
RESEARCH ARTICLE Open Access

Comparative study of three commonly used
continuous deterministic methods for modeling
gene regulation networks
Martin T Swain2, Johannes J Mandel1, Werner Dubitzky2*

Abstract

Background: A gene-regulatory network (GRN) refers to DNA segments that interact through their RNA and
protein products and thereby govern the rates at which genes are transcribed. Creating accurate dynamic models
of GRNs is gaining importance in biomedical research and development. To improve our understanding of
continuous deterministic modeling methods employed to construct dynamic GRN models, we have carried out a
comprehensive comparative study of three commonly used systems of ordinary differential equations: The S-system
(SS), artificial neural networks (ANNs), and the general rate law of transcription (GRLOT) method. These were
thoroughly evaluated in terms of their ability to replicate the reference models’ regulatory structure and dynamic
gene expression behavior under varying conditions.

Results: While the ANN and GRLOT methods appeared to produce robust models even when the model
parameters deviated considerably from those of the reference models, SS-based models exhibited a notable loss of
performance even when the parameters of the reverse-engineered models corresponded closely to those of the
reference models: this is due to the high number of power terms in the SS-method, and the manner in which
they are combined. In cross-method reverse-engineering experiments the different characteristics, biases and
idiosynchracies of the methods were revealed. Based on limited training data, with only one experimental
condition, all methods produced dynamic models that were able to reproduce the training data accurately.
However, an accurate reproduction of regulatory network features was only possible with training data originating
from multiple experiments under varying conditions.

Conclusions: The studied GRN modeling methods produced dynamic GRN models exhibiting marked differences
in their ability to replicate the reference models’ structure and behavior. Our results suggest that care should be
taking when a method is chosen for a particular application. In particular, reliance on only a single method might
unduly bias the results.

1 Background
Regulation of gene expression (or gene regulation) refers
to processes that cells use to create functional gene pro-
ducts (RNA, proteins) from the information stored in
genes (DNA). These processes range from DNA-RNA
transcription to the post-translational modification of
proteins. Gene regulation is essential for life as it
increases the versatility and adaptability of an organism
by allowing it to express protein when needed. While

aspects of gene regulation are well understood, many
open research questions still remain [1]. Due to the
wide availability of well-characterized components from
biological gene networks, the stage has been set for
mathematical modeling and computational simulation of
gene regulatory networks (GRNs). The modeling of bio-
medical phenomena is inspired by the approach taken
in physics. In physics, models (theories) are frequently
constructed to explain existing data, then predictions
are made, which again are compared to new data. If a
sufficient correspondence exists, it is claimed that the
phenomenon has been understood. A model should not
be a black box, but should be interpretable in some way.

* Correspondence: w.dubitzky@ulster.ac.uk
2University of Ulster, School of Biomedical Sciences, Cromore Road, Coleraine
BT52 1SA, Co. Londonderry, UK
Full list of author information is available at the end of the article

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

© 2010 Swain et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:w.dubitzky@ulster.ac.uk
http://creativecommons.org/licenses/by/2.0

Ideally, the model components and elements should
have an interpretation in the real world consistent with
the existing knowledge. At the same time a model
involves a simplification of the real world. The ability to
construct, analyze, and interpret qualitative and quanti-
tative GRN models is becoming increasingly important
tool in studying gene regulation [2]. Because of its
potential to help improve our understanding of gene
regulation, modeling and simulation of GRNs has
received considerable interest in the bioinformatics and
computational biology communities. Many mathematical
and computational techniques have been proposed in
recent years. In practice, different mathematical techni-
ques generate models with different properties and fea-
tures. Therefore, it is very important for users to
understand the merits and limitations of these
approaches.
The dynamic behavior and regulatory interactions of

genes can be revealed by time-series experiments, that
is, experiments that measure the expression of multiple
genes over time [3-6]. As this type of experimental data
becomes more readily available, mathematical modeling
and computational simulation become an important tool
for investigating the structure and time-dependent beha-
vior of GRNs. In contrast to static gene expression data,
the modeling and simulation approach allows the deter-
mination of stable states in response to a condition or
stimulus as well as the identification of pathways and
networks that are activated in the process [7]. Besides
logical [8-10] and stochastic [11] modeling approaches,
various continuous modeling methods capable of cap-
turing such complex behavior deterministically are com-
monly used. A range of mathematical methods
facilitating the reverse-engineering of quantitative,
dynamic GRN models from time-series expression data
have been reported in the literature [12].
Our study focused primarily on continuous determinis-

tic simulation methods used to model and simulate
GRNs on the basis of time-variant gene expression data.
The approaches considered in our study concentrate on
GRN abstractions that ignore intricate intermediate bio-
logical processes of cellular gene regulation, such as spli-
cing, capping, translation, binding and unbinding [13].
Because of their importance in the field and their com-
mon use, we have compared the following three mathe-
matical methods:

• The S-system (SS) method [14];
• The artificial neural network (ANN) method [15];
• The general rate law of transcription (GRLOT)
method [16].

All three methods describe dynamic systems by non-
linear equations, yet they are different in the way they

process regulatory signals and, hence, in how they
model gene expression and gene regulation. In addition,
these methods employ different model parameters to
represent gene-regulatory mechanisms. Thus, each
method conveys a different conceptual view of the
underlying GRN. Our comparison of the three methods
was guided by the following questions:

1. How do the methods fare in terms of their ability
to estimate model parameters from dynamic gene
expression data?
2. How do the methods fare in terms of their ability
to accurately predict dynamic gene expression data?
3. To what extent are the methods interchangeable?
4. Are there any inherent biases or limitations in the
individual methods?

To answer the above questions we developed artificial
data sets based on a number of model networks that
were selected because they either incorporate motifs fre-
quently seen in GRNs, or because they have been speci-
fically discussed in the literature in the context of the
three mathematical methods of interest. The advantages
of using artificial data sets is due to the ease, speed and
flexibility with which different experiments can be per-
formed and evaluated, allowing validation of the meth-
ods under a range of tightly controlled conditions which
would be very difficult, expensive and time-consuming
to perform with real biological data. However, computer
generated data sets feature important differences when
compared to real biological data [17,18], and so we have
also included a recent biological data set generated by
Cantone et al. specifically for in vivo assessment of
reverse-engineering and gene network modelling
approaches [19]. The reverse-engineering experiments
we have performed on this biological network play an
important role in demonstrating that the results we
have obtained from our model networks are applicable
to real biological networks.
Our study is relatively comprehensive and involved.

To facilitate a clear understanding of our study design,
we outline the main logical steps below. The diagram in
Figure 1 summarizes the workflow of our experimental
set-up. More detail of the data, models and results cor-
responding to the steps in the study is provided in the
main body of the paper, in Section 2 and Section 4.

1. To investigate a range of different conditions, we
obtain two time-series data sets for a biological net-
work from the literature [19], and we define and
construct five artificial network models and set their
parameters and initial expression levels.
2. We wish to explore how the quantity of available
data influences the models produced by reverse-

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 2 of 25

engineering. Therefore, for each artificial network
model we generated two sets of data -sparse and
detailed data - using each mathematical method.
Sparse data is based on a single model simulation,
detailed data is based on five simulations each with
a different set of initial condition.
3. Here we perform the reverse-engineering of
dynamic GRN models from the artificial and biologi-
cal data sets using an evolutionary algorithm [20]. In
order to highlight differences and idiosynchracies
between and within the models, we apply each
mathematical method to all the available data sets. A
large number of models are generated in this step,
investigating combinations of different data sets,
experimental scenarios, and mathematical methods.
4. This step is designed to assess specific aspects of
the models, and to elucidate the extent to which the

reverse-engineered models are able to discover the
original GRN models and their parameters, or to
reproduce their dynamic behavior according to the
relevant biological or artificial time-series data sets.
5. The final step is designed to investigate if the
GRN models are able to predict how the network
will behave under new conditions, and if the mathe-
matical methods are all able to correctly capture the
behavior of the GRNs: if this is true then all our
reverse-engineered models should behave in a simi-
lar fashion under new conditions and make similar
predictions about the network behavior.

This paper is structured as follows: first we outline the
mathematical methods, then we discuss their different
characteristics, strengths and weaknesses, followed by
the different GRN models to which we apply them. We

Figure 1 Study design. Summary of experimental set-up, involving manual construction of dynamic GRN models (Step 1), simulation/execution
of these models to generate various dynamic gene expression data sets (Step 2), the automated reverse-engineering of dynamic GRN models
from these data (Step 3), and in silico experimentation to verify (Step 4) and validate (Step 5) the reverse-engineered models.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 3 of 25

then outline our results and relate them to the experi-
mental workflow. Before concluding we give a detailed
discussion of differences between the mathematical
methods as shown by our results.

1.1 GRN modeling methods
The non-linear differential equations of the three mod-
eling methods investigated in this study describe the
mutual activating and repressing influences of genes in
a GRN at a high-level of abstraction. In particular, it is
assumed that the rate of gene expression depends exclu-
sively on the concentration of gene products arising
from the nodes (genes) of the GRN. This means that
the influence of other molecules (e.g., transcription fac-
tors) and cellular processes (translation) is not taken
into account directly. Even with these limitations,
dynamic GRN models of this kind can be useful in deci-
phering basic aspects of gene-regulatory interactions.
The three methods we have studied have been widely
used to model dynamic GRNs. One major advantage of
all three methods lies in their simple homogeneous
structures, as this allows the settings of parameter disco-
vering software to be easily customized for these struc-
tures. In addition, all three modeling methods either
already have the potential to describe additional levels
of detail, or their structures can be easily extended for
this purpose.
The three methods describe dynamic GRN models by

means of a system (or set) of ordinary differential equa-
tions. For a GRN comprising N genes, N differential
equations are used to describe the dynamics of N gene
product concentrations, Xi with i = 1, ..., N. In all three
methods, the expression rate dXi/dt of a gene product
concentration may depend on the expression level of
one or more gene products of the genes Xj, with j = 1,
..., N. Thus, the gene product concentration Xi may be
governed by a self-regulatory mechanism (when i = j),
or it may be regulated by products of other genes in the
GRN. The three modeling methods differ in the way
they represent and calculate expression rates. Before dis-
cussing such differences, we introduce the three model-
ing methods in some detail.
1.1.1 The artificial neural network (ANN) method
Vohradsky [15] introduced ANNs as a modeling method
capable of describing the dynamic behavior of GRNs.
The way this method represents and calculates expres-
sion rates depends on the weighted sum of multiple reg-
ulatory inputs. This additive input processing is capable
of representing logical disjunctions. The expression rate
is restricted to a certain interval where a sigmoidal
transformation maps the regulatory input to the expres-
sion interval. ANNs provide an additional external input
which has an influence on this transformation in that it
can regulate the sensitivity to the summed regulatory

input. Finally, the ANN method defines the degradation
of a gene product on the basis of standard mass-action
kinetics.
Formally, the ANN method is defined as:

dXi
dt

v f w X k X v ki ij

j

N

j i i i i i i= ⋅ −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

− >
=

∑
1

0  (1)

The parameters of the ANN method have the follow-
ing biological interpretations:

N: Number of genes in the GRN to be modeled. The
genes of the GRN are indexed by i and j, where i, j
= 1, ..., N.
vi: Maximal expression rate of gene i.
wij: The connection weight or strength of control of
gene j on gene i. Positive values of wij indicate acti-
vating influences while negative values define repres-
sing influences.
ϑi: Influence of external input on gene i, which mod-
ulates the gene’s sensitivity of response to activating
or repressing influences.
f: Represents a non-linear sigmoid transfer function
modifying the influence of gene expression products
Xj and external input ϑi to keep the activation from
growing without bounds.
ki: Degradation of the i-th gene expression product.

The mathematical properties of the ANN method
have been well studied because it is a special case of a
recurrent neural network [15]. In particular, the symme-
try of the matrix of connection weights wij influences
whether the network dynamics are oscillatory or
whether they converge on a steady (or even chaotic)
state. High positive or negative values of the external
input, ϑi, reduce the effect of the connection weights.
This is explored in Case D where ϑi has been inter-
preted as a delay to the reaction kinetics of the tran-
scriptional machinery [15].
1.1.2 The S-system (SS) method
Savageau [14] proposed the synergistic system or S-sys-
tem (SS) as a method to model molecular networks.
When modeling GRNs with the SS method, the
expression rates are described by the difference of two
products of power-law functions, where the first repre-
sents the activation term and the second the degrada-
tion term of a gene product Xi. This multiplicative
input processing can be used to define logical conjunc-
tions for both the regulation of gene expression pro-
cesses and for the regulation of degradation processes.
The SS method has no restrictions in the gene expres-
sion rates and thus does not implicitly describe
saturation.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 4 of 25

Formally, the SS method is defined as:

dXi
dt

X X g hi j
g

j

N

i j
h

j

N

i i ij ij
ij ij= − > ∈ ℜ

= =
∏ ∏   

1 1

0, , , . (2)

The parameters of the SS method have the following
biological interpretations:

N: Number of genes in the GRN to be modeled. The
genes of the GRN are indexed by i and j, where i, j
= 1, ..., N.
ai: Rate constant of activation term; in SS GRN
models, all activation (up-regulation) processes of a
gene i are aggregated into a single activation term.
bi: Rate constant of degradation term; in SS GRN
models, all degradation processes of a gene i are
aggregated into a single degradation term.
gij,hij: Exponential parameters called kinetic order.
These parameters describe the interactive influences of
gene j on gene i. Positive values of gij indicate an acti-
vating influence on the expression of gene i, whereas
inhibiting influences are represented by negative values.
Similarly, positive values of hij indicate increasing
degradation of the gene product Xi, whereas decreasing
degradation is represented by negative values.

The parameters used in SS models have a clear physi-
cal meaning and can be measured experimentally [21],
yet they describe phenomenological influences, as
opposed to stoichiometric rate constants in general
mass action (GMA) systems [22]. The SS method gener-
alizes mass-action kinetics by aggregating all individual
processes into a single activation and a single degrada-
tion term (per gene). In contrast, the GMA system
defines all individual processes k with k = 1, ..., R with
the sum of power-law functions [23] according to:

dXi
dt

X X

g

ik

k

R

j
g

j

N

ik

k

R

j
h

j

N

ik ik

ij

ijk ijk= − >
= = = =

∑ ∏ ∑ ∏   
1 1 1 1

0, ,

kk ijkh, .∈ ℜ

(3)

The parameters of the GMA system have the follow-
ing biological interpretations:

ai: Rate constant of activation process k.
bik: Rate constant of degradation process k.
gijk: Exponential parameter called kinetic order
describing the interactive influence of Xj on gene i
of process k.
hijk: Exponential parameter called kinetic order
describing the interactive influence of Xj on gene i
of process k.

1.1.3 The general rate law of transcription (GRLOT) method
The GRLOT method has been used to generate bench-
mark time-series data sets to facilitate the evaluation of
different reverse-engineering approaches [16,24].
GRLOT models multiply individual regulatory inputs.
Activation and inhibition are represented by different
functional expressions that are similar to Hill kinetics,
which allow the inclusion of cooperative binding events
[16]. Identical to the ANN, the degradation of gene pro-
ducts is defined via mass-action kinetics.
Formally, the GRLOT method is defined as:

dXi
dt

v
Ki j
n j

I j
n j Ki j

n j

Ak
nk

Ak
nk Kak

nk
i

j

=
+

×
+

⎛

⎝

⎜
⎜⎜

⎞⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

∏
⎠⎠

⎟
⎟⎟

−

>

∏
k

i i

i j j i

k X

v Ki Ka k, , , , 0

(4)

The parameters of the GRLOT method have the
following biological interpretations:

vi: Maximal expression rate of gene i.
Ij: Inhibitor (repressor) j.
Ak: Activator k; the number of inhibitors I, and the
number of activators A can be related to the total
number of genes by I + A ≤ N.
Kij: Concentration at which the influence of inhibitor
j is half of its saturation value.
Kak: Concentration at which the influence of activa-
tor k is half of its saturation value.
nj , nk: Regulate the sigmoidicity of the interaction
behavior in the same way as Hill coefficients in
enzyme kinetics.
ki: Degradation of the i-th gene expression product.

1.2 Systematic biases in the ANN, SS and GRLOT methods
Major differences among the three methods for GRN
modeling can be found in the limitation of expression
rates, regulation of degradation processes, in the proces-
sing of multiple inputs, and in the interpretation of
model parameters.
Limitation of expression rates
The SS method has no restrictions on expression rates,
dXi/dt, while the ANN and GRLOT methods restrict
expression rates to the interval [0, vi] through a sigmoid
function. The three methods have in common that con-
centration changes are not synchronized, that is, the for-
mation or synthesis of a molecule does not necessarily
entail the reduction or degradation of other molecules.
(In particular, this can quickly lead to unrealistic
dynamics in SS models as singularities may arise when
modeling inhibition and the inhibitor reaches a near-zero
concentration.) However, the expression concentration of

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 5 of 25

a gene product must reach a saturation level at some
point and a sigmoid expression rate response is thought
to act as the molecular switch that models this behavior
[25].
Regulation of degradation processes
The SS method covers a wider spectrum of regulatory
targets since SS models are able to describe the regula-
tion of both transcription and degradation processes.
Multiple input processing
GRN models based on the ANN method weight and
sum multiple regulatory inputs. This contrasts with
dynamic GRN models based on the SS and GRLOT
methods, where regulatory inputs are exponentiated and
multiplied. The input processing in SS and GRLOT
models certainly accord better with the fundamentals of
reaction kinetics and collision theory (chemical reaction
rates correlate with the multiplied concentrations of the
reactants) than ANN models. Nevertheless, none of the
three methods follow strictly the chemical reaction pro-
cesses as a single kinetic equation typically comprises
several processes. Instead, all methods are designed to
be flexible enough to find phenomenological expressions
for their approximations of experimentally observed
behavior [15,22]. In particular, for the SS method, we
have found that the unrestricted expression rates
coupled with multiple input processing based on multi-
plied exponentials is a serious flaw, frequently leading to
extreme sensitivity and unstable dynamics (as we
describe in Section 2).
Parameter interpretation
The different parameters used in the three methods
describe activating (inducing) and inhibiting (repressing)
interactions among the genes of a GRN:

• In the ANN method, the parameters wij can be
intuitively used to define activation and inhibition by
assigning positive or negative values, respectively.
Here, small absolute values indicate a minor impact
on the transcription process (or a missing regulatory
interaction) and large absolute values indicate a cor-
respondingly major impact on the transcription pro-
cess. However, one should be aware that the
multiple regulatory inputs required in the case of
co-regulation can compensate each other due to
their additive input processing.
• The GRLOT method uses two inverse functional
forms to describe activating and inhibiting influences
both of which involve two parameters. For example,
in the case of activation, each individual dependency
is described with a Hill equation where the Hill
exponent nij determines the sigmoid response curve
to varying concentration levels of the regulating
molecule. Furthermore, the second parameter, Kak,
allows the concentration of the regulator molecule

to be specified, which gives half of its maximal influ-
ence on the expression rate. Consequently, high
exponent values together with low Kak values,
defined for a regulator molecule, indicate that
already low concentration levels have a strong acti-
vating influence on the transcription process while,
on the other hand, low exponent values in combina-
tion with high Kak values require high concentration
levels of the regulator molecule for effective
activation.
• The behavior of SS models is mainly determined
by the exponent values gij and hij . Similar to the
ANN method, high absolute values define strong
influence, whereas small absolute values indicate
weak influence. However, the dynamics can become
particularly complicated when describing inhibiting
dependencies using negative exponent values. Here,
the effect depends strongly on the actual concentra-
tion ranges of the inhibitor which can introduce sin-
gular behavior at near-zero concentrations.

These differences make each method unique in its
application to modeling GRNs. Table 1 provides a sum-
mary of the characteristics of the three modeling
methods.

1.3 Manually constructing case study models
Due to the limited number of time points at which gene
expression measurements are typically made, the
reverse-engineering of GRNs usually constitutes an
under-determined problem. Essentially, this means that
there are more parameters to estimate than there are
measurements [26,27]. Although hundreds of gene activ-
ities can be measured simultaneously with microarray
experiments, the number of (time-dependent) data
points established for each gene is typically small, lead-
ing to highly under-determined systems. As a conse-
quence, multiple solutions can be found through
reverse-engineering which are able to fit the available
data very well, yet which are very weak in their ability
to predict dynamic activity under different conditions to
those initially explored [28].
Therefore, in order to reduce the number of para-

meters when performing a modeling study, a first step
may involve analyzing gene expression profiles and per-
forming clustering of genes exhibiting similar dynamics
[29]. However, the relationships between co-regulated
genes are very complex [30] and it is important to iden-
tify the key genes that act as regulators to the clusters
of co-expressed genes [31]. Once the gene regulators are
identified they may be used to construct simplified net-
work models that are useful for reverse-engineering
[32]. For instance, Kimura and colleagues [33] built a
quantitative model comprising 24 gene groups found in

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 6 of 25

612 putative open reading frames measured with UvrA
gene disruptant experiments in Thermus thermophilus
HB8 strains, while Guthke and co-workers [34] clustered
a total of 1336 genes into six clusters for dynamic net-
work reconstruction from gene expression data. The lat-
ter example was used to investigate the immune
response during bacterial infection of peripheral blood
mononuclear cells.
With all three mathematical systems introduced in Sec-

tion 1.1, we construct a set of case study models compris-
ing only a small number of genes similar to the gene
clusters used in many modeling studies (Figure 2).
Furthermore, they describe network motifs comprising
regulatory cascades, single input modules, multiple input
modules and multi-component loops [35,36]. By first
manually constructing and simulating these GRNs, and
then performing reverse-engineering on the simulated

data, we can greatly limit the problems associated with
the poor information content of under-sampled data.
The case study models are shown in Figure 2.
1.3.1 Case studies A, B and C
Each of these three cases is modeled using the ANN, SS
and GRLOT method. The parameters of each model are
manually chosen, though we ensured that the models
produce plausible dynamics.
In all models describing the cases A, B and C, we cir-

cumscribed regulatory operations to expression pro-
cesses since the regulation of degradation processes can
be only described with the SS method. For each gene
product Xi we therefore set in all constructed models
the degradation rates ki (bi in the SS method) to 0.3. In
all SS models we set the exponent values hij to 1. This
allows us to concentrate on the transcriptional part of
the different methods.

Table 1 Method characteristics

Characteristic ANN SS GRLOT

number of parameters N * (N + 3) N * (2 * N + 2) N * (2 * N + 1)

limitation (saturation and
sigmoidicity) of expression rates

yes no yes

Processing of multiple signals additive, logical
disjunction (OR)

multiplicative, logical conjunction (AND)
corresponds well with collision theory

multiplicative, logical conjunction (AND)
corresponds well with collision theory

regulation of degradation
processes

no yes no

singularities no yes no

Characteristics of the artificial neural network (ANN), the S-system (SS) and the General Rate Law Of Transcription (GRLOT) methods.

Figure 2 Case study models. The six GRN models A, B, C, D, E and F used in this comparative study.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 7 of 25

• Case A: This static GRN model describes a four-
step gene activation cascade starting from gene X1
up to gene X5. To generate harmonic dynamics with
models of case A, we defined in all three methods
(ANN, SS and GRLOT) constant signal propagation
in the cascades by using identical parameter values
within the parameter sets.
• Case B: With this model, we describe again a gene
activation cascade, however, this case incorporates
signal branching (multiple output) and co-regulatory
relationships (multiple input) into the GRN. Here,
gene X2 activates gene X3 and X4, both of which
stimulate (activate) the expression of gene X5. We
defined asymmetric signal branching such that the
regulatory impact between X2 and X3 is different
from the regulatory impact between X2 and X4.
Furthermore, the co-regulated gene X5 is more sen-
sitive to signals originating from X4 than to those of
X3.
• Case C: The gene network described in the static
GRN model C extends the GRN described in sce-
nario B by incorporating multi-component loops, a
positive feedback loop between gene X2 and gene
X3, and a negative feedback loop between the
genes X2 and X5. The models describing case C
simply extend the parameter sets of case B with
parameters defining stimulation between X3 and
X2 and inhibition between X2 and X5. Thus, all
parameter sets of case C contain two closed-loop
relationships, one positive feedback loop between
X2 and X3, and one negative feedback loop
between X2 and X5.

The common characteristics shared by the different
regulatory parameter matrices (arising from N coupled
differential equations that represent a dynamic GRN
model) are summarized as follows:

1. Case A: Uniform degradation rate (0.3), and con-
stant signal propagation.
2. Case B: Uniform degradation rate (0.3), asym-
metric signal branching and asymmetric co-
regulation.
3. Case C: Uniform degradation rate (0.3), negative
and positive feedback loops.

We use these characteristics as evaluation criteria in
our qualitative analysis of the accuracy of each reverse-
engineered model (Section 4.5.3). All model parameters
are provided in Table 2. The increasing complexity of
the scenarios with their different regulatory mechanisms
allowed us to gradually analyze and compare the indivi-
dual modeling systems.

1.3.2 Case studies D and E
The following two GRN scenarios (D and E) were taken
from the literature [15,21]. These are depicted in Figure 2:

• Case D (V): The 3-gene static GRN model describ-
ing case D was used elsewhere to discuss the influ-
ence of the external input parameter ϑi on the
dynamics of an ANN GRN model [15]. In this exam-
ple ϑi is interpreted as delaying the reaction kinetics.
Figure 3 shows two dynamic gene expression beha-
viors obtained by small variations in this parameter.
This 3-gene GRN model comprises a positive and
negative feedback regulation where products of gene
X1 activate the expression of gene X2 and products
of gene X2 stimulate the expression of gene X3 and
X1. Gene X3 inhibits the expression of gene X1.
• Case E (HS): The fifth GRN system is the 5-gene
static GRN model used by Hlavacek and Savageau
[21]. This model is frequently used to evaluate
reverse-engineering algorithms in combination with
the SS method [27,33,37]. The dynamic behavior of
this model is strongly influenced by singularities
allowed by the SS method. In this scenario, singula-
rities can be caused by the inhibitory dependency
between gene X5 and X3 when the concentration
level of X5 reaches zero.

We use the two cases (D and E), which were specifi-
cally generated for the ANN and SS methods, respec-
tively, to provide additional evidence for the
idiosyncratic behavior of the investigated modeling
methods.
1.3.3 Case study F
This biological GRN was included in this study to ensure
that the results we obtain from our artificial networks
can be transferred to real biological systems. It was con-
structed synthetically in yeast by Cantone et al. [19] to
facilitate an in vivo assessment of various reverse-engi-
neering and gene network modelling approaches, includ-
ing approaches based on ordinary differential equations.
Cantone et al. present expression profiles of the net-

work genes after a shift from glucose- to galactose-raffi-
nose-containing medium: this is called the switch-on
time series; and after a shift from galactose-raffinose to
glucose-containing medium: the switch-off time series.
In this study we used the first 100 minutes of these two
data sets, excluding the first 10 minute interval during
which the washing steps and subsequent medium shift
are performed. After 100 minutes the biological system
is perturbed, and Cantone et al use time-delay terms to
model this perturbation. We have not explored time-
delay terms in our mathematical systems and so we do
not model this perturbation.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 8 of 25

The network includes a variety of regulatory interac-
tions, thus capturing the behavior of larger eukaryotic
gene networks on a smaller scale (Figure 2). It was
designed to be minimally affected by endogenous genes
and to transcribe its genes in response to galactose.

While the yeast GRN appears relatively simple, it is
actually quite articulated in its interconnections, which
include regulator chains, single-input motifs, and multi-
ple feedback loops, which are generated by the combina-
tion of transcriptional activators and repressors.

Table 2 Method parameters for case studies

The SS method The ANN method

a b X1 X2 X3 X4 X5 vi θ k X1 X2 X3 X4 X5

Case A

X1 0.0 0.3 - - - - - 1.0 4.0 0.3 - - - - -

X2 1.0 0.3 2.0 - - - - 1.0 4.0 0.3 5.0 - - - -

X3 1.0 0.3 - 2.0 - - - 1.0 4.0 0.3 - 5.0 - - -

X4 1.0 0.3 - - 2.0 - - 1.0 4.0 0.3 - - 5.0 - -

X5 1.0 0.3 - - - 2.0 - 1.0 4.0 0.3 - - - 5.0 -

Case B

X1 0.0 0.3 - - - - - 1.0 4.5 0.3 - - - - -

X2 1.0 0.3 1.5 - - - - 1.0 4.5 0.3 7.0 - - - -

X3 1.0 0.3 - 2 - - - 1.0 4.5 0.3 - 6.0 - - -

X4 1.0 0.3 - 3 - - - 1.0 4.5 0.3 - 4.0 - - -

X5 1.0 0.3 - - 2 3 - 1.0 4.5 0.3 - - 4.0 6.0 -

Case C

X1 0.0 0.3 - - - - - 1.0 4.5 0.3 - - - - -

X2 1.0 0.3 1.5 - 0.6 - -0.3 1.0 4.5 0.3 7.0 - 7.0 - -8.0

X3 1.0 0.3 - 2 - - - 1.0 4.5 0.3 - 6.0 - - -

X4 1.0 0.3 - 3 - - - 1.0 4.5 0.3 - 4.0 - - -

X5 1.0 0.3 - - 2 3 - 1.0 4.5 0.3 - - 4.0 6.0 -

The GRLOT method

V k X1 n X1 ki X2 n X2 ki X3 n X3 ki X4 n X4 ki X5 n X5 ki

Case A

X1 0.0 0.3 - - - - - - - - - -

X2 1.0 0.3 1.5 1.1 - - - - - - - -

X3 1.0 0.3 - - 1.5 1.1 - - - - - -

X4 1.0 0.3 - - - - 1.5 1.1 - - - -

X5 1.0 0.3 - - - - - - 1.5 1.1

Case B

X1 0.0 0.3 - - - - - - - - - -

X2 1.0 0.3 1.5 0.8 - - - - - - - -

X3 1.0 0.3 - - 2.5 0.5 -

X4 1.0 0.3 - - 1.5 0.8 -

X5 1.0 0.3 - - - - 1.5 0.8 2.5 0.5

Case C

X1 0.0 0.3 - - - - - - - - - -

X2 1.0 0.3 1.5 0.8 - - 3.5 0.1 - - -1.5 2.0

X3 1.0 0.3 - - 2.5 0.5 - - - - - -

X4 1.0 0.3 - - 1.5 0.8 - - - - - -

X5 1.0 0.3 - - - - 1.5 0.8 2.5 0.5 - -

Parameters for each of the SS, ANN and GRLOT methods as used in case study models A, B and C.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 9 of 25

2 Results and Discussion
As we performed many different experiments, we first
clarify how the different stages of our study contribute
to our final set of results before discussing them in
detail.

2.1 Results
Figure 1 describes the study design we adopted to com-
pare the three modeling methods. Here we briefly
describe the inputs and outputs of each step along with
the relevant result tables and figures.
Step 1: Construction of reference models
Input: Three 5-gene static GRN models (models A, B,
C), comprising regulatory cascades, single input mod-
ules, multiple input modules and multi-component
loops [35,36]. Three models taken from the literature: a
3-gene static GRN model (D) [15], a 5-gene static GRN
model (E) [21], and a 5-gene biological GRN (model F)
synthetically generated in yeast [19].
Output: 13 dynamic GRN models:

• Nine 5-gene dynamic GRN models based on the
static models A, B and C. For each static model,
three dynamic models were constructed using the
modeling methods ANN, SS and GRLOT,
respectively.
• One 3-gene dynamic GRN model based on static
model D, using the ANN method. The model para-
meters were taken directly from the literature [15].
• One 5-gene dynamic GRN model based on static
model E, using the SS method. The model para-
meters were taken directly from the literature [21].
• Two 5-gene dynamic GRN models based on the
switch-on and switch-off time series data sets pre-
sented in the literature [19].

Step 2: Generation of the artificial GRN expression data
Input: The 11 artificial GRN models from Step 1 (based
on models A-E).
Output: 20 dynamic gene expression data sets:

• 11 sparse data sets based on simulating each GRN
model with a single set of initial conditions.
• 9 detailed data sets from the first nine models of
Step 1 (corresponding to the static GRN models A,
B and C, respectively). Each data set consists of 5
time series each created with different initial
conditions.

Step 3: Reverse-engineering of dynamic GRN models from
generated data
Input: The output from Step 2, 20 dynamic gene expres-
sion data sets, plus the output from Step 1 for model F
only, the switch-on and switch-off data sets: giving a
total of 22 data sets.
Output: 66 dynamic GRN models. Each of the 22 data

sets is reverse-engineered using the ANN, SS and
GRLOT method, respectively.
Step 4: Verification of reverse-engineered GRN models
Input: 66 dynamic GRN models from Step 3.
Output: Calculation of training predictive power, Pver,

the inferential power, Pinf , and qualitative and visual
comparison of GRN features:

• Execution of 60 dynamic GRN for models A-E
from Step 3 to determine 60 Pver values, each reflect-
ing how well the model is able to predict (fit) the
data from which it was generated.
• Calculation of the inferential power, Pinf , for 20 of
the 60 models by comparing the reverse-engineered
model parameters to the model parameters of the
reference models from Step 1. This is possible only

Figure 3 Dynamics of a 3-gene model. Various dynamics of the 3-gene model taken from Vohradsky (2001) [15], with ϑ1 = 3.0 (left) and ϑ1 =
1.0 (right). Small variations in the ANN parameter ϑi cause different dynamics with constant topology parameters.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 10 of 25

for model pairs, from Step 1 and Step 3, that share
the same modeling method.
• Qualitative analysis of GRN features.
• Visual analysis of the models generated from the
switch-on and switch-off data sets for the biological
network (model F) as described in Section 2.2.1.

Table 3 and Table 4 summarize the results in terms of
training (or verification) predictive power, Pver, and
inferential power, Pinf , determined for the reverse-engi-
neered ANN, SS and GRLOT models, when reproducing
the network dynamics. The results of the qualitative
analysis are presented in Table 5.
Step 5: Validation of reverse-engineered GRN models
Input:

• 54 of the 60 GRN models from Step 3 correspond-
ing to the models (A, B, and C) derived from nine
sparse and nine detailed data sets using ANN, SS
and GRLOT, respectively. Plus 9 reference GRN
models, constructed in Step 1, corresponding to
three ANN, three SS, and three GRLOT models,
respectively.
• The 6 remaining GRN models from Step 3, corre-
sponding to three for each of model D and E.
• The 3 switch-on models from Step 3 for model F.

Output:

• 54 Pval values indicating how well the reverse-engi-
neered dynamic GRN models function under new
conditions (i.e., reproduce unseen data). The results
of the validation experiments with the reverse-engi-
neered dynamic models are summarized in Table 3
and Table 4, respectively.

• By reproducing data sets based on the 5-gene Hla-
vacek model (model E) described with the SS method,
we analyzed if the ANN and GRLOT methods can be
used for reverse-engineering these dynamics without
supporting regulation of the degradation process.
Accordingly, we analyzed the Vohradsky model
(model D) to see if small variations of the external

Table 3 Reverse-engineering verification and validation results for A, B and C

ANN data SS data GRLOT data

Sparse data set

Pinf 0.9620 0.9701 0.8562 0.9308 0.9994 0.9947 0.9546 0.4820 0.6046

Pver 0.9996 0.9797 0.9982 0.9998 0.9988 0.9973 0.9985 0.9941 0.9999

Pval 0.9972 0.9870 0.9976 0.9953 0.8635 0.7878 0.9982 0.9927 0.9999

Δ Pfit -0.0024 0.0073 -0.0016 -0.0045 -0.1353 -0.2095 -0.0003 -0.0014 0.0000

Detailed data set

Pinf 0.9896 0.9992 1.0000 1.0000 0.9999 1.0000 0.6704 0.7070 0.6432

Pver 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 0.9983 0.9978 0.9987

Pval 0.9997 0.9999 1.0000 0.9978 0.9882 0.9891 0.9978 0.9972 0.9996

ΔPfit -0.0001 0.0000 0.0000 -0.0022 0.0118 0.0109 -0.0005 -0.0006 0.0009

Summary of verification (Step 4) and validation (Step 5) results from reverse-engineering dynamic GRN models from data generated with the reference models A,
B and C (Step 1). Here, only same-method results are shown - i.e., ANN model reverse-engineered with ANN method from data generated with ANN reference
model, and so on. Results are given for cases A, B, and C for each method (columns below method name from left to right). For the sparse and detailed data sets,
Pinf and Pver first given for the reverse-engineered models, then Pval for the predictions (averaged over 2 values for input increase and decrease). The ΔPfit (for
data fitting) is the difference between Pver and Pval scores.

Table 4 Reverse-engineering results with data fitting
scores only

Sparse data ANN data SS data GRLOT data

to ANN model Pver 0.9925 0.9909 0.9926

Pval 0.9939 0.9907 0.9900

ΔPfit 0.0014 -0.0002 -0.0026

to SS model Pver 0.9825 0.9986 0.9955

Pval 0.6769 0.8822 0.6847

ΔPfit -0.3056 -0.1164 -0.3108

to GRLOT model Pver 0.9737 0.9672 0.9975

Pval 0.9712 0.9333 0.9970

ΔPfit -0.0025 -0.0339 -0.0005

Detailed data

to ANN model Pver 0.9999 0.9846 0.9975

Pval 0.9998 0.9789 0.9967

ΔPfit -0.0001 -0.0057 -0.0008

to SS model Pver 0.9916 0.9999 0.9981

Pval 0.8294 0.9917 0.8321

ΔPfit -0.1622 -0.0082 -0.1660

to GRLOT model Pver 0.9936 0.9934 0.9986

Pval 0.9935 0.9879 0.9982

ΔPfit 0.0001 -0.0055 -0.0004

Data (created by ANN, SS, GRLOT methods) predicted by the different
methods (for cases A, B, C) and subsequently used for making in silico
predictions; for sparse and detailed data sets.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 11 of 25

input parameter ϑi, which lead to large effects in
ANN models, could be reverse-engineered into mod-
els based on the SS and GRLOT method. These
results are summarized in Figure 4.
• Table 6 describing the results of perturbation
experiments performed on the 3 switch-on data sets
of model F.

2.2 Discussion
In order to ensure that our results based on the artificial
data sets are fully applicable to biological systems, we
first discuss the results from reverse-engineering the
biological data (model F). We then discuss scenarios
where the same methods were used for both reverse-
engineering and data set creation: this allows us to
check if the methods are able to accurately discover the

original parameter matrices used to generate the data
and to see if the discovery of the parameter matrices is
a necessary condition to generate accurate and realistic
dynamics. Next we highlight idiosyncrasies between the
methods by discussing the results when different meth-
ods were used for reverse-engineering and data set crea-
tion, and before concluding our discussion by
considering specific features of the network models, we
describe the results of our qualitative comparisons.
2.2.1 Reverse-engineering biological data
The ten graphs in Figure 5 show the gene expression
data of the five genes in the model F, CBF1, GAL4,
SWI5, GAL80, ASH1 [19], along with the dynamics pre-
dicted by the three methods. The ANN and GRLOT
methods tend to provide a good match to the experi-
mental data, with the ANN method giving the best
results in this test. The SS is clearly worse than the
other two methods due to the sensitivity of its many
multiplied power terms. We have found that many of
the terms automatically generated by the evolutionary
algorithm for the SS method do not give any solution (i.
e the integrator fails), and so the method therefore
tends to converge on local minima where many, if not
all, of the power terms are set to zero, thus resulting in
simple linear graphs. However, sometimes a linear solu-
tion may be a reasonably accurate approximation to
genes that are in a steady-state of expression, and so lin-
ear solutions may not have a significantly detrimental
effect on the overall model output.
Table 6 summarizes the results for the perturbation

experiments performed on the reverse-engineered mod-
els. The ANN and GRLOT are again in more accord
with each other than they are with the SS method, and
the SS method fails more frequently. Perturbing

Table 5 Parameter matrix characteristics

Case A Case B Case C

Data generation method ANN SS GRLOT ANN SS GRLOT ANN SS GRLOT

Uniform degradation rate x - - x x x x x x x - - x x x x x x x x x x x x x x x

Constant signal propagation x - - - x x - x x

Asymmetric signal branching x x x - x x x x x x - - - x x - x x

Asymmetric co-regulation - - - - x - - - - - - - x x - - - -

Negative feedback x x x x x x x x x

Positive feedback x x - x x x x x x

Uniform degradation rate x - - x

Constant signal propagation x - - - x x - x x

Asymmetric signal branching x x x - x x x x x x - - x x - x x x

Asymmetric co-regulation x - x x x x x - x x - - x x - x x x

Negative feedback x x x x x x x x x

Positive feedback x x x x x x x x x

Characteristics found in the parameter matrices of the reverse-engineered network models: Characteristics corresponding to the sparse data sets are depicted in
the top rows of the table, those corresponding to the detailed data sets in the bottom rows. The symbol “x” shows that the feature was discovered by the
method, “-” its was not discovered, and spaces indicate that the feature was not part of the case study. The reverse-engineering methods applied to each data
set are in the order ANN, SS, GRLOT.

Figure 4 Data fitting and matrix correlation values for Cases D
and E. Data fitting (predictive power, Pver, measured on training
data) and matrix correlation (i.e., inferential power, Pinf) values for
reverse-engineered models for Cases D and E.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 12 of 25

different genes influences the network dynamics in dif-
ferent ways, some giving a large change to the overall
network dynamics, and some leaving them relatively
unchanged. This is shown in the table by the comparing
the perturbed network dynamics to the unperturbed
state. When comparing the predicted network dynamics
for the different methods, the results indicate that good
agreement is possible between the ANN and GRLOT
methods, especially for the smallest perturbations, but
also sometimes even for the largest perturbations we
explored: however, this is not always the case as there
was little agreement between the methods when the
GAL4 gene was perturbed. We believe that these results
show that the mathematical methods are able to gener-
ate reasonable solutions for biological data sets. In sub-
sequent sections we further elucidate characteristics of
the methods using our more detailed artificial data sets.
2.2.2 Within-method estimation of model parameters
We examined the accuracy of model parameter estima-
tion for the situation where the reference GRN model
(constructed in Step 1) and the reverse-engineered GRN
model are based on the same modeling method (ANN,
SS or GRLOT). To assess how accurately the original
parameter matrices were discovered, we used the infer-
ential power measure, Pinf , defined by Equation 13.

Table 3 depicts the results we obtained from estimating
within-method model parameters of the reverse-engi-
neered models. First, we observe that although the ANN
and GRLOT methods achieved relatively low Pinf scores
(compared to the SS method), they still performed rela-
tively well in terms of predicting the training data mea-
sured by the Pver scores. The GRLOT method is
particularly notable here: For case C on the sparse data
set, even though the Pinf value is only 0.6046, the Pver
value is 0.9999, indicating very accurate replication of the
model dynamics even with significant errors in the para-
meter matrices. Indeed, this model also makes highly
accurate predictions when it is perturbed by increasing
and decreasing inputs. This is in marked contrast to mod-
els based on the SS method, which performed relatively
well at discovering the original parameters (high Pinf), but
made poor predictions (low Pval) when the model was per-
turbed. This indicates a lack of robustness of the SS
method due to its extreme sensitivity. Compared to the SS
method, models based on both the ANN and GRLOT
methods are much more robust to variations in their
model parameters and are thus able to make more accu-
rate predictions (higher Pval) of model behavior.
The experiments with the detailed data sets confirmed

these results. As expected, all methods perform better

Table 6 Perturbation data for the models generated for the Cantone model F

Comp. to unperturbed network Comp. to perturbed network

Perturbation ANN GRLOT SS ANN to GRLOT ANN to SS GRLOT to SS

CBF1 0.0045 1 1 1 0.951 0.461 0.337

0.0135 0.656 0.556 0.556 0.949 0.431 0.345

0.054 0.059 0.0397 0.0397 0.795 0.613 0.808

0.216 0.0035 0.0022 - 0.0072 - -

GAL4 0.0324 1 1 1 0.951 0.461 0.337

0.0972 0.940 0.549 - 0.542 - -

0.3888 0.059 0.0395 - 0.0606 - -

1.5552 0.00025 0.0023 - 0.0052 - -

SWI5 0.0075 1 1 1 0.951 0.461 0.337

0.0225 0.992 0.994 0.893 0.952 0.310 0.222

0.09 0.800 0.838 0.217 0.953 0.0672 0.0506

0.36 0.180 0.221 - 0.953 - -

GAL80 0.0221 1 1 1 0.951 0.461 0.337

0.0663 0.541 0.498 0.371 0.930 0.555 0.545

0.2652 0.0208 0.0354 0.0192 0.915 0.581 0.545

1.0608 2.09e-05 0.0021 - 0.0022 - -

ASH1 0.012 1 1 1 0.951 0.461 0.337

0.036 0.939 0.935 0.780 0.951 0.471 0.342

0.144 0.338 0.328 0.212 0.950 0.476 0.344

0.576 0.0272 0.0263 0.037 0.945 0.471 0.338

Perturbation data for the models generated for the Cantone model F [19], based on the switch-on network only. The left hand set of results compares the
perturbed network to the unperturbed network: they give an indication of how the perturbation has changed the network dynamics. The right hand set of
results compares the perturbed networks across the three methods. The closer the values are to 1.0, the more similar the dynamics. The perturbations involve
increasing the initial gene values by ×3, ×12, and by ×48.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 13 of 25

with the more detailed data set (providing more training
data reflecting different initial conditions), and even the
SS method improved the quality of its predictions, but it
was still outperformed by the ANN and GRLOT
methods.
2.2.3 Reverse-engineering different method data
Looking at the situation when the methods recon-
structed (predicted) all data sets generated by all the
methods, we relied on the Pver measure as the methods
were unable to reverse-engineer the original parameter
matrices in all cases. The results of these experiments
are summarized in Table 4.
As expected, the quality of the models is lower when

the methods predicted the data created by one of the
other methods. The SS method is conspicuous in its
poor performance. In Table 3, the Pinf values for the SS
method indicate that the parameter matrix was discov-
ered with very high precision (the values are 0.9994 for
sparse data and 0.9999 for detailed data). However, the
ΔPfit values, which indicate the performance of the mod-
els when making predictions about network behavior
under changes in input, are very poor: the values for
cases B and C are 0.1358 and -0.2095, respectively, for
the sparse data and 0.0118 and 0.0109, respectively, for
the detailed data. Bearing in mind that a ΔPfit value of
0.1000 or above is of poor quality, with almost no visible
relation to the original or expected dynamics, and that
accurate models would require a ΔPfit value of about
0.0100 or less (see in Section 4.5.1), it then becomes
clear that the ability of the SS method to make satisfac-
tory predictions about network behavior is much less
than that of the ANN and GRLOT methods, even when
highly sampled data of near-perfect accuracy is used (i.
e., artificial data created by the SS method). This inaccu-
racy is due to the exponential terms in the SS method,
which are highly sensitive to its parameters even when
they are accurate to three or four decimal places. A
decrease in model input corresponds to an increase in
the degradation rate k1 (or b1) on gene X1, as described
in Section 4.4. Due to the nature of the dynamics, the k1
increase is a smaller perturbation than the decrease, cor-
responding to the differences in these average values for
k1 = 0.5000 and k1 = 0.1000, respectively. The individual
data for input increase and decrease predictions show
that the SS method actually performed as well as the
other two models when the input was decreased, the
problems arose when the input was increased. The
results therefore indicate that the SS models may be rea-
sonably robust to small perturbations, but are highly
sensitive to larger perturbations and consequently liable
to lose all predictive ability.
It is also worth noting that the SS method performed

poorer in reverse-engineering well-performing GRN

Figure 5 Switch-on and switch-off dynamics of GRN model F.
Based on the synthetic network and corresponding data sets from
Cantone et al. [19] we show the experimentally determined data
with error bars for a switch-on and switch-off times-series, along
with the modelled gene expression curves generated by each of
the three methods.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 14 of 25

models based on data generated by the GRLOT and
ANN methods than the GRLOT and ANN methods in
reverse-engineering models based on the data created by
the SS method. The ANN and GRLOT also performed
slightly worse when reverse-engineering from SS data
than when reverse-engineering from data created by the
GRLOT or ANN method, respectively.
2.2.4 Qualitative comparison of network features
The results of the qualitative comparison between the
methods, as described in Section 4.5.3, are summarized
in Table 5. They show that the GRN models reverse-
engineered from the detailed data sets had a higher
similarity to the original models, in terms of their
underlying network features, than models based on the
sparse data set. This result portrays the opposite of what
is observed on the basis of Pver values, where the
reverse-engineered models score higher with the sparse
data than the detailed data sets. This result is an indica-
tion of the problems that arise with discovering the
underlying network features when the data availability is
low.
In the following we consider different network fea-

tures individually:
Uniform degradation rate With reference to sparse
data, Table 5 (block of top rows), the results show that
the ANN method was highly successful in discovering
uniform degradation rates in each of the three cases and
with each data set. However, the other two methods
performed better in predicting data generated by the SS
or GRLOT method than by the ANN method. Even
with detailed data, the SS and GRLOT methods failed to
discover the uniform degradation rate as simulated by
the ANN method, especially with case A, although all
methods discovered this feature when generated by the
SS and GRLOT methods.
Constant signal propagation Only case A has the con-
stant signal propagation feature. There is a clear differ-
ence between the methods: The ANN method was able
to reproduce its own data, but not that of the SS or
GRLOT method, whereas the SS and GRLOT could
reproduce their own and each other’s data, but not the
data generated by the ANN method.
These findings can be explained by the different way

in which the three methods process inputs. For example,
constant signal propagation from one gene to another
described with uniformly weighted input values (as rea-
lized by the ANN method) can certainly not be repro-
duced with constant signal propagation defined with
uniformly exponentiated input values (SS method).
Asymmetry in signal branching and co-regulation
Asymmetric signal branching and co-regulation are fea-
tures in the case studies B and C. For sparse data, the
methods were less successful at discovering asymmetric
co-regulation than asymmetric signal branching, but for

detailed data both features were modeled with similar
success rates. As with the case of constant signal propa-
gation, the different approaches to input processing of
the three methods seem to explain this observation.
For sparse data, the asymmetric co-regulation feature

was not discovered at all when reverse-engineering from
data generated by the ANN and GRLOT method,
respectively. In case B, co-regulation involves the inter-
play between the two genes, X3 and X4, that control the
expression of gene X5. By looking into the details of the
models (data not shown here), the ANN and GRLOT
models either described co-regulation with interchanged
asymmetry or contain, incorrectly, an inhibitory depen-
dency of gene X5. The sparse data set was not sufficient
to ensure that this characteristic was reflected in the
reverse-engineered models, but for detailed data the
methods were more successful and in particular the
ANN method could correctly reproduce co-regulation
for all the data sets.
Positive and negative feedback loops These features
are only found in the static GRN of case C. The meth-
ods have performed relatively well in reverse-engineer-
ing these features. Specifically, all models reverse-
engineered from one time-series (Table 5, block of rows
at the top) contain the positive and the negative feed-
back loops of network case C, with the exception of one
GRLOT model that was reverse-engineered from ANN
data. This GRLOT model discovered an extra negative
feedback loop instead of the positive feedback loop.
All models reverse-engineered from the detailed data

rediscovered the feedback loops. Feedback loops play a
key role in the model dynamics of network case C, and
are therefore essentially contained in nearly all reverse-
engineered models.
2.2.5 Considering the different case studies
This section analyzes the different case studies in some
detail.
Cases A, B, and C Generally, the increasing complexity
of the static GRN models from A to C had no signifi-
cant impact on the predictive power of the reverse-engi-
neered models on the training data (Pver values). This,
however, might be different in more complex reverse-
engineering settings where the network topologies are
not known.
The Vohradsky case D: Oscillatory dynamics While
models based on all three methods were able to obtain
high Pver values on reproduced non-oscillatory dynamics,
the SS and GRLOT models reverse-engineered from the
time series did not perform so well for oscillatory
dynamics. The data sets used for these experiments are
shown in the left and right panels of Figure 3.
The reason for the ANN method’s ability to model

oscillations lies in the external input parameters ϑi
which can be used in ANN models to modulate the

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 15 of 25

responsiveness of each gene to incoming signals indivi-
dually. The ANN model used to generate the non-oscil-
latory dynamics used identical ϑi values whereas the
underlying model of the oscillatory dynamics used dif-
ferent ϑi values to define fast and delayed signal
responses. As shown in Figure 3, this led to oscillatory
dynamics caused by slower responses within the cyclic
negative feedback system defined in the Vohradsky sce-
nario. These oscillations could not be reproduced by the
reverse-engineered SS and GRLOT models (see Figure
6). Thus, the oscillatory dynamics is extremely biased
towards the individual characteristics of the ANN
method and are therefore difficult to model by dynamic
GRN models based on the SS or GRLOT methods.
To better understand the data fitting verification

method (based on the training data), it is useful to com-
pare the time series shown in Figure 6 with the Pver

values given in Figure 4: the Pver values are still rela-
tively high for the SS and GRLOT methods, despite
their failure to reproduce the oscillatory dynamics seen
in the left diagram of Figure 6.
The Hlavacek case E: singularities The same conclu-
sions can be drawn from the results obtained with the
Hlavacek case. The SS time series used here was also
strongly influenced by unique characteristics of the SS
method. First, the underlying network model of the test
data set [38] involves the regulation of the degradation
process of X3. More importantly, though, is the fact that
singularities have a significant impact on the dynamics
generated with this test model. As the Pver values of Fig-
ure 4 show, this time series could therefore only be
reproduced by the original SS method, whereas the
ANN and GRLOT methods failed.

3 Conclusions
In this study we examined three systems of ordinary dif-
ferential equations commonly applied in the modeling
and reverse-engineering of GRNs. Our goal was to
assess how the characteristics of the individual mathe-
matical methods affect the quality of the reverse-engi-
neered dynamic GRN models. Our results suggest that

the methods are clearly not equivalent and interchange-
able and that there are considerable differences in the
way the methods process inputs. In particular, the SS
method suffers from a relatively high degree of sensitiv-
ity to its parameters due to multiple input processing
based on multiplied unrestricted exponentials. Thus, for
the SS method, even when the original parameter matrix
used to generate artificial test data sets was discovered
with high accuracy the method sometimes failed to ade-
quately reproduce the network dynamics.
Different methods seem to be suitable for modeling

different types of dynamics or network features. For
example, oscillatory dynamics may be modeled with the
ANN method by using different values within its para-
meters. However, this may not possible with the SS and
GRLOT models, which do not provide straightforward
mechanisms for modeling oscillations.
Models reverse-engineered from under-sampled data,

based on only a single experiment, are unlikely to dis-
cover the real parameter matrix, and should be regarded
with considerable caution. Even when multiple, well-
sampled time series data are available, it is does not
seem wise to rely on models based on just a single mod-
eling method, as it is likely to have some bias. The SS
method, in particular, is prone to generating unrealistic
dynamics, especially for relatively large input perturba-
tions where our experiments showed its predicted out-
put to be very inaccurate (see Section2.2.2). Even for
very small gene networks, considerable amounts of
highly time-resolved (many sampling points) and highly
condition-resolved (based on multiple perturbations)
data may be necessary to produce reliable dynamic GRN
models. Furthermore, as the complexity (number of
genes and regulatory interactions) increases, the compu-
tational complexity (compute power) required to
reverse-engineer dynamic GRN models becomes non-
trivial, and may require non-standard computing solu-
tions such as clusters, supercomputers or other large-
scale computing solutions.
In the experiments we performed, SS-based dynamic

GRN models generally yielded significantly less accurate

Figure 6 The oscillatory dynamics of three models. The oscillatory dynamics of the ANN model (left), cannot be reproduced in the SS and
GRLOT models (middle) and (right).

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 16 of 25

predictions than the ANN and GRLOT methods. While
some features such as positive and negative feedback
loops were correctly modeled in almost all situations we
studied, it was often the case, especially when using the
sparse data sets, that the methods failed to reverse-engi-
neer features such as uniform degradation rates, con-
stant signal propagation, asymmetry in signal branching
and asymmetry in co-regulation. Even with the detailed
data sets, these features could not be consistently
reverse-engineered. Of the three methods, perhaps the
ANN method deserves more attention due to its reliabil-
ity and the relatively small number of parameters it
requires. Indeed, although in this paper we have not
presented results for the amount of computation
required for each method, it is important to note that if
the amount of computational power is limited, then the
ANN method generally produces the most accurate and
robust models for the least computation.

4 Methods
Before we describe the experimental design we used to
compare the GRN modeling methods, we introduce
some terminology.

4.1 Terminology
Static GRN model
The static model of a GRN represents the regulatory
interaction structure or topology of a GRN. It describes
whether or not there is a regulatory relationship
between genes and what the nature of the interaction
is, if it exists. The interaction nature is a binary prop-
erty. It describes the influence of interacting genes, i.e.,
whether a gene has an activating (up-regulating, indu-
cing) or inhibiting (down-regulating, repressing) influ-
ence on another gene. A static GRN model does not
quantify gene expression amounts or regulatory influ-
ence. Static GRN models are easy to depict diagram-
matically as a graph or network in which a node
represents a gene and an edge a represents a regula-
tory interaction between two genes. The type and
direction of an interaction is typically depicted symbo-
lically: An arrow head represents activation, a bar
represents inhibition. A diagrammatic depiction of the
static GRN models used in our study is shown in Fig-
ure 2.
Dynamic GRN model
A dynamic GRN model refers to a representation that
captures both the regulatory interaction structure
(including the nature of the interactions) as well as
quantitative rules that describe how gene expression
amounts vary (in response to perturbations) over time.
Dynamic gene expression data
In general, dynamic gene expression data represent the
time-variant expression levels (abundance of functional

gene products: RNA, proteins) of the genes comprising
a GRN. In our study we do not use dynamic gene
expression data from real biological experiments.
Instead, we generate dynamic gene expression data from
dynamic GRN models with manually defined model
parameters and (initial) expression levels.
Reverse-engineering of GRNs
Reverse-engineering of a GRN refers to the process of
constructing (by automated means) a dynamic GRN
model based on dynamic gene expression data. In parti-
cular, the reverse-engineering of a dynamic GRN model
requires the reconstruction (from data) of the underlying
regulatory interaction structure as well as the parameters
governing the quantitative regulatory influence among
genes. We simplified the reverse-engineering problem
somewhat by avoiding the reverse-engineering of regula-
tory interactions that are not present in the static GRN
models used as case studies (Figure 2).

4.2 Model simulation: Generating the training data sets
For the reference GRN models obtained from the static
GRN models A, B and C, the initial concentration levels
of the model variables Xi are identical throughout all
models and comprise five sets (called starting sets) lead-
ing to different dynamics (see Table 7). In the starting
set 1, for instance, the high initial concentration of X1
triggers the dynamics of the other network components,
whereas the concentrations of starting set 5 are more
evenly distributed.
The dynamics generated by the different modeling

methods for the same GRN differ considerably. There
are two main reasons for this: First, we chose model
parameters producing different dynamics to provide a
variety of expression profiles to facilitate the comparison
of the three modeling methods. Here, the idea is to
assess to what extent the reverse-engineered dynamic
GRN models are able to reproduce the dynamics gener-
ated by the reference models. This relates to the model
verification Step 4 in our study design. Second, the fact
that the different reference models generate different
dynamics is also explained by idiosyncratic characteris-
tics of the modeling methods.
With the dynamic GRN reference models constructed

from the static GRN models A, B and C the following
dynamic gene expression data sets were generated (see
Step 2 in our study design in Figure 1):

1. Sparse data sets, comprising the dynamic gene
product concentrations of all genes but based on
only a single set of initial conditions, namely starting
set 1 (see Table 7).
2. Detailed data sets, based on five sets of initial
conditions, namely based on starting set 1 to starting
set 5.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 17 of 25

3. All time series consist of 200 data points, each
data point describing the gene product concentration
Xi(tk) at time point tk for each gene i = 1, ..., n.

The model parameters for the reference models of the
Vohradsky model (case D), the Hlavacek model (case E),
and the Cantone model (case F) were taken directly
from the literature [15,19,38].

4.3 Reverse-engineering of dynamic GRN models from
time-series data
Many approaches to reverse-engineering of GRNs exist
[12]. In our study reverse-engineering came down to a
parameter estimation or optimization problem (Step 3
in our study design). We adopted an evolutionary algo-
rithm approach to address this task [20]. Different
reverse-engineered dynamic GRN models may be gener-
ated with different optimization techniques. However,
we are confident that the parameter optimization tech-
nique we adopted was successful because, for the ANN
and SS methods, we could demonstrate that the para-
meters of the reference models could be reverse-engi-
neered with high accuracy (see the Pinf values in Table
3). Furthermore, the validation results (predictive power
on unseen data) for some of the dynamic GRN models
we reverse-engineered with the evolutionary algorithm
technique, show high levels of accuracy. Details of the
optimization approach are discussed below.
4.3.1 The parameter optimization problem
The primary purpose of dynamic GRN models is to
reveal regulatory mechanisms of biological gene regula-
tion networks. Typically, in the case of highly abstracted
GRN models as discussed here, dynamic (time-variant
or time-series) gene expression data forms the input to
the reverse-engineering process. When reverse-engineer-
ing dynamic GRN models from experimental time-series
data, the problem is to identify model parameters for
which the discrepancy between the experimental data
and the data predicted by the model is minimal. This
leads to an optimization problem in which the following
function is to be minimized.

f X t X tk k

k

N

t

T

= −
==

∑∑ (() ())
^ 2

11

(5)

where
Xk(t) denotes the experimentally observed gene pro-

duct concentration level of gene k at time point t.

X tk
^

() denotes the gene product concentration level
of gene k at time point t predicted by the dynamic GRN
model.

N denotes the number of genes in the network and
T the number of sampling points of observed data.

This approach is based on the assumption that the
minimum of function f corresponds to the set of para-
meters (i.e., parameter matrix) of the dynamic GRN
model for which the model’s outputs optimally fit the
experimental data [28].
We performed optimization using evolutionary algo-

rithms [20,39-41], which are stochastic search methods
that mimic, on a highly abstracted level, biological evo-
lution and sexual reproduction. Each evolutionary algo-
rithm works with a population of points on the problem
space where points are represented by individuals.
Transformations on the individuals will tend to assem-
ble individuals in more favorable areas of the search
space, i.e., areas with high evolutionary fitness. When all
or most individuals are located within the same area
then a local (and possibly global) optimum of the search
space is found.
Our approach was realized as follows. Individuals are

represented by real-valued vectors, and each value can
evolve within a defined variable-dependent interval.
Here, the different genetic operators acting on those
vectors ensure that the values remain with the specified
intervals. First, we generated a random initial set or
population of individuals. In this case, individuals are
generated by setting random values to the unknown
model parameters of the differential equations repre-
senting the dynamic GRN models (with the three mod-
eling formalisms ANN, SS and GRLOT). A simulation
was then performed for each individual and this was
used to evaluate the fitness by comparing how well the
simulated model output matches the time-series expres-
sion data (see Equation 5). The individuals were then
ranked according to their fitness and in the next step
we selected individuals for genetic operations, including
cloning, recombination and mutation. These processes of
selection, recombination and evaluation were repeated
until a designated termination criterion was met, such
as the attainment of an acceptable fitness level, or if a
certain number of generations were evaluated.

Table 7 Initial model inputs

X1 X2 X3 X4 X5

Starting set 1 0.8 0.1 0.1 0.1 0.1

Starting set 2 0.8 0.1 0.1 0.3 0.5

Starting set 3 0.5 0.5 0.2 0.1 0.1

Starting set 4 0.4 0.8 0.2 0.2 0.2

Starting set 5 0.5 0.2 0.8 0.8 0.2

Initial mRNA concentration levels chosen for all models. We generate a sparse
data set comprising one time-series based on starting set 1 and a detailed
data set which comprises five time-series based on starting set 1 to starting
set 5.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 18 of 25

4.3.2 The two-phase reverse-engineering strategy
In this study, we applied a two-phase strategy to
reverse-engineer dynamic GRN models from time-series
gene expression data created in Step 2 from the refer-
ence models. We refer to the first phase as bottom-up
phase and the second as top-down phase. We also
employed the notions of a network model, denoted by
m, and a node model, denoted by mk, to structure
reverse-engineering problem [42].
Figure 7 illustrates the concepts of the node and net-

work models. The node model describes the regulatory
dependencies of a single gene, whereas the network
models contain the dependencies of all genes of a net-
work. Both types of model can be simulated: A network
model requires only the initial conditions of constituent
elements (i.e., gene product concentrations). In contrast,
the node model requires as input the the time-depen-
dent levels of all the elements. Consequently, node mod-
els usually fit the experiment very accurately, since they
can use the experimental data as input, yet they are
unable to predict behavior of the system under new
experimental conditions.
The number of parameters to estimate in all three

modeling methods ANN, SS and GRLOT increases
with O(N2), where N is the number of genes in the
GRN. This makes it very difficult to reverse-engineer
large-scale GRN models. Recently, a variation on the
“network” model of reverse-engineering mentioned
here was further developed based on the ANN method
by Vohradsky and colleagues [43,44]. Even the

reverse-engineering of relatively small GRNs, as pre-
sented by this study, turns out to be challenging. The
advantage of node models, however, is that they
require only 1

N th of the parameters required for the
network model consisting of N genes. Thus, a consid-
erable complexity reduction can be achieved by
decomposing the parameter optimization problem of a
GRN into the smaller problem of N node models with
complexity O(N). This problem decomposition
approach was proposed as a step-by-step strategy by
Maki and colleagues [45] and successfully applied else-
where [27,33,46].
Formally, we define a network model, m, as a structure

comprising N node models, mk as follows:

m = … = …(, , , ,) , , .m m m m k NN1 2 3 1 (6)

Such a network model, m, is capable of predicting the
dynamics of a GRN consisting of N genes. Each consti-
tuent node model, mk of m, approximates the concen-
tration changes, d X dtk

^

/ , captured by the experimental

data according to the following function:

d X k
dt

f t
^

((),),= X wk
(7)

where
d X k
dt

^
denotes the approximated gene product concen-

tration changes of gene k,

Figure 7 Creating molecular and network models. The process describing the generation of GRN models from molecular models.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 19 of 25

X(t) denotes the concentration levels of observed gene
product concentrations at time t as provided by the
dynamic gene expression data,
wk is a vector representing the parameters of the node

model mk.
To approximate the concentration dynamics of a gene

within an entire network model, we define accordingly:

d X k
dt

f t k

^
^

((), (),)= X X w0 (8)

Here X t
^
() describes the approximated concentration

levels of the nodes (representing gene products) k in the
network and X(0) specifies the initial condition or state
of the network model (as obtained from the time-series
data).
In the bottom-up phase of our two-stage approach, we

estimated the parameters wk of each individual node
model, mk, independent from the parameters of other
node models. Subsequently, in the top-down stage, we
reverse-engineered (optimized) the parameters, W, of
the entire network model, m, by taking the results of
the bottom-up approach as a starting point.
Bottom-up phase In the bottom-up phase the para-
meter estimation problem for one network model, m, is
divided into smaller parameter estimation problems for
N node models, mk. The parameters, wk, of the N mole-
cular models can be reverse-engineered step-by-step and
independently from each other. This is facilitated by the
extraction of the concentration levels, Xi, from all genes
in the experimental data set, D. Hence, the objective
function for reverse-engineering optimal node models
from experimental data can be reduced to

f X Xk kt kt

t

p

= −
=

∑()
^ 2

1

(9)

This function corresponds to the fitness of the k-th
node model where X kt

^ is the calculated gene expres-
sion level of gene k and Xkt is the given expression level
of gene k at time t from the data set D.
With several repeated iterations of the bottom-up pro-

cess, the intention was to find one or more optimal
parameter sets wki which produce small error values
according to Equation 9. By combining the fittest of the
N identified node models form mk, it is then possible to
construct a self-contained network model, m, which can
simulate the dynamic behavior of the network indepen-
dently from the gene expression matrix
D. Consequently, and in contrast to the node models

mk, a network model, m, is capable of simulating or pre-
dicting scenarios (gene product concentrations) that are
not captured by the experimental data.

Top-down phase In the top-down phase, we estimate
parameter sets W = (w1,w2, ..., wN) of network models,
m. Here, the concentration levels X

^
()t and the para-

meters sets, wk, of all node network models, mk, in m
are estimated together and dependent upon each other.
So this case involves the interplay between the indivi-
dual node networks in that the estimated concentration
levels of each node network provide the potential input
for other node models. In this case, the objective func-
tion for reverse-engineering optimal network models
from experimental data is defined as

f X Xkt kt

k

N

t

p

= −
==

∑∑ ()
^ 2

11

(10)

As already discussed, it is possible to construct a net-
work model, m, by merging of node models, mk, found in
the bottom-up phase. At this stage, however, the network
model has not learned to work as a system that is aware
of the interplay among the individual node models. Since
the network model no longer derives its input from a sta-
tic gene expression data matrix, D, but instead is estimat-
ing the concentration levels for each network node, it can
show dynamics totally different from the dynamics gener-
ated by the individual node models. The reason for this
discrepancy lies in error propagation, where even small
variations at the beginning of a simulation can cause dra-
matic fluctuations at later stages. For this reason, a net-
work model constructed from node models is not the
final result but rather constitutes a good starting position
for the global parameter optimization.
4.3.3 The parameter sets used
To identify optimal parameter sets for the different gene
expression models, we applied an evolutionary algorithm in
which the genotype is directly based on real-valued vectors
[41]. The genetic operators applied in our study are BLX-a
crossover [47], with a crossover rate of 0.6, and real number
creep mutation, with a mutation rate of 0.1. The selection
method used for selecting individuals for the generation
changes is roulette-wheel selection with proportionality to
the positions found in a rank-based fitness assignment opera-
tion. The number of individuals contained in one population
was 500 and the number of generations was 300. Each para-
meter optimization for node models and for network models
was repeated five times. This reverse-engineering strategy
was able to precisely reproduce (often to more than 4 deci-
mal places) the original parameter matrices for situations
where the modeling method of reference model (Step 1) and
reverse-engineered model (Step 3) were identical.
For consistency, we used the exact same approach (i.

e., the same evolutionary algorithm parameters such as
population size, number of generations, etc.) for all the
reverse-engineering experiments. The only exception to

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 20 of 25

this was the Cantone model F that we worked on at a
time when our usual infrastructure, described in Section
4.6, was not available. Instead we used a similar evolu-
tionary algorithm on the Grid’5000 infrastructure [48].
The parameter space searched for the three methods

was defined as follows:

• The ANN method: wij from -15.0 to 15.0, vi from
0.0 to 3.0, ϑi from 0.0 to 7.0, and ki from 0.0 to 2.0.
• The SS method: gij and hij from -3.0 to 3.0, and ai

and bi from 0.0 to 15.0.
• The GRLOT method: Ij , from -5.0 to 5.0, Ak from
0.0 to 7.0, Kij and Kak from 0.0 to 40.0, and ki from
0.0 to 2.0.

4.4 Model validation (Step 5)
Finally, we performed a small number of experiments in
which we first altered the initial conditions of the manu-
ally constructed reference models (Step 1), then simulated
these models to generate dynamic gene expression data
(serving as unseen validation data), and then investigated

how the reverse-engineered dynamic GRN (Step 3) models
behaved when identical perturbations were applied.
In all models, we varied the dynamics of gene product

X1, by modifying the degradation rate k1 in the GRLOT
and ANN models, and the b1 value in the SS models. This
manipulation could be viewed as a variation of network
input or network stimulus, since in all the case study mod-
els, X1 did not depend on the products of other genes.
Figure 8 shows the dynamics of the original gene pro-

duct concentration X1, and an increased and decreased
development of gene product concentration levels. The
difference of the dynamics, as calculated by using Equa-
tion 12, demonstrates the power (predictive power, Pval,
on unseen data) of the reverse-engineered dynamic
GRN models to reproduce the dynamic data generated
by the manually created GRN reference models under
different conditions.
For the Cantone model F, the reverse-engineered

models were used for perturbation experiments by per-
turbing the initial value of each gene in turn (whilst
keeping the other initial values constant and equal to

Figure 8 Dynamics with an input change. Dynamics of the original gene product concentration of X1 based on a degradation k1 or b1 of 0.3.
An increased transcript concentration is simulated by decreasing this value to 0.1. Conversely, decreasing transcript concentration levels are
simulated by increasing this value to 0.5.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 21 of 25

their respective values for the initial time step in the two
time-series data sets). The perturbed value was
increased from its initial value by increasing it by ×3,
×12, and by ×48. Equation 11 (which differs slightly
from Equation 5) was used to calculate differences
between simulated expression models:

f
X X

X
kt kt

ktk

N

t

p

= −⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟==

∑∑
^

2

11

(11)

where, X kt
^ and Xkt are the simulated mRNA levels at

time t of molecule k. N is the number of genes in the
network and p is the number of sampling points of
observed data.

4.5 Measures to verify and validate the reverse-
engineered GRN models
Wessels and co-workers [28] defined measures for asses-
sing the accuracy of reverse-engineered GRN models.
Following their approach, we used the following mea-
sures (see also Step 4 and 5 of our study design):

• Predictive power, Pver, on training data. This mea-
sures how well a reverse-engineered dynamic GRN
model reproduces the dynamic gene expression data
from which it was generated. So the steps involved
are: (a) Create training data from reference models
(Step 2); (b) Reverse-engineer dynamic GRN models
from training data (Step 3); (c) Execute or simulate
reverse-engineered models (resulting in predicted
dynamic gene expression data) and calculate Pver by
comparing the training data with the predicted data
(Step 4).
• Predictive power, Pval , on unseen test data.
This measures how well a reverse-engineered
dynamic GRN model reproduces unseen dynamic
gene expression data generated by the reference
models under initial conditions different to those
used to generate the training data. So the steps
involved are: (a) Rerun the reference models
(Step 1) under altered initial conditions to gener-
ate unseen test data; (b) Apply the same changed
initial conditions to the dynamic GRN models
generated by Step 3 and re-run the models
under these conditions to predict dynamic gene
expression data and calculate Pval by comparing
the unseen test data with the predicted data
(Step 5).
• Predictive power, Pfit, for data fitting. We use Pfit
when we refer to predictive power in a general way
of fitting the data of a predicted data set with
another (training or test) data set.

• Inferential power, Pinf , measures to what extent
the parameters (representing GRN regulatory struc-
ture and quantitative influence) of a reverse-engi-
neered dynamic GRN model (Step 3) correspond to
the parameters of a reference model (Step 1). We
also use terms like matrix correlation to refer to Pinf
, as the calculation of Pinf involves the comparison of
the matrices representing the parameters of the
reference (Step 1) and reverse-engineered (Step 3)
dynamic GRN models respectively.
• Qualitative comparison, Qcom, refers to the extent a
reverse-engineered GRN model corresponds with a
reference model in terms of certain GRN features.

4.5.1 Data fitting and predictive power
Essentially, Pfit compares two sets of dynamic gene
expression data, either predicted data with training data
(here Pver, to verify a reverse-engineered model), or, pre-
dicted data with unseen test data (here Pval, to validate a
reverse-engineered model). The general way to compute
this score is the same and is defined as follows [28]:

P
Efit =

+
1

1()
(12)

where the error

E
pN

X Xkt kt

k

N

t

p

= −
==

∑∑1 2

11

()
^

where Xkt denotes an experimentally observed gene
product concentration level at time t of gene k and X kt

^

denotes a corresponding gene product concentration
level estimated or predicted by the dynamic GRN
model. N denotes the number of genes in the GRN and
p the number of sampling points of the dynamic gene
expression data.
Pfit assumes values form the unit interval, where 1

represents perfect accordance between the experimental
data and the simulated or predicted data. However, care
needs to be taken when interpreting Pfit values. In Table
8, we indicate the model accuracy depending on the Pfit
value. In data generated with our reference models,
expression levels usually reach values of no more than 5
units. Thus Pfit values less than 0.9 indicate very poor
quality of the reverse-engineered models, with dynamics
that bear no relation to the original model. Pfit values
between 0.95 and 0.99 indicate models with dynamics in
much the same range as the original models, but the
expression curves of the individual genes may exhibit
different patterns.
Pfit values over 0.99 start to converge with the original

model dynamics and a Pfit value of over 0.999 indicates
a highly accurate accurate GRN model.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 22 of 25

4.5.2 Matrix correlation: Inferential power
Pinf is a deeper measure than Pfit and its variants Pver
and Pval, respectively [28]. It describes more fundamen-
tal properties (model parameters) of the process that
generates data which is the basis for calculating Pfit. In
our study, we use Pinf to compare the parameter matrix,
W, of reference models (used to generate the training
and test data) with the parameter matrix, W

^ of reverse-
engineered models.
Inferential power, Pinf , is defined as follows:

P pinf () . ((
^ ^

W W, ,))W W= +0 5 1 (13)

where p denotes the Pearson product-moment corre-
lation coefficient between W and W

^ .

Pinf from Equation 13 assumes values from the unit
interval; a value of 1 indicates an exact inference (esti-
mation) of the model parameters. If there is an exact
match between the parameter matrices of the reverse-
engineered and the reference GRN model, then the
behavior of the two networks is identical under all
conditions.
Since the three methods ANN, SS and GRLOT use

different numbers of parameter values, we can only cal-
culate Pinf values for the cases where the method used
for reverse-engineering equals the method used for gen-
erating the training data. In all other cases we make a
qualitative estimation of Pinf .
4.5.3 Qualitative comparison
Qcom refers to the similarity of a model with the true
underlying system in terms of network features.
Primarily, network features refer to the network con-

nectivity that captures the topology of a network and
the connection “logic”. However, in this study the net-
work structure is given so that only network features
such as the type of the effect (inhibitory or stimulatory)
and its degree of influence need to be deduced or esti-
mated. Network features are represented by the model’s

parameters. Since parameters of the three types of
mathematical methods can not be directly compared to
each other, we determine Qcom by means of a qualitative
comparison.
The qualitative analysis of the derived model para-

meters is performed according to the characteristics
listed in Section 1.3.1. For example, when manually con-
structing the reference GRN models, we chose uniform
parameter values to define degradation rates. Based on
this and other characteristics described in Section 1.3.1,
it is possible to estimate the accuracy of each model.
In this study, the characteristic uniform degradation

rate is present in the reverse-engineered parameter
matrices if all degradation rates within a matrix are
within the interval [0.2,0.4]; constant signal propagation
is present when the ratio between the weakest and the
strongest signal is smaller than 2; asymmetric signal
branching and asymmetric co-regulation is present when
there is more than a 20% difference between the signals
coming to or arising from the system variables. Finally,
positive feedback and negative feedback are described in
the dependencies between the variables X3 and X2, and
X5 and X2 respectively.

4.6 A note on the technical infrastructure and
computational complexity of the experiments
To perform the GRN reverse-engineering experiments,
we developed a module in Narrator [49] that provided
an automatic interface to the Condor [50] distributed,
high-performance computing system. This allowed com-
puting tasks defined by Narrator to be automatically
placed into the Condor scheduling queue. We used two
pools of Condor computing clusters that were dedicated
to our experiments: Pool 1 consisted of 23 Fujitsu Sie-
mens E600 machines, each with a single Pentium 4 HT
3.06 GHz processor and 1 GB RAM; Pool 2 consisted of
10 Dell Optiplex GX 620 machines, each with a single
Pentium 4 HT 3.4 GHz processor and 1 GB RAM. A
typical evolutionary optimization would take about 35
minutes for the molecular models and 150 minutes for
the network models. With the Condor pools we could
repeat these runs a number of times, as this helped
overcome problems due to the search process getting
stuck in a local minimum. In total, it therefore took
about 27 hours of compute time to perform a single
reverse-engineering experiment. (For a 5-gene network
with a detailed data set: 5 × 5 molecular model runs + 5
× 1 network model run = 25 × 35 min + 5 × 150 min =
875 min + 750 min = 1625 min.)

Acknowledgments
The work in this paper was supported by EC grants DataMiningGrid IST FP6
004475 and QosCosGrid IST FP6 STREP 033883. Some of the experiments
presented in this paper were carried out using the Grid’5000 experimental

Table 8 Meaning of Pfit values

Pfit value Max. RMS diff.

0.40 244.0

0.75 76.9

0.92 8.47

0.97 2.34

0.992 0.80

0.997 0.42

0.9992 0.13

0.9997 0.067

Interpretation of Pfit (Pver and Pval) values: The typical maximum root mean
square (RMS) difference (at a single time point) between the reverse-
engineered and reference GRN models, for the 5-gene models of case studies
A, B, and C.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 23 of 25

testbed, being developed under the INRIA ALADDIN development action
with support from CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

Author details
1Roche Diagnostics GmbH, Nonnenwald 2, 82372 Penzberg, Germany.
2University of Ulster, School of Biomedical Sciences, Cromore Road, Coleraine
BT52 1SA, Co. Londonderry, UK.

Authors contributions
JM participated in conceiving and designing the experiments, performed
some of the computational modelling, analyzed the results, and participated
in drafting the manuscript. MS participated in conceiving and designing the
experiments, performed some of the computational modelling, analyzed the
results, and participated in drafting the manuscript. JM and MS contributed
equally to this paper. WD participated in the design of the experiments and
helped to draft the manuscript. All authors read and approved the final
manuscript.

Received: 21 April 2010 Accepted: 14 September 2010
Published: 14 September 2010

References
1. Davidson E, Levin M: Gene regulatory networks. Proceedings of the

National Academy of Sciences of the United States of America 2005,
102(14):4935.

2. Hasty J, McMillen D, Isaacs F, Collins JJ: Computational studies of gene
regulatory networks: In numero molecular biology. Nature Reviews
Genetics 2001, 2:268-279.

3. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO,
Botstein D, Futcher B: Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Molecular Biology of the Cell 1998, 9:3273-3297.

4. Arbeitman MN, Furlong EEM, Imam F, Johnson E, Null BH, Baker BS,
Krasnow MA, Scott MP, Davis RW, White KP: Gene expression during the
life cycle of Drosophila melanogaster. Science 2002, 297(5590):2270-2275.

5. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC,
Mynatt RL, Gimble JM: Characterization of peripheral circadian clocks in
adipose tissues. Diabetes 2006, 55:962-970.

6. Ronen M, Rosenberg R, Shraiman BI, Alon U: Assigning numbers to the
arrows: Parameterizing a gene regulation network by using accurate
expression kinetics. Proceedings of the National Academy of Sciences of the
United States of America 2002, 99(16):10555-10560.

7. Bar-Joseph Z: Analyzing time series gene expression data. Bioinformatics
2004, 20(16):2493-2503.

8. Kauffman S: The origins of order: Self-organization and selection in evolution
Oxford University Press 1993.

9. Liang S, Fuhrman S, Somogyi R: Reveal, a general reverse engineering
algorithm for inference of genetic network architectures. Proceedings of
Pacific Symposium Biocomputing 1998, 18-29.

10. Akutsu T: Identification of genetic networks from a small number of
gene expression patterns under the Boolean network model. Proceedings
of Pacific Symposium Biocomputing 1999, 17-28.

11. Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, d’Alche Buc F: Gene
networks inference using dynamic Bayesian networks. Bioinformatics
2003, 19(2):138-148.

12. Cho KH, Choo SM, Jung SH, Kim JR, Choi HS, Kim J: Reverse engineering
of gene regulatory networks. IET Systems Biology 2007, 1:149-163.

13. Stetter M, Schurmann B, Dejori M: Systems level modeling of gene
regulatory networks. In Artificial intelligence methods and tools for systems
biology. Edited by: Dubitzky W, Azuaje F. Springer, Netherlands;
2004:175-194.

14. Savageau MA: Biochemical Systems analysis: A study of function and design in
molecular biology Addison-Wesley, Reading, Mass 1976.

15. Vohradsky J: Neural network model of gene expression. The FASEB
Journal: Official publication of the Federation of American Societies for
Experimental Biology 2001, 15(3):846-854.

16. Mendes P, Sha W, Ye K: Artificial gene networks for objective comparison
of analysis algorithms. Bioinformatics 2003, 19(90002):122-129.

17. Quackenbush J: Computational analysis of microarray data. Nature
Reviews Genetics 2001, 2(6):418-427.

18. knüpfer C, Dittrich P, Beckstein C: Artificial gene regulation: A data source
for validation of reverse bioengineering. In Proceedings of the 6th German
Workshop on Artificial Life 2004 Edited by: Schaub H, Detje F, Brggemann U
2004, 66-75.

19. Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di
Bernardo M, di Bernardo D, Cosma MP: A yeast synthetic network for in
vivo assessment of reverse-engineering and modeling approaches. Cell
2009, 137:172-181.

20. Herrera F, Lozano M, Verdegay JL: Tackling real-coded genetic algorithms:
Operators and rools for behavioural analysis. Artificial Intelligence Review
1998, 12(4):265-319.

21. Hlavacek W, Savageau M: Rules for coupled expression of regulator and
effector genes in inducible circuits. Journal of Molecular Biology 1996,
255:121-139.

22. Crampin EJ, Schnell S, McSharry PE: Mathematical and computational
techniques to deduce complex biochemical reaction mechanisms.
Progress in Biophysics and Molecular Biology 2004, 86:77-112.

23. Almeida JS, Voit EO: Neural-network-based parameter estimation in S-
system models of biological networks. Genome Informatics 2003,
14:114-123.

24. Wildenhain J, Crampin EJ: Reconstructing gene regulatory networks: From
random to scale-free connectivity. IEE Proceedings of Systems Biology 2006,
156(4):247-256.

25. Veitia R: A sigmoidal transcriptional response: cooperativity, synergy and
dosage effects. Biological Reviews 2003, 78(01):149-170.

26. D’haeseleer P, Liang S, Somogyi R: Genetic network inference: From co-
expression clustering to reverse engineering. Bioinformatics 2000,
16(8):707-726.

27. Spieth C, Streichert F, Speer N, Zell A: A memetic inference method for
gene regulatory networks based on S-systems. Proceedings of the IEEE
Congress on Evolutionary Computation 2004, 152-157.

28. Wessels L, van Someren E, Reinders M: A comparison of genetic network
models. Proceedings of the Pacific Symposium on Biocomputing 2001,
508-519.

29. van Someren EP, Wessels LFA, Reinders MJT: Linear modeling of genetic
networks from experimental data. Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology 2000, 55-366.

30. Yuan S, Li KC: Context-dependent clustering for dynamic cellular state
modeling of microarray gene expression. Bioinformatics 2007,
23(22):3039-3047.

31. Yang Y, Kim J, Song E, E K, Oh M, BG K: Finding new pathway-specific
regulators by clustering method using threshold standard deviation
based on DNA chip data of Streptomyces coelicolor. Appl Microbiol
Biotechnol 2008, 80:707-717.

32. Nam D, Yoon SH, Kim JF: Ensemble learning of genetic networks from
time-series expression data. Bioinformatics 2007, 23(23):3225-3231.

33. Kimura S, Ide K, Kashihara A, Kano M, Hatakeyama M, Masui R, Nakagawa N,
Yokoyama S, Kuramitsu S, Konagaya A: Inference of S-system models of
genetic networks using a cooperative coevolutionary algorithm.
Bioinformatics 2005, 21(7):1154-1163.

34. Guthke R, Moller U, Hoffmann M, Thies F, Topfer S: Dynamic network
reconstruction from gene expression data applied to immune response
during bacterial infection. Bioinformatics 2005, 21(8):1626-1634.

35. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network
motifs: Simple building blocks of complex networks. Science 2002,
298:824-827.

36. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK,
Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J,
Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL,
Fraenkel E, Gifford DK, Young RA: Transcriptional regulatory networks in
Saccharomyces cerevisiae. Science 2002, 298(5594):799-804.

37. Noman N, Iba H: Reverse engineering genetic networks using
evolutionary computations. Genome Informatics 2005, 16(2):205-214.

38. Iba H, Mimura A: Inference of a gene regulatory network by means of
interactive evolutionary computing. Inf Sci Inf Comput Sci 2002,
145(34):225-236.

39. Schwefel HP: Evolution and optimum seeking Wiley Interscience 1995.
40. Koza JR, David Andre, Bennett FH III, Keane M: Genetic programming 3:

Darwinian invention and problem solving Morgan Kaufman 1999.
41. Michalewicz Z: Genetic algorithms + data structures = evolution programs

Springer 1992.

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 24 of 25

https://www.grid5000.fr
http://www.ncbi.nlm.nih.gov/pubmed/15809445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11283699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11283699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12351791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12351791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16567517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16567517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12145321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12145321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12145321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15130923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17591174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17591174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11259403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11389458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19327819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19327819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8568860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8568860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15261526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15261526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15706526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15706526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12620064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12620064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11099257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11099257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17977884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17977884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15514004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15514004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15613398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15613398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15613398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16901103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16901103?dopt=Abstract

42. Aho T: Simulation tool for genetic regulatory networks Masters thesis Dept. of
Information Technology, Tampere University of Technology, Finland 2003.

43. Vu TT, Vohradsky J: Nonlinear differential equation model for
quantification of transcriptional regulation applied to microarray data of
Saccharomyces cerevisiae. Nucleic Acids Research 2007, 35:279-287.

44. Vu TT, Vohradsky J: Inference of active transcriptional networks by
integration of gene expression kinetics modeling and multisource data.
Genomics 2009, 93(5):426-433.

45. Maki Y, Ueda T, Okamoto M, Uematsu N, Inamura K, Uchida K, Takahashi Y,
Eguchi Y: Inference of genetic network using the expression profile time
course data of mouse P19 cells. Genome Informatics 2002, 13:382-383.

46. Kimura S, Hatakeyama M, Konagaya A: Inference of S-system models of
genetic networks using a genetic local search. In Proceedings of the 2003
Congress on Evolutionary Computation. Edited by: Sarker R, Reynolds R,
Abbass H, Tan KC, McKay B, Essam D, Gedeon T. IEEE Press; 2003:631-638.

47. Eshelman LJ, Schaffer JD: Real-coded genetic algorithms and interval
schemata. In Foundations of genetic algorithms 2. Edited by: Whitley LD.
Morgan Kaufmann Publishers; 1993:.

48. Bolze R, Cappello F, Caron E, Dayd’e M, Desprez F, Jeannot E, J’egou Y,
Lanteri S, Leduc J, Melab N, Mornet G, Namyst R, Primet P, Quetier B,
Richard O, Talbi EG, Touche I: Grid’5000: A large scale and highly
reconfigurable experimental grid testbed. The International Journal of High
Performance Computing Applications 2006, 20(4):481-494.

49. Mandel JJ, Fuss H, Palfreyman NM, Dubitzky W: Modeling biochemical
transformation processes and information processing with Narrator. BMC
Bioinformatics 2007, 8(103).

50. Thain D, Tannenbaum T, Livny M: Distributed computing in practice: The
Condor experience. Concurrency - Practice and Experience 2005, 17(2-
4):323-356.

doi:10.1186/1471-2105-11-459
Cite this article as: Swain et al.: Comparative study of three commonly
used continuous deterministic methods for modeling gene regulation
networks. BMC Bioinformatics 2010 11:459.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Swain et al. BMC Bioinformatics 2010, 11:459
http://www.biomedcentral.com/1471-2105/11/459

Page 25 of 25

http://www.ncbi.nlm.nih.gov/pubmed/17170011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17170011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17170011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19442636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19442636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17389034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17389034?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	1 Background
	1.1 GRN modeling methods
	1.1.1 The artificial neural network (ANN) method
	1.1.2 The S-system (SS) method
	1.1.3 The general rate law of transcription (GRLOT) method

	1.2 Systematic biases in the ANN, SS and GRLOT methods
	Limitation of expression rates
	Regulation of degradation processes
	Multiple input processing
	Parameter interpretation

	1.3 Manually constructing case study models
	1.3.1 Case studies A, B and C
	1.3.2 Case studies D and E
	1.3.3 Case study F

	2 Results and Discussion
	2.1 Results
	Step 1: Construction of reference models
	Step 2: Generation of the artificial GRN expression data
	Step 3: Reverse-engineering of dynamic GRN models from generated data
	Step 4: Verification of reverse-engineered GRN models
	Step 5: Validation of reverse-engineered GRN models

	2.2 Discussion
	2.2.1 Reverse-engineering biological data
	2.2.2 Within-method estimation of model parameters
	2.2.3 Reverse-engineering different method data
	2.2.4 Qualitative comparison of network features
	2.2.5 Considering the different case studies

	3 Conclusions
	4 Methods
	4.1 Terminology
	Static GRN model
	Dynamic GRN model
	Dynamic gene expression data
	Reverse-engineering of GRNs

	4.2 Model simulation: Generating the training data sets
	4.3 Reverse-engineering of dynamic GRN models from time-series data
	4.3.1 The parameter optimization problem
	4.3.2 The two-phase reverse-engineering strategy
	4.3.3 The parameter sets used

	4.4 Model validation (Step 5)
	4.5 Measures to verify and validate the reverse-engineered GRN models
	4.5.1 Data fitting and predictive power
	4.5.2 Matrix correlation: Inferential power
	4.5.3 Qualitative comparison

	4.6 A note on the technical infrastructure and computational complexity of the experiments

	Acknowledgments
	Author details
	Authors' contributions
	References

