
enables to link a URI, resolved from search terms, to a
set of bio-models within the collection CM.
Having build the Semantic Index, queries may now be

limited to models that use a particular qualifier to link a
constituent to an annotation. For example, a user
searching for caffeine can limit the result to models
qualifying the annotation with is and isHomolog.

The models using the query term in conjunction with
is could be ranked higher. This procedure also allows
for weighting URIs differently according to their asso-
ciated qualifiers.
The result of a query on the Semantic Index is a

weighted, ranked list of URIs for each query term. That
list is passed on to the Model Index where it represents
a sub-query result that together with other sub-query
results is assembled into a similarity value.
Biology ontology: incorporating similar constituents
Sometimes it might be useful to also include models
with constituents that are similar, though not identical,
to the one described by the original search terms, for
example, if a search resulted in only a few models con-
taining a particular constituent. BIOLOGY ONTOLO-
GIES expand a query by deriving similar constituents. A
user searching for models encoding the constituent
caffeine may also be interested in models containing
the constituent xanthine, which is structurally related
to caffeine.
To compare the relevance of a search term with terms

in a particular ontology, we use a solution proposed by
Schulz, Liebermeister (discussed in personal communi-
cation), who suggest to map different ontology Web
resources on one common ontology. Using that ontol-
ogy, the similarities of ontology terms are measured.
The approach also takes into account different relations
between the terms. In our work, we used that approach
to compute weights for ontology entries within a certain
range of a given term. Apart from that method, other
works from IR research exist which might be incorpo-
rated in later studies, e. g. [25].
Incorporating weights
After retrieval, the relevant bio-models are ranked.
The ranking function comprises weights derived from
different sources. (1) The MODEL INDEX itself is
used to incorporate weights derived from IR techni-
ques such as term frequency - inverse document fre-
quency [23]. (2) The importance of each feature is
expressed by its weight (see Table 2). (3) A user may
in addition assign a weight to a term in the query in
order to increase that term’s importance. (4) Prelimin-
ary results of the single sub-queries assigned to parti-
cular data resources are evaluated. (5) Weights derived
from ontologies (see BIOLOGY ONTOLOGIES) may
change the result ranking, e. g. models retrieved by
ontologically derived terms can be ranked lower than
others.
Ranking the results
All weights assigned to a model are used to determine
the model’s position in the vector space that is spanned
by the Vector Space Model. Having all model positions
identified the similarity can then be computed and the
ranking inferred, based on the models’ positions.

Table 2 Assigned feature weights by dimension

Dimension Feature Weight

Constituents

(description) modelName 4

species 3

compartment 3

reaction 3

parameter 1.5

event 1.5

function 1.5

modelDescription 0.5

(URI) modelURI 5

speciesURI 5

compartmentURI 5

reactionURI 5

parameterURI 3

eventURI 3

functionURI 3

Persons Author 4

Encoder 1

submitter 1

Publications publicationURI 5

publicationText 2.5

content 1

User generated

Content - -

Dates CreationDate 1

modificationDate 1

Administrative data ID 1

additionalID 1

path 1

content 1

Feature weights for the different model dimensions. Each dimension is further
separated into the features it covers. For each feature, a concrete relevance
value, i. e. weight, is given. For example, in the Constituents dimension, one
important feature for the model description is the modelName. The different
URIs (modelURI, speciesURI, compartmentURI and reactionURI)
also play an important role in determining the ranking. A less influential
feature is the modelDescription, as for example found in the SBML
<notes> tag.
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Implementation: enabling model retrieval in BioModels
Database
The introduced implementation is based on prior work
on a general framework for testing different ranking
functions on a given model base, called Sombi http://
sourceforge.net/projects/sombi.
Here we present an implementation for BioModels

Database. We assume that the model source code mS is
provided in the open, standardised model representation
format SBML. Furthermore, annotations mA should be
encoded using the MIRIAM standard annotation, i. e.
MIRIAM URIs. The implementation is based on the
architecture presented in the previous section. All
source code is freely available from the Biomodels.net
SVN Sourceforge repository https://biomodels.svn.sour-
ceforge.net. The retrieval and ranking system is available
online at http://www.ebi.ac.uk/biomodels-demo/.
The advantage of using BioModels Database as a proof

of concept lies in the amount of stored models -

currently 241 curated, i. e. verified, models and addi-
tional 213 non-curated models (as of 2010-04-01). All
models are encoded in SBML. All models in the curated
branch are annotated, and as a consequence provide suf-
ficient meta-information for a thorough testing of the
ranking and retrieval system.
Furthermore, analysing the stored information

together with the BioModels.net team led to tentative
weights for the different features (see Table 2), and
helped on pinpointing the importance of different quali-
fiers (shown in Table 4).
We extend the current BioModels Database search

engine by including a greater number of features in the
search process, by weighting different information, and
by ranking the results according to the user query. Both
types of queries, QBV and QBME are supported. The
model index contains 454 models with 140977 terms
separated into 25 features. The SEMANTIC INDEX
contains 2261 URIs with 409124 terms. The used

Table 3 Semantic index

URI qualifier content

bqbiol_is bqbiol_isVersionOf bqmodel_is

urn:miriam:obo.chebi. CHEBI:27732 BIOMD0000000241 BIOMD0000000241 caffeine chebi 27732
chebi home advanced search
browse ontology periodic
... moleculeschebimain
caffeine chebi 116485
central nervous system
stimulant caffeine ryanodine
receptor modulator mutagen
1,3,7-trimethyl-3,7
dihydro-1 h-purine-2,6 iuphar
1,3,7-trimethylxanthine dion
msdchem d00528 kegg drug
[..]

urn:miriam:kegg. compound:C07481 BIOMD0000000241 BIOMD0000000241 kegg compound c07481 entry
c07481 compound name caffeine
1,3,7-trimethylxanthine
formula c8h10n4o2 mass 194.0804
structure remark d00528 comment
source coffea arabica tax 13443
xanthines reaction r07920 r07921
27732 knapsack c00001492 [..]

urn:miriam:kegg. compound:C00385 BIOMD0000000015 kegg compound c00385
name xanthine formula
c5h4n4o2 mass 152.0334
ko00230 purine metabolism
caffeine metabolism [...]

urn:miriam:kegg. compound:C00048 BIOMD0000000221
BIOMD0000000222
BIOMD0000000219
BIOMD0000000218

kegg compound c00048 entry
c00048 glyoxylate glyoxylic acid
formula c2h2o3 mass 74.0004
structure reaction r00013 r00364
purine metabolism path ko00232
caffeine metabolism glycine serine
null_1 threonine metabolism [...]

. . . . . .

The semantic index is used to connect each existing URI in the database to the models in which it occurs. Thus, each column contains a set of IDs identifying a
bio-model in CM. We additionally store how the URI is connected to the annotated model constituent (through the qualifier column). For each URI, the content,
i.e. textual representation, that had been extracted from the ontology term corresponding to the URI, is normalised and indexed as well. A query can then be
enriched by further related URIs (see also Figure 2, Ontology Query), resulting in an expanded query.
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BIOLOGY ONTOLOGIES are NCBI Taxonomy, GO,
ChEBI, KEGG Compound and KEGG Reaction [26] (as
of 2010-04-14). We anticipate to include more formal
(biological) semantics in future versions, and to turn
them into additional features for the similarity measure.
Candidates for information relevant to preserve a bio-
model’s semantics have been suggested in [19].
The Lucene Framework [27] is integrated in the search

system to create, maintain and search both the Model
and Semantic Index. It provides retrieval functionality
based on the Extended Boolean Model; its ranking pos-
sibilities are based on the Vector Space Model. To
implement the retrieval and ranking process described
above, Lucene has been extended by the different
indices and sources, e. g. the Semantic Index. While the
implementation makes use of an adapted Lucene built-
in similarity function, it will be useful in the future to
provide advanced users of the ranking system with a
collection of different similarity functions to choose
from.
Search engine possibilities
Query by value Query by value allows the user to either
perform a free text search querying all features, or a
more sophisticated search selecting features of the dif-
ferent dimensions to be searched (refer to Tables 1 and
2). For instance a user is able to search for models hav-
ing a certain author or for models including a particular
“species”. Furthermore, it allows to weight the different
parts of a user’s query using the specific feature matrix
shown in Table 2.
Depending on the dimension selected, the query might

be enriched or limited. This is especially important for
the constituent dimension. For example, different terms
describing a model constituent are used to query the

SEMANTIC INDEX. The result is a list of weighted
URIs, which is then used to identify a model in CM in
case the model itself does not provide the search terms
the user queried. When searching a model by URI, the
importance of an URI within the model is reflected
through a qualifier; i. e. models encoding a URI with the
qualifier is are more important than models encoding
the same URI with the qualifier isVersionOf. The
weighting is done using the qualifier matrix shown in
Table 4.
Additionally, the user is able to vary the importance of

his search terms; i. e. one term describing a constituent
can be more important than another. This weight is
taken into account when computing the ranking. Besides
the sophisticated ranking and retrieval system, the
search engine supports common IR techniques like
fuzzy search, range or proximity search, as well as wild-
cards or phrase search [23].
Query by model example When querying by model

example, the model used as a bait is analysed, and the
values of extracted features are queried against the bio-
model collection CM. A ranked list of best matching
models is retrieved. Enriched queries are switched off, as
the example model itself provides sufficient contextual
information.

An example for model retrieval and ranking
The following example illustrates the functioning of the
reference implementation. We want to search for recent
models by non-bogus authors describing the effect of caf-
feine in human’s digestive tract when drinking a cup of
coffee. The characteristics fulfilled by the resulting mod-
els are:

1. the model should have the compartment gut
encoded
2. at least one species must be exactly caffeine
(qualified using is)
3. the model should have been submitted later than
2008
4. the author of the reference publication must not
be John Doe

That query can be submitted easily through the pro-
posed advanced search interface of BioModels Database.
The query is shown in Figure 3. The specification of dif-
ferent levels of requirements (should, must, must not)
helps to be more specific in restricting the search.
To answer the query, the system first resolves the con-

stituent caffeine into a set of URIs (SEMANTIC
INDEX). Since the search for caffeine is restricted to
the qualifier is (must be exactly caffeine), only the
retrieved URIs that are linked to a model using the is
qualifier are kept. Of those, a weighted list of URIs is

Table 4 Qualifiers and their assigned importance

Qualifier Weight

is 2.0

isHomologTo 1.7

hasPart 1.5

isPartOf 1.5

isVersionOf 1.5

hasVersion 1.5

isEncodedBy 1.3

isDerivedFrom 1.3

encodes 1.3

isDescribedBy 1.0

occursIn 1.0

hasProperty 1.0

isPropertyOf 1.0

The table shows the different qualifiers available from MIRIAM resources. The
qualifiers are used in the SEMANTIC INDEX. Each qualifier has a particular
weight assigned to it which reflects the strength of connection between a URI
and a constituent.
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build and then used for the feature speciesURI to
query the MODEL INDEX. For our example, the three
best matching URIs are (a) urn:miriam:obo.
chebi:CHEBI%3A27732, (b) urn:miriam:kegg.
compound:C07481 and (c) urn:miriam:kegg.
compound:C00385. The URIs (a) and (b) both define
caffeine, one in ChEBI [17] and one in KEGG [28]. The
URI (c) describes xanthine, a chemical structurally
related to caffeine.
Together with the queries for gut in the component

feature and not John Doe in the author feature, the
MODEL INDEX query is internally assembled to:
+speciesURI:( urn:miriam:obo.chebi:
chebi%3A27732 ^0.82

urn:miriam:kegg.compound:
C07481 ^0.67

urn:miriam:kegg.compound:C00385
^0.55)

compartment:(gut)
-author:(John Doe)
date:([01/01/2009 - *])
The prefix + and - denotes if a feature must or must

not occur, no prefix implies the feature should occur.
The ˆ denotes the weight assigned to the sub-query
results retrieved from the semantic index. We use the
Extended Boolean Model to query the index for each
feature independently (speciesURI, compartment, date
and author). The preliminary results are four sets of
matching internal model identifiers. These sets are then
conjuncted using Boolean algebra and taking into
account whether a feature should, must or must not
occur.

Figure 3 Sample query on the new BioModels Database search interface. Screenshot of a part of the new search interface of BioModels
Database. The interface allows to search for Persons, SBML elements, Resources, and allows to restrict the search terms to particular features using
a single qualifier. Models may only be considered for a certain range of dates. The sample search correspond to recent models by non-bogus
authors describing the effect of caffeine in human’s digestive tract when drinking coffee.

Figure 4 Ranked results. Search result obtained on BioModels Database with the given sample query (see Figure 3). The upper panel shows
the enriched query. Due to the precise formulation of the query, and the requirement that caffeine must occur and additionally must be
qualified with is, the result contains only three hits. (1) This model matches the top two constituents resolved by the semantic index, and
additionally the term gut in the compartment feature. (2) The model matches the constituent ranked third by the semantic index. (3) The lowest
ranked model only matches one constituent ranked eight by the semantic index - this is a very weak relation resulting in a very low rank.

Henkel et al. BMC Bioinformatics 2010, 11:423
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In a second step, the results are ranked using the Vec-
tor Space Model, according to the different types of
weights. The predefined feature weights (Table 2) put a
particular importance on the speciesURI feature. Thus,
all models that matched the speciesURI feature are
ranked high, incorporating the weight created by the
sub-query to the semantic index. If a retrieved model,
besides the mandatory features (must), matches addi-
tional optional features (should), the scores are summed
up, resulting in a higher rank. In this case, the feature
“date” is not very important - thus, it results only in a
small increase of a model’s score if the feature matched.
The ranked results for the sample query performed on
BioModels Database is shown on Figure 4.

Conclusions
This paper presents, to our knowledge for the first time,
the application of Information Retrieval techniques on
Computational Biology models. The theoretical method
relies on knowledge extracted from model annotations,
but also incorporates context information. The BioMo-
dels Database implementation presents a practical exam-
ple of this method. It enhances significantly the search
possibilities of BioModels Database users. Thorough
evaluation, for instance using F-measures, is needed, but
currently difficult due to the lack of reference to com-
pare with. The concepts’ generality ensures it is easy to
apply to other models bases.
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