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Abstract

Background: High-throughput flow cytometry experiments produce hundreds of large multivariate samples of
cellular characteristics. These samples require specialized processing to obtain clinically meaningful measurements.
A major component of this processing is a form of cell subsetting known as gating. Manual gating is time-
consuming and subjective. Good automatic and semi-automatic gating algorithms are very beneficial to high-
throughput flow cytometry.

Results: We develop a statistical procedure, named curvHDR, for automatic and semi-automatic gating. The
method combines the notions of significant high negative curvature regions and highest density regions and has
the ability to adapt well to human-perceived gates. The underlying principles apply to dimension of arbitrary size,
although we focus on dimensions up to three. Accompanying software, compatible with contemporary flow
cytometry infor-matics, is developed.

Conclusion: The method is seen to adapt well to nuances in the data and, to a reasonable extent, match human
perception of useful gates. It offers big savings in human labour when processing high-throughput flow cytometry
data whilst retaining a good degree of efficacy.

Background
Flow cytometry is a laser-based biotechnology that pro-
duces large multivariate samples. Typically, each mem-
ber of the sample corresponds to the physical properties
of a biological cell - known as forward scatter and side
scatter - and antibody binding activity, through fluores-
cence intensity measurements. The latter measurements
arise from the cells being exposed to several fluores-
cently conjugated antibodies during the flow cytometry
procedure. Shapiro [1] provides a detailed summary of
flow cytometry technology and its practice.
The last few years have seen a major change in flow

cytometry technology, toward what has become known
as high-throughput flow cytometry or high-content flow
cytometric screening (FC-HCS) (e.g. Le Meur et al. [2]).
FC-HSC combines robotic fluid handling, flow cyto-
metric instrumentation and bioinformatics software so
that relatively large numbers of flow cytometric samples
can be processed and analysed in a short period of time.
Currently, analysis of such data involves a tremendous

amount of manual manipulation. This is costly in time
and human energy, and renders the analysis more sub-
jective and error-prone. An early article on FC-HCS by
Gasparetto et al. [3] closes with: “Further improvements
that completely automate the FC-HCS procedures and
incorporate newly developed advanced data analysis and
management features will further improve the efficiency
and power of this technique”.
An integral component of flow cytometric data analy-

sis is gating, where cells are subsetted according to phy-
sical and fluorescence measurements. Recent studies
involving high throughput flow cytometric data (e.g.
Gasparetto et al. [3]; Brinkman et al. [4]) have involved
manual gating of hundreds of flow cytometric samples.
Automatic gating methods are becoming more impor-
tant in contemporary flow cytometry research. If done
well, they are more objective, much faster and less
expensive. Combined with the automated aspects of new
high-throughput flow cytometry technology good auto-
matic gating methods have the potential to open up a
wide range of possibilities in biomedical research.
In this article we describe a new method for automatic

and semi-automatic gating of multivariate flow
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cytometry samples. We call the method curvHDR since
it makes use of two statistical concepts with regard to
the density of the samples: (a) significant high negative
curvature corresponding to modal regions and (b) high-
est density regions (HDR) for data in the vicinity of
identified modal regions. The significant curvature
phase is useful for identifying regions containing a pos-
sibly interesting subset of cells. The HDR phase then
aims to improve upon high curvature regions and
mimic human perception of what are subsets of interest.
The principles underlying curvHDR apply to samples of
arbitrary dimension. However, in the present article, we
restrict attention to dimensions between one and three.
Often the gate obtained from curvHDR needs to be

combined with other simpler gates for effective utilisa-
tion. One instance where this applies is when unimpor-
tant ‘debris’ cells near the boundary of the sample
exhibit high negative curvature in their density. Rectan-
gular gating, where variables in each direction are
restricted to lie within an interval, is often an effective
means of eliminating spurious components of a
curvHDR gate. Naumann & Wand [5] used curvHDR
gates combined with rectangular gates in a flow-cyto-
metric application. The Results section provides some
illustration of this type of gating.
Our curvHDR methodology is accompanied by soft-

ware in the R computing environment (R Development
Core Team [6]) and, hence, can be integrated into Bio-
conductor (Gentleman et al. [7]).
The ability to handle trivariate samples is a particu-

larly novel aspect of curvHDR. Traditionally, gating has
been limited to two dimensions because of graphical
display restrictions. However, recent developments in
three dimensional (3D) graphics in the R computing
environment allow for routine visualisation of trivariate
data and polyhedral gates. The R packages rgl (Adler
& Murdoch [8]) and misc3d (Feng & Tierney [9,10])
are especially useful for work of this kind.
Not surprisingly, other research teams involved in flow

cytometric data analysis recently have been developing
automatic gating procedures in response to the high-
throughput sea change. For example, Lo, Brinkman & Got-
tardo [11] combine t-mixture models and Box-Cox trans-
formations to obtain flexible and outlier-resistant gates
whilst Finak, Bashashati, Brinkman & Gottardo [12] use
the Bayesian Information Criterion to approximate optimal
merging of such gates. In our view, it is too early for exten-
sive comparison of automatic gating procedures that have
been spawned by the demands of high-throughput flow
cytometry. At this stage we welcome the development of a
variety of approaches. Detailed comparative evaluation
would be useful at a later stage; after the ‘dust settles’.
However, the Results section contains some very brief
comparison of curvHDR with the method of Lo et al. [11].

Flow cytometry background
Shapiro [1] provides a comprehensive survey of flow
cytometry. Mathematically, typical flow cytometric sam-
ples can be thought of as large point clouds in high-
dimensional space. The dimension is somewhere
between about 3 and 15 and the number of points,
usually corresponding to cells, is often between tens of
thousands and hundreds of thousands. Two of the
dimensions usually correspond to the intensity of for-
ward scatter and side scatter which characterise the phy-
sical properties of the cell (e.g. size and granularity). The
remaining dimensions correspond to the intensity of the
cell’s fluorescence at a given wavelength (colour). In
medical research contexts the colours often correspond
to staining of the cells by monoclonal antibodies.
The most important types of gating are (i) bivariate

cell-type gating (e.g. identification of lymphocytes from
scatterplots of forward-scatter versus side-scatter mea-
surements) and (ii) univariate fluorescence-channel gat-
ing (e.g. identification of cells that recognise a particular
antibody). However, there is no cogent reason for
restriction of gating to one- and two- dimensional pro-
jections of flow cytometry point clouds. Roederer &
Hardy [13], for example, advocate gating in three and
higher dimensions.
Manual gating in practical flow cytometry data ana-

lyses usually involves a combination of biological
domain knowledge and visual inspection of flow cyto-
metry scatterplots and histograms. But, typically, gates
correspond to modal regions in the data. Mathemati-
cally, modal regions are those regions where the under-
lying density function of the data is higher than
surrounding regions. The quality of an automatic gating
method depends on how well it mimics human percep-
tion of what is an appropriate gate. Obviously, this is a
difficult goal since perceptions differ from one human
to another and there is no single ‘right answer’.
An appreciation of human-perceived gates can be

obtained from Figure 1. The data are an illustrative sub-
set of the longitudinal flow cytometric data on graft-ver-
sus-host disease described in Brinkman et al. [4] and are
available in the Bioconductor package flowViz
(Ellis et al. [14]; Sarkar, Le Meur & Gentleman [15])
where it is stored as a flowSet named GvHD. Each panel
corresponds to a different day number with respect to
blood and marrow transplant of a particular patient. The
vertical axis is sinh-1(side-scatter) whilst the horizontal
axis is sinh-1(fluorescence) for the second channel. The
gates were drawn by a flow cytometry expert: Dr John
Zaunders of the Centre for Immunology, Sydney, Austra-
lia. At the time that the gates were drawn, Dr Zaunders
had no knowledge of the present article or its content.
Manual gates such as those shown in Figure 1 com-

bine biological domain knowledge with the modal
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regions apparent from the data. The former is not easily
quantified mathematically. Nevertheless, automatic and
semi-automatic gating that makes use of the modal
region aspects of gating can still be very useful: taking
away the human judgement element and permitting fas-
ter processing of high-throughput samples. The
curvHDR method, described in the next section, aims
to fill this niche.

Methods
Let d be the dimension of data in which a gate is sought
and let

x x1, , n

be a sample in ℛ d for which gating is desirable. We
will assume that gates of interest correspond to modal

Figure 1 Illustration of bivariate manual gating by a flow cytometry expert: Dr John Zaunders of the Centre for Immunology, Sydney,
Australia. The gates correspond to the red-coloured shapes. The flow cytometry data correspond to a study on graft-versus-host disease
(source: Brinkman et al. [4]). The panels correspond to day number with respect to blood and marrow transplant of a particular patient. The
vertical axis is sinh-1(side-scatter), whilst the horizontal axis is sinh-1(fluorescence) for the second channel. Since the data are large flowViz
defaults to displaying the data as smoothed scatterplots, based on bivariate kernel density estimation.
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regions in the sample. This first entails assuming that
the xis are a sample from a smooth d-variate density
function f. Modal regions then correspond to local max-
ima in f and their surrounds.
The first phase of the curvHDR method employs

recently developed feature significance technology
(Duong, Cowling, Koch & Wand [16]) to find regions
where f has statistically significant high negative curva-
ture. This phase can be thought of as filtering process
where aberrant regions of high relative density are
ignored and only those regions having statistical evi-
dence of modality are retained. The second phase aims
to improve upon the regions obtained in the first phase
by modifying them to suit the local density of the data
around each high curvature region.
The specific steps of the curvHDR gating method are:
(1) Remove excessive boundary points and other debris

from the data. If the data exhibits heavy skewness then
transform the data to reduce skewness. A good ‘all-pur-
pose’ transformation is the inverse hyperbolic sine trans-

formation x x x xnew    sinh ( ) log( )1 2 1 .

(2) Standardise all variables to have zero mean and
unit standard deviation.
(3) Obtain significant high negative curvature regions

using the test described in Section 3.2 of Duong et al.
[16] over a d-dimensional mesh. The regions are stored
as intervals for univariate data (d = 1), polygons for
bivariate data (d = 2) and polyhedra for trivariate data
(d = 3). Let S denote the number of significant curva-
ture regions.
(4) Replace each of the S significant curvature regions

by their convex hulls.
(5) Grow each convex hull so that its volume is G

times larger (for some pre-specified growth factor G >
1). This is achieved by ‘rolling’ a d-dimensional sphere
around the perimeter of the region.
(6) For each of the S grown regions, determine the

subset of the data lying inside that region.
(7) For each of the S data subsets, obtain a kernel den-

sity estimate, based on a multistage plug-in bandwidth
selector (Duong & Hazelton [17]), and using only the
data in that subset.
(8) The curvHDR gate is the union of the level-τ

HDRs (see definition below) based on the S kernel den-
sity estimates. The curvHDR gate will have greater than
or equal to S components, where a component is an
interval, polygon or polyhedron depending on whether d
= 1, d = 2 or d = 3.
(9) Determine the indices of the data corresponding to

the curvHDR gate.
(10) Transform the gate and gated data back to the

original units.

Figure 2 provides graphical illustration of Steps (3)-(8)
for the case d = 2.
Step (3) requires estimates of the Hessian matrix of f,

the d × d matrix with (i, j) entry equal to 
 

2

xi x j
f( )x ,

with xi denoting the ith entry of x. Each derivative esti-
mate is obtained via appropriate differentiation of the d-
variate kernel density estimator

ˆ( ; ) { ( )},
/ /f n K i

i

n

x H H H x x   


1 1 2 1 2

1

(1)

where K is a d-variate kernel function and H is a d ×
d bandwidth matrix. Details are given in Duong et al.
[16]. In curvHDR we use a single parameter bandwidth
matrix H I hcurv

2 for some hcurv > 0. This is partially
justified by the fact that input data for kernel density
estimation is such that each variable has unit standard
deviation. Several embellishments are possible, each cov-
ered by Wand & Jones [18], but are yet to be enter-
tained for curvHDR. Section 3.2 of Duong et al. [16]
describes how the estimated Hessian matrix can be used
to determine regions in ℛd where f has significant high
negative curvature. These correspond to local maxima
in the underlying density and identify candidate loca-
tions for which gating might be appropriate.
The R package feature (Duong & Wand [19]) provides

implementation of the significant curvature determina-
tion. Efficient computation is achieved using linear bin-
ning over a d-variate grid (Wand [20]). This approach
leads to a grid of indicators (0/1) for significant high
negative curvature. Contouring functions in R such as
contourLines() in bivariate case and contour3d
() in the trivariate case can then be used to extract and
store the regions as polygons (d = 2) or polyhedra (d =
3). The d = 1 case is much simpler and high curvature
regions correspond to intervals.
Details on Steps (4)-(6) are postponed to upcoming

subsections, where the d = 2 and d = 3 cases are treated
separately. No such details are necessary for d = 1 since
these steps involve elementary manipulations of
intervals.
Step (7) involves application of formula (1) to each

grown region and the data that it contains. The kernel
K is taken to be the d-variate standard normal density
function

K d T( ) ( ) exp( / )./x x x 2 22

The bandwidth matrix is chosen using multi-stage
plug-in strategies (Duong & Hazelton [17]; Wand &
Jones [21]) courtesy of the R package ks (Duong [22]).
Further details are given in the parameter choice subsec-
tion. In most cases, the Step (6) density estimates are
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concerned with unimodal structure where plug-in band-
widths perform quite well.
For a d-variate density function f and τ Î [0, 1] the τ

highest density region (HDR) is

R f f fd
τ τ τ   x x : ( )  where  s the greatest number for which  

f dR ( )x x   1 ττ

(e.g. Hyndman [23]). We can think of the Rτ as corre-
sponding ‘meaningful’ contours of the density function f.
For example, R0.9 is the region inside that contour of f
for which the probability is 0.1, a relatively small region
near the peak of f. The HDR R0.1 encompasses 90% of
the probability mass of f. In practice, where f is
unknown, estimated HDRs can be obtained by replacing
f with a density estimate.
In Step (8) we apply the HDR paradigm to each of the

density estimates from Step (7). Typically, τ is fixed for

all regions although individual τ values could also be
specified. We have found that lower τ values are more
in keeping with human-based gating.
Step (9) is similar to Step (6), and details of its execu-

tion are discussed in subsections devoted the additional
details for bivariate and trivariate samples.

Additional details for bivariate samples
In this section we provide details on aspects of the
curvHDR method that are specific to the bivariate case.
We begin with Figure 2, which provides a visual over-
view of curvHDR when d = 2.
We now give some details on Steps (4)-(6) in the d =

2 case, as displayed in Panels (b)-(d) of Figure 2.
The convex hull of a polygon in ℛ2 is a well-known

geometrical construct. A useful physical interpretation
involves imagining the vertices of the polygon as nails
on a board and stretching an elastic band around

Figure 2 Graphical illustration of curvHDR gating for bivariate data. Panel (a): Polygon corresponding to a region of statistically
significant high negative curvature. Panel (b): The convex hull of the polygon from (a). Panel (c): A new, larger, polygonal region obtained by
growing the region from (b) using the notion of ‘sphere rolling’ (in this bivariate case it is ‘circle rolling’) around inner polygon. Approximate
circle rolling is achieved by taking normal vectors of equal length from the centre of each edge of the inner polygon. The size of the outer
polygon is chosen so that the ratio of its area to the inner polygon is a pre-specified growth factor G. Panel (d): The bivariate measurements are
subsetted according to inclusion inside the polygon from (c). Panel (e): A kernel density estimate is obtained using only the subsetted data from
(d). Panel (f): The final gate corresponds to a high density region contour of the kernel density estimate from (e), in this case the τ = 0.1 highest
density region.
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outside of the nails. The convex hull then corresponds
to the stretched elastic band. In R the convex hull of a
polygon can be obtained using the base function chull
().
Step (5) involves growing a convex polygon to be G

times larger in area via the notion of ‘circle-rolling’. We
first note that the area of a polygon with vertices

  {( , ),( , ), ,( , )}x y x y x yN N1 1 2 2 

and ordered clockwise and such that (x1, y1) = (xN, yN)
is

A x y x yi i i i

i

N

( ) ( ).   




1
2 1 1

1

1

Now suppose that we roll a circle of radius r around
the perimeter of  . A polygonal approximation to the
resulting region is obtained by forming normal vectors
to each edge of  that start from the centre of the
edge and radiate outwards a distance of 2r. This
approach is illustrated in Panel (c) of Figure 2. Let r
denote the polygon obtained by joining each of the nor-
mal vectors. Step (5) is completed by solving for the r
that satisfies A(r )/A( ) = G. In our implementation
of curvHDR we use a simple bisection search to deter-
mine r.
Steps (6) and (9) require the determination of those

points that are inside a particular polygon. This is a
relatively simple geometric problem and implemented in
R by a number of packages. Flow cytometric sample
sizes are quite large and speed is important. For this
reason, we recommend the function inpolygon()
from the Bioconductor package flowCore (Ellis, et
al. [24]).
All bivariate kernel density and curvature estimates

are obtained via the binned approximation (Wand [20])
over a fine mesh. Choice of the bandwidth matrix is dis-
cussed in the parameter choice subsection.

Additional details for trivariate samples
In three dimensions the convex hull corresponds to
‘shrink wrapping’ a closed polyhedron, and is required
for Step (4). Trivariate convex hull computation is facili-
tated by the function convhulln() in the R package
geometry (Grasman & Gramacy [25]).
Steps (3) and (4) make use of the three-dimensional

contour functionality in the R package misc3d (Feng &
Tierney [9,10]). This package uses triangle mesh objects
for storing and displaying polyhedra. The faces of such
polyhedra are triangles. For triangular-faced poly-hedra,
Step (5) is relatively straightforward. A polyhedron is
grown by placing a sphere of radius r tangentially to
each triangular face, and touching the face at the

triangle’s centroid. The new polyhedron is the convex
hull of the set of antipoles of the touching points. The
value of r is chosen so that V(r )/V( ) = G, where V
( ) is the volume of an original polyhedron (obtained
in Step (4)) and V ( r ) is the volume of the grown
polyhedron. Note that convhulln() has an option to
compute the required volumes.
Steps (6) and (9) require determination of those points

in a trivariate sample that lie inside a given polyhedron.
This is a non-trivial problem and, to the best of our
knowledge, is not supported by any of the current R
packages on the Comprehensive R Archive Net-
work. We use an efficient algorithm, specifically
designed for large-scale problems that involve testing if
a large number of points (e.g. hundreds of thousands)
lie inside a triangular-faced polyhedron, composed itself
of many vertices and faces. The basic idea of the algo-
rithm is that only some faces of the triangular mesh are
needed to perform the point containment test; after one
of these determining faces is found, testing the given
point against this face is sufficient to determine if the
point lies inside or outside of the general polyhedron. It
should be noted that in principle the algorithm can be
extended to higher dimensions. A C++ implementation
of this recently developed algorithm is available at the
web-site. http://ptinpoly.pbwiki.com.

Parameter choice
The curvHDR gating method has a suite of parameters
that need to be either set to reasonable defaults or cho-
sen by the user. In the interests of making curvHDR as
automatic as possible we have, based on extensive
experimentation, determined defaults for most of those
parameters with the intention that they can remain in
the ‘background’. Table 1 summarises these default
choices.
The bandwidth for the significant curvature phase is

the optimal bandwidth for estimation of the d-variate
Hessian matrix when f is the standard normal density
(Chacon, Duong & Wand [26]). Since the Gaussian den-
sity is close to being that with the largest optimal
amount of smoothing (Terrell [27]), the table entry cor-
responds, approximately, to the biggest bandwidth that
should be considered for curvature estimation. Note
that this formula is only appropriate when the data have

Table 1 Recommended defaults for curvHDR

parameter default

bandwidth for significant curvature phase (hcurv) [4/{(d + 6)n}]1/(d+8)

significance level for significant curvature phase 0.05

growth factor (G) 2d

bandwidth matrices for the HDR phase multi-stage plug-in
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first been standardised to have unit standard deviation -
as dictated by Step (2).
The curvHDR gate is relatively insensitive to the

choice of the significance level for the significant curva-
ture phase and any small value of this parameter is
likely to be adequate. Our recommendation of 0.05
matches the most common default for a significance
level in statistical procedures.
The growth factor G is defaulted to 2d since it corre-

sponds to an approximate doubling of the size of the
original region in each dimension, and has given reason-
able answers in examples that we have studied to date.
However, there may be circumstances where smaller or
larger G values are required for curvHDR to match
human-perceived gates.
Recall that Step (7) involves computation of S d-vari-

ate kernel density estimates: one for each subset
obtained in Step (6). Ideally, these density estimators
would use bandwidth matrices tailored for HDR estima-
tion. At the time of this writing, there are no such band-
width selection algorithms for general d; although
Samworth & Wand [28] have recently treated the d = 1
version of the problem. Given its good simulation per-
formance, and because of its availability in R, our cur-
rent recommendation is to use the multi-stage plug-in
bandwidth selector of Duong & Hazelton [17]. This is
available in the R package ks (Duong [22]). For d = 1
the relevant function is hpi() while for d = 2, 3 it is
Hpi.diag(). For flow cytometric data it is important
that the binning flag is set to TRUE since, without bin-
ning, the computation is unacceptably slow. Note that
ks currently only supports binning for diagonal band-
width matrices. Finally, for speed reasons again, in the d
= 3 case it is recommended that Hpi.diag() uses
pilot="samse” and the binning mesh size be kept at
a low value such as 21 × 21 × 21.
The only parameter not listed in Table 1 is the level

of the highest density region τ . This is because we are
uncomfortable about setting a default, given that per-
ception of what is a reasonable gate is somewhat fuzzy,
and differs between analysts. Therefore, τ is the main
tuning parameter of curvHDR and it is recommended
that the user experiments with its choice, perhaps in
combination with changes in G. However, if pressed
for a default, then τ = 0.1 is a somewhat reasonable
answer.

Software
We have written an R function named curvHDRfilter
() for implementation of the curvHDR algorithm for
input data having dimension between one and three. An
accompanying plot() function allows visualization of
the gates. For trivariate data, visualization is aided by the

RGL graphics device and the packages rgl (Adler &
Murdoch [8]) and misc3d (Feng & Tierney [9,10]). We
have commenced work with the developers of flow-
Core (Ellis et al. [24]) towards making curvHDR usable
within that environment. Meanwhile, packaged code and
an accompanying vignette is available from the third
author (current e-mail address: mwand@uow.edu.au).

Results
We will now provide illustration of curvHDR on the
longitudinal flow cytometric data of Figure 1. With
space constraints and pedagogy in mind, the illustrations
are kept simple and distinct from clinical interpretation
and outcomes. See Naumann & Wand [5] for applica-
tion of curvHDR to cellular signature determination for
the graft-versus-host disease data.

Illustrations of univariate curvHDR
Figure 3 shows two univariate curvHDR gates for some
side-scatter data from the GvHD flowSet. The data and
its histogram can be obtained using the R commands:

library(flowViz) ; data(GvHD)
inputData <- asinh(exprs(GvHD$s9a01)

[,2])
hist(inputData,breaks = 100,xlim = c

(4,7))

The curvHDR gate in the upper panel has the HDR
level set at τ = 0.01, whilst the lower panel has τ = 0.8.
The τ = 0.01 gate consists of two intervals; the τ = 0.8
consists of three intervals.

Illustrations of bivariate curvHDR

Figure 4 shows a bivariate curvHDR gate with τ = 0.1.
The data are those shown in the upper left-hand panel
of Figure 1, corresponding to 6 days before transplant.
The data and corresponding scatterplot can be obtained
using the R commands:

library(flowViz); data(GvHD)
inputData <- asinh(exprs(GvHD$s9a01) [,c
(4,2)])
plot(inputData[,1,inputData[,2,xlim = c

(5,8.5),ylim = c(4,7))

In Figure 4 we have plotted a subset of these data to
enhance visualisation.
Figure 5 shows the result of applying τ = 0.2 gates to

all 7 scatterplots. In practice, it is often desirable to
restrict attention to a sub-region of the data. An effec-
tive means of doing this is via intersection with a rec-
tangle. The rectangles in Figure 5 correspond to
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



fluorescence from channel 2

sside-scatter) . }. 6 25
(2)

Figrure 6 shows the gates after intersection with the
rectangle. We call these rectangle-curvHDR gates.
Comparison of Figure 6 with Figure 1 reveals some

resemblance between the curvHDR gates and the man-
ual gates that curvHDR is striving to emulate. However,
there are also some noticeable differences, as seen by
comparing the day = 18 panels. This illustrates limita-
tions of mode-based automatic gating methods. A fuller
comparison would be interesting, but should involve
gates from several experts choosing gates for a larger

number of data-sets, as well as different choices of the
curvHDR tuning parameters.

Comparison with flowClust
The Bioconductor package flowClust (Gottardo
and Lo [29]; Lo, Hahne, Brinkman and Got-tardo [30])
achieves automated gating through the use of t-mixture
models and Box-Cox transformations. Details of the
methodology may be found in Lo, Brinkman & Gottardo
[11]. Figure 7 facilitates a cursory visual comparison of
curvHDR with flowClust. The data correspond to
day = -6 and day = 18 from Figure 5. All gates corre-
spond to the default settings of the tuning parameters.

Figure 3 Examples of univariate curvHDR gates with HDR levels set at τ = 0.01 and τ = 0.8.
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Figure 4 curvHDR gate of data in the upper-left panel of Figure 1 (corresponding to 6 days before transplant). The HDR level parameter
is equal to 0.1.

Figure 5 The result from applying curvHDR gates (with τ = 0.2) to data corresponding to each panel of Figure 1. The rectangle in each
panel is that given by (2).
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Figure 6 The resulting rectangle-curvHDR gates, obtained from Figure 5 by intersecting each of the rectangle-curvHDR gates with the
rectangle (2).

Figure 7 Visual comparison of curvHDR with flowClust. The data correspond to day = -6 and day = 18 from Figure 5.
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For curvHDR the defaults correspond to Table 1 and τ
= 0.1. For flowClust the defaults in its Bioconduc-
tor implementation were used. The flowClust
method requires specification of the number of clusters
K. We set K = 3 for the day = -6 data and K = 1 for
the day = 18 to match the number of polygons found
by curvHDR, excluding sparse data boundary regions.
One important difference, apparent from Figure 7, is

that curvHDR is nonparametric, without any particular
shape restrictions, whilst the flowClust gates are
parametric - i.e. they correspond to inverse Box-Cox
transformations of ellipses. The nonparametric aspect of
curvHDR allows it to better adapt to the modal struc-
ture in the flow cytometry data. The day = 18 data
exhibits a pronounced non-convex modal region, and
this is captured by the curvHDR gate. For the day =
-6 the curvHDR is more focussed, with non-overlap-
ping gates for each of the modal regions. The flow-
Clust gates are centred on the same regions, but are
considerably larger and overlapping.

Illustrations of trivariate curvHDR
We now provide an illustration of trivariate curvHDR
by adding a third variable, forward-scatter, to the longi-
tudinal data of Figure 5. The data and corresponding

scatterplot can be obtained using the R commands:

library(flowViz) ; data(GvHD)
inputData <- asinh(exprs(GvHD$s9a01) [,c

(1,2,4)])
We combined τ = 0.5 curvHDR gating with the rec-

tangular gate:

{ sinh ( ) . }

{ sinh ( ) .

5 6 5

4 6

1

1

 

  





forward-scatter

side-scatter 55

6 7 51

}

{ sinh ( ) . }   fluorescence from channel 2

(3)

The resulting rectangle-curvHDR gates are shown in
Figure 8. Note that each of the gates consist of between
1 and 3 polyhedra.
Semi-automatic trivariate gating is a novel concept for

flow cytometric data analysis. Just as the bivariate gating
can offer improvements over univariate gating, we
anticipate benefits arising from trivariate gating. With
the advent of good three-dimensional visualisation soft-
ware in R/Bioconductor and the emergence of tri-
variate gating algorithms, such as curvHDR with d = 3,
we envisage flow cytometry data analysis breaking away
from its current custom of restricting views and gates to
two dimensions.

Figure 8 Illustration of trivariate rectangle-curvHDR gating. The data are the same as in Figures 5 and 6, but with sinh-1(forward-scatter)
added as a third variable. The rectangular gate is given by (3). The axis labels use the abbreviations: FSC for forward-scatter, SSC for side-scatter
and FL2 for fluorescence from channel 2.
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Discussion
The curvHDR method is an intuitive and reasonably
simple mechanism for obtaining candidates for cell-type
gating. The method is intrinsically non-parametric,
allowing it to adapt to the data without the restrictions
of parametric methods such as those based on the
Gaussian density function. Consequently the curvHDR
regions are not restricted to be ellipsoidal or to have
some other regular shape. With judicious choice of the
main tuning parameter τ, possibly in combination with
the secondary tuning parameter G, it can mimic human
gating quite well. In combination with simple rectangu-
lar gating it provides a powerful base with which to
build effective automatic gating strategies.
Whilst we have restricted attention and software

development to dimensions 1-3 there is no firm upper
limit on the dimensionality in which curvHDR can be
applied. Extension of curvHDR beyond three dimen-
sions, in terms of practicable algorithms and software, is
an interesting new research problem - and one which
could be quite fruitful as flow cytometric data becomes
more abundant and complex.

Conclusions
In this study we have proposed an automatic gating
method named curvHDR, and worked out the algorith-
mic details for univariate, bivariate and trivariate data.
The method is seen to adapt well to nuances in the data
and, to a reasonable extent, match human perception of
useful gates. Naumann & Wand [5] have already used
curvHDR in a high-throughput flow cytometry applica-
tion and demonstrated its efficacy, with big savings in
human labour. We are in the process of incorporating
the methodology into the R/Bioconductor comput-
ing environment with flowCore compatability. This
will facilitate the use of curvHDR in future high-
throughput flow cytometry analyses.
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