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predicting peptide binding affinities for multiple
class II MHC allotypes
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Abstract

Background: The binding of peptide fragments of antigens to class II MHC is a crucial step in initiating a helper T
cell immune response. The identification of such peptide epitopes has potential applications in vaccine design and
in better understanding autoimmune diseases and allergies. However, comprehensive experimental determination
of peptide-MHC binding affinities is infeasible due to MHC diversity and the large number of possible peptide
sequences. Computational methods trained on the limited experimental binding data can address this challenge.
We present the MultiRTA method, an extension of our previous single-type RTA prediction method, which allows
the prediction of peptide binding affinities for multiple MHC allotypes not used to train the model. Thus
predictions can be made for many MHC allotypes for which experimental binding data is unavailable.

Results: We fit MultiRTA models for both HLA-DR and HLA-DP using large experimental binding data sets. The
performance in predicting binding affinities for novel MHC allotypes, not in the training set, was tested in two
different ways. First, we performed leave-one-allele-out cross-validation, in which predictions are made for one
allotype using a model fit to binding data for the remaining MHC allotypes. Comparison of the HLA-DR results
with those of two other prediction methods applied to the same data sets showed that MultiRTA achieved
performance comparable to NetMHCIIpan and better than the earlier TEPITOPE method. We also directly tested
model transferability by making leave-one-allele-out predictions for additional experimentally characterized sets of
overlapping peptide epitopes binding to multiple MHC allotypes. In addition, we determined the applicability of
prediction methods like MultiRTA to other MHC allotypes by examining the degree of MHC variation accounted for
in the training set. An examination of predictions for the promiscuous binding CLIP peptide revealed variations in
binding affinity among alleles as well as potentially distinct binding registers for HLA-DR and HLA-DP. Finally, we
analyzed the optimal MultiRTA parameters to discover the most important peptide residues for promiscuous and
allele-specific binding to HLA-DR and HLA-DP allotypes.

Conclusions: The MultiRTA method yields competitive performance but with a significantly simpler and physically
interpretable model compared with previous prediction methods. A MultiRTA prediction webserver is available at
http://bordnerlab.org/MultiRTA.

Background
Class II MHC proteins expressed on the surfaces of pro-
fessional antigen presenting cells (APCs) bind peptide
fragments of extracellular proteins and thereby present
them to helper T cells, which in turn recognize the
MHC-bound fragments of non-self proteins to initiate
an immune response. The resulting helper T cell

response depends on the context and can include activa-
tion of macrophages, B cells and cytotoxic T cells or an
inflammatory response. Because of it is crucial for a
effective immune response, understanding peptide bind-
ing to class II MHC is important for understanding and
treating human diseases. Misregulation of antigen recog-
nition by class II MHC so that self proteins cause an
immune response is responsible for autoimmune dis-
eases. Indeed, the occurrence of many common autoim-
mune diseases are linked to particular class II MHC
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alleles [1-8]. Class II MHC epitopes also show promise
in immunotherapies aimed at the treatment of allergies
[9-14]. Finally, promiscuous class II MHC peptide epi-
topes, which bind to diverse MHC allotypes, can be
employed in vaccines that are efficacious for a large pro-
portion of the population [15-18].
In spite of their medical importance, the peptide bind-

ing preferences of different class II MHC proteins have
not been fully characterized by experiments. This is lar-
gely because class II MHC genes are highly poly-
morphic, with hundreds of different MHC alleles, each
potentially having unique peptide binding specificities.
Although peptide binding affinities have been experi-
mentally measured for some common alleles, the large
number of MHC allotypes combined with the huge
space of possible peptide sequences prevents compre-
hensive measurement of all peptide-MHC binding affi-
nities. Computational methods can address this
challenge by providing fast predictions of peptide-MHC
binding affinities that can be used to guide further
experimental studies.
Unlike class I MHC, which binds short peptides (8-11

residues), class II MHC generally binds longer peptides
(15-25 residues) in a binding cleft that is open at both
ends and so allows the bound peptide N- and C-termini
to extend beyond the binding site. Thus only a short
segment of the peptide, defined by a 9-mer core, inter-
acts significantly with the MHC protein. This makes the
prediction of peptide binding to class II MHC consider-
ably more difficult than for class I MHC since the bind-
ing register of the peptide, i.e. the position of the 9-mer
core segment within the peptide, must be predicted in
addition to the binding affinity of the core segment to
the class II MHC protein. This difficulty is reflected in
the generally worse performance of class II MHC bind-
ing prediction methods as compared with class I MHC
methods.
Sequence-based prediction methods, like the Multi-

RTA method described in this study, use experimental
peptide binding data in order to identify sequence pat-
terns that correlate with binding affinities. Early
sequence-based prediction methods fit the total peptide
binding energy [19,20], binding motif [21], geometric
average binding affinity [22], or sequence alignment pro-
file [23] in a particular register to a linear combination
of contributions from individual residues, and repre-
sented them as binding profile matrices. The scores for
all possible peptide binding registers were calculated
and either the maximum value or sum were used as the
final peptide binding score. Later methods employed
various machine learning and data fitting approaches to
prediction including partial least squares (PLS) [24,25],
Gibbs sampling [26], linear programming [27], Support
Vector Machines (SVMs) [28-30], kernel methods [31],

or a combination of data fitting techniques [32].
Recently, we introduced the Regularized Thermody-
namic Average, or RTA, prediction method [33]. This
method shares the complementary advantages of the
former class of profile-based methods, namely an easily
interpretable model with parameters representing the
contributions of specific peptide residues to binding,
and the latter class of machine learning-based methods,
namely high prediction performance. It achieves this
through the use of two techniques: (1) thermodynamic
averaging over all possible binding registers and (2)
incorporating a regularization constraint that reduces
model overfitting by selecting only a subset of initial
parameters.
The prediction methods discussed above are applic-

able only to an MHC allotype for which ample experi-
mental peptide binding data is available, thus limiting
their scope. Two previous methods, TEPITOPE [34] and
NetMHCIIpan [35], were designed to make predictions
for multiple HLA-DR allotypes. The TEPITOPE method
accounts for specific interactions between peptide side
chains and MHC pockets in order to make peptide
binding predictions for MHC allotypes not in the train-
ing set but with a different combination of common
binding pockets [34]. The more recent NetMHCIIpan
method [35] accounts for MHC variability at the residue
level and employs the SMM-align method [32] to iden-
tify the peptide 9-mer core followed by a consensus pre-
diction using an ensemble of diverse artificial neural
networks (ANNs) trained on sequence properties. In
this study we introduce the MultiRTA method, a gener-
alization of the RTA method that is able to predict pep-
tide binding affinities for MHC allotypes not included in
the training set by accounting for allele-specific MHC
variation. This method shares the same advantages as
RTA. Although it is much simpler than NetMHCIIpan
and so has physically interpretable parameters, it is able
to achieve comparable prediction accuracy to NetMH-
CIIpan while exceeding the accuracy of the other
profile-based prediction model, TEPITOPE.
We first define the MultiRTA model and discuss the

definition of MHC residue group variants used to
account for the effect of different MHC types on peptide
binding affinity. Next, we discuss parameter optimiza-
tion and give a method for generating initial solutions.
MultiRTA models for both HLA-DR and HLA-DP are
then fit and their performance evaluated by leave-one-
allele-out cross-validation, in which predictions are
made for one allotype using a model fit to experimental
binding data for the remaining MHC allotypes in the
data set. The prediction performance on novel MHC
allotypes is also directly evaluated using additional
experimental peptide binding data. Finally, MultiRTA
model parameters are analyzed in order to infer the
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primary determinants of peptide binding specificity for
HLA-DR and HLA-DP.

Methods
Experimental peptide-MHC binding affinity data sets
In order to compare prediction results with NetMHCII-
pan, we used the experimental peptide binding affinity
data sets for 14 different HLA-DR allotypes employed in
the paper describing the method [35]. The binding data
in those sets were obtained from a relatively recent ver-
sion of the IEDB database so that the latest database
version yielded insufficient new data to warrant compil-
ing a new data set. Also, in order to test the prediction
performance for novel data, we collected experimental
peptide binding data for HLA-DR allotypes that are dif-
ferent from the 14 types included in the training data
and that are also among the 430 allotypes completely
covered by the MultiRTA model residue groups (dis-
cussed in the Results section). As discussed below, suffi-
cient data was found only for DRB1*1301. All
quantitative binding data obtained by either radioactivity
or fluorescence competition binding assays were col-
lected from the Immune Epitope Database (IEDB) [36].
Because the NetMHCIIpan method requires that the
peptides are at least 15 residues long, only data for such
peptides were included so that that method could be
evaluated on the data. A table of the final data set con-
taining binding affinities for 127 peptides binding to
DRB1*1301 is provided as Additional file 1. The HLA-
DP binding data was taken from Sidney et al. 2010 [37].
All data was used except for the single residue mutation
peptides employed in the SAAS analysis. This comprised
data for known epitopes as well as peptides spanning a
set of Phleum pratense antigens.

MHC residue variant groups
The peptide binding specificity of each MHC allotype is
determined by polymorphic MHC residues in the bind-
ing cleft that can potentially interact with the core pep-
tide side chains. HLA-DR polymorphic residues were
defined to be any MHC residue that contacts one of the
9 peptide core residues in any X-ray structure of an
HLA-DR peptide-MHC complex, in which contacting
residues have non-hydrogen atom separation < 4 Å and
corresponding residues in different MHC types were
determined by a multiple sequence alignment. Because
all 14 HLA-DR allotypes in the data set have the same
a chain, all polymorphic residues occur in the b chain.
Likewise, the polymorphic residues for HLA-DP are
defined in same way and again all polymorphic residues

in the five data set allotypes are in the b chain. Next, for
each of the 9 peptide core positions, variants of poly-
morphic MHC residues contacting each core peptide
residue, defined both by residue number and type, were
then collected into groups such that (1) all residue var-
iants in a group always co-occur in the MHC types used
for training and (2) the groups are the largest such
groups satisfying condition (1). The resulting residue
groups for HLA-DR (HLA-DP) are given in Table S1
(Table S3) and the variant residue types for each MHC
residue number are listed in Table S2 (Table S4), all of
which are in Additional file 2. For example, one group
of HLA-DR MHC residues contacting peptide residue
P4 consists of MHC residues 11A, 13C, 26N, and 28I.
This means that residues 11, 13, 26, and 28 contact pep-
tide residue P4 in at least one HLA-DR peptide-MHC
complex and that these residue variants always appear
together in each of the 14 training set MHC types.
We next explain the motivation for this definition of

residue groups. As will be seen in the next section, the
MultiRTA model assumes that the total peptide-MHC
binding energy is a sum of contributions from all con-
tacting pairs of peptide and MHC residues. Further-
more, the contribution from each peptide-MHC residue
pair depends on the particular peptide and MHC resi-
due types. One could define a model in terms of indivi-
dual MHC residues, rather than the variant groups,
however it would have significantly more parameters to
fit. Furthermore, the relative energy contributions for
individual residues within the same residue group can-
not be determined from the training data. Using the
example above, the model without residue groups would
have four separate parameters for P4 interacting with
each of MHC residues 11A, 13C, 26N, and 28I. How-
ever, because these residues always co-occur in the
training set MHC types there is no procedure for deter-
mining the relative values of parameters for P4 interact-
ing with each of these four residues individually. Thus
using residue groups provides the most concise descrip-
tion of the interaction energy without introducing spur-
ious underdetermined parameters that would make the
model more difficult to optimize and so may compro-
mise its accuracy.

MultiRTA model
As in the RTA model, the total binding affinity of pep-
tide k, ΔG(k), is calculated as a Boltzmann-weighted
average over the binding affinities in different registers,

ΔGM
k( ) ,
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in which L(k) is the length of peptide k. Next, we
define a variable zi,T(k),l, that is equal to 1 if the MHC
type corresponding to peptide k, T(k), contains residue
group l for peptide residue Pi and is equal to 0 other-
wise. Likewise the amino acid sequence of peptide k is

also encoded by a binary array xi j
k
,

( ) that is equal to 1 if

the residue at position i is of type j, with residue types
numbered from 1 to 20. The binding affinity of peptide
k in register M is then
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in which Ng(i) is the number of residue groups for
peptide core residue Pi. Parameters bijl are the contribu-
tion to the total binding affinity from the peptide core
residue Pi of type j contacting the MHC residues in
group l. Parameters gij are the contribution of peptide
core residue Pi of type j interacting with the invariant
contacting MHC residues common to all MHC types in
the training set. Note that the second term has the same
form as the RTA model, which is only applicable to a
single MHC type. In order to simplify Eq. 2, we define
an additional residue group with index l = 0 for the
invariant residues so that the gij parameters are absorbed
into the bijl. The corresponding variables zi,T(k),0 are then
equal to 1 for all i and k. Eq. 2 then becomes
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As in the RTA model, an L1 regularization constraint
is included in order to reduce overfitting. The constraint
has the form

 ijl
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This constraint is particularly important for Multi-
RTA since the model has a large number of para-
meters, 4650 for HLA-DP and 23220 for HLA-DR,
relative to the quantity of training data. Even for the
RTA model, which has only 180 parameters, the con-
straint was found to significantly improve the

prediction performance on novel data, as assessed by
cross-validation. The L1 constraint, which is also used
in lasso regression [38], has the desirable property that
an increasing number of parameters become zero as
the cutoff t is lowered. In effect, the constraint is per-
forming model selection by only including the most
relevant set of parameters. This is not the case with
the commonly used L2 constraint, such as that
employed in ridge regression, in which the unimpor-
tant parameters are reduced in magnitude rather than
set to zero as the constraint cutoff is lowered. As with
the RTA model, the constraint in Eq. 4 was active for
all of the optimal model solutions so that many para-
meters were zero.
The model parameters, bijl, were then fit by minimiz-

ing the mean square error (MSE)
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between the predicted binding affinities, ΔG(k), and the

experimental ones, ΔG k
exp
( ) , subject to the constraint in

Eq. 4.

Initial MultiRTA solution from combining RTA parameters
for all MHC types
Finding optimal parameter values by minimizing the
MSE in Eq. 5 subject to the constraint in Eq. 4 is chal-
lenging because of the large number of parameters. An
initial solution for MultiRTA parameters can be
obtained by combining optimal parameters from single
MHC type RTA models. Starting the solver with this
solution improves its convergence and speed.
Consider MultiRTA restricted to data from a single

MHC type with index a. The expression for the energy
of peptide k binding in register M is
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Likewise in the RTA model for the same MHC type
with parameters (ba)ij the same quantity is
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It may be seen that ΔGM
k( ) calculated in MultiRTA is

obtained by replacing (ba)ij by the expression in square
brackets in Eq. 6. Thus we seek an initial solution for

the MultiRTA model,  ijl
0 , that minimizes sum of
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square differences, r2, between these two quantities over
all MHC types
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For fixed i,j, we simplify the notation by defining the

matrix Z by Zal = Zial, the vector b by b l ijl=  0 , and

the vector c by ca = (ba)ij so that the initial solution that
minimizes the residual r in Eq. 8, is now expressed as
r = |Zb - c|. This is readily solved by first calculating
the singular value decomposition (SVD) of Z, Z =
UWVT, and then using it to calculate its approximate
pseudoinverse, up to a tolerance parameter ε, from Z+ =
VW+UT. The matrix W+ is defined in terms of the diag-
onal matrix W as

W
W W
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ij ij

ij

+ =
≥
<

⎧
⎨
⎪

⎩⎪

1

0



. (9)

The best fit solution for each choice of i,j indices is
then simply Z+c.

Parameter optimization
To solve the optimization problem minimizing Eq. 5
under the constraint in Eq. 4 one first splits the variable

bijl into the difference of two nonnegative variables  ijl
+

and  ijl
− , so that   ijl ijl ijl= −+ − . The constraint Eq. 4

then has as the left side the sum over both new vari-
ables. Overall one has a linearly constrained nonlinear
and nonconvex optimization problem. In principle, glo-
bal optimization methods would have to be applied to
find the global minimizer. Due to the dimensions of the
problems these would be non-deterministic methods
such as some of the many metaheuristics, which include
simulated annealing and genetic algorithms. These
methods require a large number of evaluations and due
to their stochastic character would have to be run sev-
eral times in order to increase the likelihood of finding
the global optimum, although a guarantee for that is
impossible. After initial tests we decided to instead use
local solvers. These are very efficient and through var-
ious measures the chances of getting very good local
minima can be increased substantially.
Using local solvers with “multistart” or several often

randomly generated starting guesses is another way of
solving global optimization problems. It is also imple-
mented in several software packages. We used random
starting guesses, varied in suitable ranges, for both the
parameters bijl and the bound t in Eq. 4. It is significant

that the best solutions were obtained with values of the
regularization parameter t that were small enough to
restrict the fit bijl values. This shows that the additional
L1 constraint in Eq. 4 helps alleviate overfitting. In
order to be able to easily call a variety of solvers we
phrased the problem in the modeling language AMPL
[39]. In order not to have to list many separate citations
we state that we used the applicable (NLP) solvers, par-
ticularly IPOPT and SNOPT, installed at NEOS (Net-
work Enabled Optimization Server, http://neos.mcs.anl.
gov/) but run locally, not through this free service in
which we (HDM) are also heavily involved.
In the way described above we generated the values in

Table 2. For Table 1, additional advantage was taken of
the initial values obtained as in the preceding section to
speed up convergence.

Binding affinity variation at each peptide core residue
The variation in binding affinity due to different resi-
dues at each of the nine peptide core residues was cal-
culated for each MHC type in the training set in order
to estimate the importance of each core residue to pep-
tide-MHC binding. So-called anchor residues are
expected be important for binding specificity and so
have large variation. The variation at each core position
Pi for MHC type T was calculated as the standard
deviation in the binding affinity contribution from resi-
due j at that position, ΔGT,i,j, defined by

ΔG zT i j ijl i T l
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and the standard deviation was calculated in the usual
way as
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Table 2 HLA-DP leave-one-allele-out cross-validation
results for MultiRTA

MHC b
chain allele

AUC RMS error
(kcal/mol)

Correlation
coefficient

Number of
data

DPB1*0101 0.892 2.74 0.706 481

DPB1*0201 0.890 1.99 0.718 474

DPB1*0401 0.903 0.960 0.730 552

DPB1*0402 0.901 0.981 0.698 537

DPB1*0501 0.871 1.01 0.628 475
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Results and Discussion
Allotype coverage
The MHC variation near the peptide binding site is
accounted for in the MultiRTA model through residue
variant groups (described in the Methods section). Resi-
due variant groups are defined so that they are the most
efficient description of allele-specific variations in MHC
residue contacting each peptide core residue. Accurate
MultiRTA binding affinity predictions can be made for a
novel MHC allotype, not included in the training data, if
model parameters are defined for all of its residue var-
iant groups, i.e. each residue variant group is present in
at least one training set MHC allotype.
In order to determine model parameters, ziTl, for novel

MHC allotypes we calculated the residue groups present
in all HLA-DR and DP allotypes with available b chain
sequences in the IMGT/HLA database [40,41]. A total of
430 out of 572 HLA-DR allotypes and 10 out of 36 HLA-
DP allotypes had all residue variant groups accounted for
in the respective MultiRTA models. The lower percen-
tage of HLA-DP allotypes (28%) covered compared with
HLA-DR ones (75%) can be explained by the smaller
number of allotypes with known amino acid sequences,
the smaller number of allotypes represented in the train-
ing set, and their lower diversity. A prediction method
such as TEPITOPE accounts for MHC variation at the
pocket level rather than the residue level. This coarser
description of MHC variation has the effect of reducing
the number of HLA-DR allotypes covered by the model
to only 148, significantly lower than residue level models
such as MultiRTA and NetMHCIIpan and so limits its
applicability to different MHC allotypes.

HLA-DR prediction methods like MultiRTA and
NetMHCIIpan that account for residue level MHC var-
iation are only parameterized for the 430 allotypes with
MHC variants accounted for in the training set and so,
strictly speaking, can only reliably predict binding affi-
nities for this subset of allotypes. In other words, no
method can differentiate between peptide binding pre-
ferences for two MHC allotypes whose interacting resi-
due differences are not accounted for in the training set.
This limitation in allotype coverage is due to variation
in peptide-interacting MHC residues among the allo-
types included in the training set and so does not
depend on the nature of the prediction algorithm. In
spite of this limitation, such methods can be applied to
any HLA-DR allotype but at the expense of lower pre-
diction accuracy for allotypes with MHC residue var-
iants not represented in the training set, i.e. outside of
the set of 430 types. The accuracy is expected to
decrease in proportion to the number of MHC residue
variations for the MHC allotype of interest that are
missing from the training set. In MultiRTA, parameters
for missing residue variant groups can be simply set to
zero. The lowest percentage of MHC variant residue
groups covered by the MultiRTA model among all
MHC types was 83% for HLA-DR and 58% for HLA-
DP. Thus, while MultiRTA should yield accurate results
for almost all HLA-DR allotypes, its accuracy is
expected to be lower for some HLA-DP allotypes with
large percentages of missing MHC residue variant
groups. The coverage will only increase in the future as
new peptide binding data becomes available for other
allotypes.

Table 1 Comparison of HLA-DR prediction results for MultiRTA, NetMHCIIpan, and TEPITOPE using the same data sets

MultiRTA NetMHCIIpan TEPITOPE

MHC b chain allele AUC RMS error
(kcal/mol)

Correlation coefficient AUC Correlation coefficient AUC Number of data

DRB1*0101 0.801 1.33 0.619 0.778 0.570 0.720 5166

DRB1*0301 0.751 1.36 0.438 0.746 0.449 0.664 1020

DRB1*0401 0.763 1.56 0.534 0.775 0.598 0.716 1024

DRB1*0404 0.835 1.33 0.623 0.852 0.684 0.770 663

DRB1*0405 0.808 1.28 0.566 0.808 0.597 0.759 630

DRB1*0701 0.817 1.51 0.620 0.825 0.655 0.761 853

DRB1*0802 0.786 1.45 0.523 0.841 0.631 0.766 420

DRB1*0901 0.674 2.01 0.380 0.653 0.388 NA 530

DRB1*1101 0.819 1.46 0.603 0.799 0.588 0.721 950

DRB1*1302 0.698 1.68 0.365 0.658 0.351 0.652 498

DRB1*1501 0.729 1.57 0.513 0.738 0.535 0.686 934

DRB3*0101 0.813 1.10 0.603 0.716 0.444 NA 549

DRB4*0101 0.746 1.61 0.508 0.724 0.469 NA 446

DRB5*0101 0.788 1.60 0.543 0.831 0.633 0.680 924

The results for MultiRTA and NetMHCIIpan were obtained using leave-one-allele-out cross-validation, in which predictions are made for one allotype using a
model trained on the data for the remaining allotypes. The largest AUC and correlation coefficient values for each MHC allotype are highlighted in bold.
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Cross-validation results
MultiRTA prediction performance for 14 different HLA-
DR allotypes was evaluated using the data sets from the
NetMHCIIpan paper [35] in order to compare it with
that method as well as with TEPITOPE [34]. Leave-one-
allele-out cross-validation, as was used for the NetMH-
CIIpan results, was also used for MultiRTA in order to
estimate its prediction accuracy for novel MHC allo-
types, not included in the training set. This procedure
involved making predictions for each MHC allotype
using a model fit using data for the remaining MHC
allotypes. The prediction results for HLA-DR, shown in
Table 1, indicate that MultiRTA achieves comparable
performance to NetMHCIIpan and significantly better
performance than TEPITOPE. The AUC statistics are
highly correlated between MultiRTA and NetMHCIIpan
(r = 0.82), suggesting that the variable performance
between alleles is due to characteristics of the data sets
themselves and not to differences between the predic-
tion models. In Nielsen et al. 2008 [35], this variability
in accuracy was found to be correlated with the similar-
ity of the test MHC allele to the nearest training set
allele, except for a few outliers that did not follow this
trend.
Table 2 shows the leave-one-allele-out cross-validation

results for HLA-DP. The discrimination between binders
and non-binders, reflected by the AUC statistic, is better
for HLA-DP than for HLA-DR. This can be explained
by the higher degree of similarity between the peptide
proximal residues in different HLA-DP MHC proteins,
as compared with the HLA-DR. The higher prediction
accuracy for HLA-DP is also reflected in the correlation
coefficients. The RMS error shows more variable predic-
tion performance for the different HLA-DP allotypes,
with lower values than any obtained for HLA-DR allo-
types for three HLA-DP allotypes but high RMS error
values for DPB1*0101 and DPB1*0201. The high RMS
error for DPB1*0101 and DPB1*0201 is due to predicted
binding affinities that are systematically lower than
experimental values, with average differences of 2.57
and 1.7 kcal/mol, respectively. In summary, except for a
systematic downward shift in binding affinities for
DPB1*0101 and DPB1*0201, the statistics indicate that
the prediction performance for HLA-DP is even better
than for HLA-DR.
We also examined the prediction performance using a

single-allotype RTA model for the most similar allotype,
as determined by overall MHC amino acid sequence
similarity. The results for HLA-DR and HLA-DP are
shown in Table 3 and Table 4, respectively. A compari-
son with the MultiRTA results for HLA-DR in Table 1
shows that the MultiRTA performs better, as measured
by AUC (Wilcoxon signed rank test p-value = 1.8 × 10-
4). This demonstrates that incorporating information on

multiple allotypes improves the prediction accuracy over
the nearest single-type model. Nielsen et al. 2008 [35]
arrived at a similar conclusion for their NetMHCIIpan
method. A comparison of the results for HLA-DP in
Table 4 and Table 2 does not show a statistically signifi-
cant difference in AUC values (p-value = 6.3 × 10-2).
This is probably due to both the small number of HLA-
DP allotypes represented and their higher similarity in
peptide binding preferences.

Prediction performance for novel allotypes
We further evaluated the performance of MultiRTA on
novel allotypes by comparing predictions with experi-
mental binding affinity data for 103 overlapping peptides
derived from four different antigens (bee venom phos-
pholipase A2 [42], human LAGE-1 [43], dog allergen
Can f 1 [44], and HIV Nef [45]) binding to 7 different
HLA-DR allotypes. Such sets of binding affinities for
multiple overlapping peptides from each protein argu-
ably provides unbiased data for reliable prediction per-
formance estimates. As in the cross-validation described
above, a leave-one-allele-out prediction was made using

Table 3 Predictions for each HLA-DR allotype using a
single-type RTA model trained on data for the closest
MHC allotype

Test MHC
allotype

Closest training
MHC allotype

AUC RMS error
(kcal/mol)

Correlation
coefficient

DRB1*0101 DRB1*1501 0.646 1.86 0.306

DRB1*0301 DRB1*1302 0.628 1.89 0.170

DRB1*0401 DRB1*0405 0.656 1.93 0.348

DRB1*0404 DRB1*0401 0.745 1.46 0.483

DRB1*0405 DRB1*0401 0.732 1.43 0.403

DRB1*0701 DRB1*0901 0.681 1.72 0.382

DRB1*0802 DRB1*1101 0.793 1.58 0.505

DRB1*0901 DRB1*0701 0.671 1.81 0.388

DRB1*1101 DRB1*1302 0.628 1.89 0.264

DRB1*1302 DRB1*1101 0.646 1.85 0.302

DRB1*1501 DRB1*0101 0.670 2.11 0.363

DRB3*0101 DRB1*0301 0.654 1.59 0.322

DRB4*0101 DRB1*0101 0.665 2.05 0.295

DRB5*0101 DRB1*0101 0.736 2.05 0.433

Table 4 Predictions for each HLA-DP allotype using a
single-type RTA model trained on data for the closest
MHC allotype

Test MHC
allotype

Closest training
MHC allotype

AUC RMS error
(kcal/mol)

Correlation
coefficient

DPB1*0101 DPB1*0501 0.883 1.13 0.660

DPB1*0201 DPB1*0402 0.863 1.13 0.669

DPB1*0401 DPB1*0402 0.872 1.12 0.633

DPB1*0402 DPB1*0201 0.824 1.20 0.623

DPB1*0501 DPB1*0101 0.876 1.10 0.661
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a MultiRTA model fit only to data for other MHC allo-
types in order to estimate performance for novel allo-
types. The peptide binding data was downloaded from
the Dana-Farber Repository for Machine Learning in
Immunology (DFRMLI) web site http://bio.dfci.harvard.
edu/DFRMLI/. MultiRTA prediction AUC values for
each allotype are shown in Table 5. AUC confidence
intervals were also calculated in order to quantify the
uncertainty in the AUC values due to the small number
of binders present in some of the data sets. A compari-
son of the corresponding AUC values between the
DFRMLI data results and the cross-validation results in
Table 1 showed no significant difference in AUC values
(Wilcoxon signed rank test p-value = 0.16). In addition,
the cross-validation AUC values are within the confi-
dence intervals for the DFRMLI values. Thus MultiRTA
does not appear to significantly lose accuracy when
applied to such overlapping peptide data sets, which are
similar to those encountered in actual epitope prediction
problems.
We also tested the generality of MultiRTA by compar-

ing predictions with IEDB data for 127 peptides binding
to HLA-DRB1*1301. Binding data sets were available for
other MHC allotypes however there were either too few
data per allotype (< 20) or too few binders (< 5) to
obtain confident prediction statistics and so they were
not considered. The overall AUC, RMSE, and correla-
tion coefficients were 0.783, 1.65 kcal/mol, and 0.469 for
MultiRTA and 0.722, 1.40 kcal/mol, and 0.411 for
NetMHCIIpan. The higher AUC and correlation coeffi-
cient values for MultiRTA reflect the results in Table 1
for the closely related HLA-DRB1*1302 allotype (shown
in Table 1). The only residue group difference between
HLA-DRB1*1301 and HLA-DRB1*1302 is the G86/V86
MHC variation near peptide residue P1, discussed in the
next section, so that only the binding preferences at P1
differ. The inclusion of HLA-DRB1*1302 binding data in

the training sets for both MultiRTA and NetMHCIIpan
explains the higher statistics obtained for HLA-
DRB1*1301 than for the leave-one-allele-out results in
Table 1, in which data for allotypes closely related to
HLA-DRB1*1302 are absent from training data.

Primary determinants of binding affinity as inferred from
model parameters
As mentioned above, an important advantage of Multi-
RTA over methods that use sophisticated machine
learning algorithms such ANNs is the interpretability of
its parameters. Each parameter, bijl, represents the con-
tribution to the total binding affinity of peptide residue
type j at position Pi interacting with MHC residue
group l. A list of these parameter values, in order of
their magnitude, or importance to the overall binding
affinity, are given as Additional files 3 and 4.
An analysis of the largest magnitude parameters at

each peptide core position reveals peptide-MHC interac-
tions that contribute to both promiscuous and allele-
specific peptide binding. Promiscuous interactions
involve the peptide residue interacting with the MHC
residue conserved among all training alleles and repre-
sented by bijl with l = 0. We begin by looking at the
HLA-DR parameters. The largest parameters at position
P1 are from conserved MHC interactions with peptide
residues having hydrophobic or aromatic side chains,
Phe, Ile, Leu, Val, Tyr, Met, or Trp. This preference can
explained by examining peptide-MHC X-ray structures;
the P1 side chain fits into a hydrophobic pocket in the
MHC protein [46]. There are only two MHC variant
residues contacting P1, either a Gly or Val at residue
b86. The largest model parameters show a preference
for the larger aromatic residues (Phe, Tyr, and Trp)
with the G86 variant and the remaining smaller hydro-
phobic residues with the V86 variant. This effect of the
G86/V86 dimorphism on peptide binding was previous
described [47,48] and can be attributed to the larger
pocket of the G86 variant accommodating the larger
aromatic P1 side chains. The magnitudes of the largest
parameters at P1 are larger than those at any of the
other eight peptide core positions, indicating weaker
interactions at P2-P9. The variability of different HLA-
DR alleles near P1 is also lower than at most other posi-
tions since the G86/V86 dimorphism comprises all var-
iation at this site while other sites, except P8, have
significantly more variant residue groups. Both of these
factors, weaker interactions and lower diversity of con-
tacting MHC residues, likely contribute to the observed
weaker sequence preferences at peptide residue posi-
tions P2-P9.
The peptide-MHC interaction parameters can also be

compared with an experimental study of binding motifs
determined from the selection of strong binders from an

Table 5 MultiRTA leave-one-allele-out prediction results
for the DFRMLI compilation of experimental binding data
for overlapping peptides from four different antigens

MHC allotype AUC (± 95% CI) Number of binders

DRB1*0101 0.798 (± 0.096) 23

DRB1*0301 0.659 (± 0.177) 11

DRB1*0401 0.787 (± 0.104) 22

DRB1*0701 0.797 (± 0.092) 17

DRB1*1101 0.772 (± 0.100) 29

DRB1*1301 0.722 (± 0.361) 2

DRB1*1501 0.639 (± 0.143) 15

The data set for each allotype contains 103 peptides with measured binding
affinities. The 95% confidence intervals for AUC were calculated from the
standard deviation of the linearly related Somer’s Dxy statistic

( AUC = 1
2 Dxy ) using the Hmisc package in R. Data sets with fewer

binders have corresponding higher uncertainty in their AUC values.
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unbiased and diverse set of peptides expressed in a
phage display library [49]. The study examined peptide
binding preferences of the DRB1*0101, DRB1*0401, and
DRB1*1101 allotypes and found relatively conserved
anchor residues at P1 and P4 and allele-specific anchor
residues at P6. The common anchor residues at P1 were
all aromatic residues. Because all three allotypes contain
a G86 MHC residue near P1, this agrees with the above
discussion of P1 preferences. The predominant residue
observed at P4 was Met. All three allotypes have the
A74 MHC residue variant making Met the most pre-
ferred residue at P4 according to the model parameters.
Other MHC allotypes in the MultiRTA training set do
not contain this variant so that the P4 residue prefer-
ence observed in the study does not extend to other
HLA-DR allotypes. This is reflected in the largest con-
served interaction, as inferred by the largest magnitude
parameter for the constant residue group, is Val at P4.
At P6, the preference for Ala in DRB1*0101, Thr in
DRB1*0401, and Arg in DRB1*1101 can be attributed to
the allele-specific MHC residue variants W9, (H13,
V11), and 11 S, respectively. These residue groups all
appear in the other 11 MHC types included in the Mul-
tiRTA training set so that these P6 residue propensities
are shared by other MHC allotypes in this larger
context.
We also examined the relative importance of each of

the nine peptide core residues in binding specificity.
This was done by calculating the standard deviation
over all 20 residue types at core residue Pi for each resi-
due type T in the training sets, sT, i defined in Eq. 11.
These values are plotted for HLA-DR and HLA-DP in
Figures 1(a) and 1(b), respectively. We also calculated
the difference between the maximum and minimum
binding affinity values and obtained qualitatively similar
results (data not shown). For HLA-DR, it may be seen
that P1 has the largest variation and so makes the lar-
gest contribution to binding specificity. This is consis-
tent with the previous identification of P1 as a primary
anchor residue for HLA-DR and with the discussion
above. Peptide residues P4, P6, P7, and P9 also make
large contributions to specificity relative to the remain-
ing residues. Residue P4, P6, and P9 have been pre-
viously classified as secondary anchors on the basis of
their contribution to binding specificity and the fact that
they, along with P1 bind into four pockets in the MHC
binding cleft. It is interesting that other peptide core
residues, especially P7, also make significant contribu-
tions to peptide binding specificity. All nine peptide
core side chains contact the MHC in some X-ray struc-
ture and so can potentially form energetically favorable
interactions that stabilize peptide binding. Compared
with peptide-class I MHC complexes, peptides bound to
class II MHC assume an extended conformation low in

the binding cleft rather than bulging outside of the
binding cleft and so can form more extensive contacts
with the MHC protein [46]. This also explains the gen-
eral lack of well-defined anchor residues for class II
MHC allotypes as compared with class I MHC. Thus,
peptide core residues outside of the traditional anchor
residues also make significant contributions to peptide
binding to HLA-DR.
A similar analysis for HLA-DP reveals a different pat-

tern of specificity from HLA-DR (see Figure 1(b)). In
this case, P9 appears to contribute the most to binding
specificity, with P2, P5, and P6 providing lesser but still
significant specificity. Like HLA-DR, all peptide core
positions provide non-negligible contributions to bind-
ing specificity. Taken as a whole, these trends disagree
with two previous studies [37,50] that identified P1 and
P6 as the primary anchor residues for the five HLA-DP
allotypes in the training set. Although P6 is identified as
an anchor residue, our analysis shows P1 to be one of
the least important residues for specificity. The lower
binding variation between the HLA-DP allotypes com-
pared with the HLA-DR allotypes, previously described
in Refs. [37,50], is likely due to the lower polymorphism
of MHC residues interacting with the peptide.

Figure 1 Variation in the peptide core residue binding
specificity as assessed by the standard deviation in MultiRTA
predicted binding affinity over all 20 residue types. Each bar
represents the variation for one MHC allotype in the training data set.
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Conserved CLIP binding registers for HLA-DR and HLA-DP
predicted by MultiRTA
In order to study an example of promiscuous binding
across allotypes we analyzed MultiRTA predictions for
the CLIP region of the p33 invariant chain (Ii), a natu-
rally occurring promiscuous binder. All newly synthe-
sized class II MHC proteins bind Ii in order to avoid
prematurely loading peptides from the endoplasmic reti-
culum. The Ii peptide is later trimmed by proteases in
the trans Golgi network to leave the bound CLIP frag-
ment. In order to avoid inappropriate peptide binding
and promote MHC complex assembly and transport
[51], the CLIP peptide must form a stable complex with
diverse class II MHC allotypes.
MultiRTA was used to make binding affinity predic-

tions for the CLIP region (Ii, residues 81-104
(LPKPPKPVSKMRMATPLLMQALPM)) binding to all
of the HLA-DR and HLA-DP training set allotypes. The
identified primary core segments were MRMATPLLM
(Ii 91-99) for all HLA-DR allotypes and RMATPLLMQ
(Ii 92-100) for all HLA-DP allotypes examined. Ii 91-99
was also identified as a strongly binding secondary core
segment for all HLA-DP allotypes, with contributions to
the overall binding affinity only slightly lower (0.22 -
1.24 kcal/mol) than the primary core segment. Further-
more, the considerable variation in the binding affinities
of CLIP to different HLA-DR allotypes is consistent
with training data for longer CLIP region peptides and
previous experimental binding assays [52]. In particular,
HLA-DRB3*0101 is predicted to have markedly weak
affinity for CLIP (IC50 = 6918 nM) compared with other
HLA-DR allotypes, in agreement with Sette et al. 1995
[52].
The HLA-DR core segment is consistent with longer

segments identified by many experiments on different
HLA-DR types [52-55] and also agrees with an X-ray
structure of the CLIP peptide bound to HLA-DR1*0301
[56]. One experimental study measured the concentra-
tion-dependent binding of a set of overlapping CLIP
peptide segments to HLA-DPA1*0103/DPB1*0201 and
concluded that Ii 91-99 is the core CLIP segment for
this MHC type. Further experimental tests are needed
to confirm whether or not Ii 92-100 constitutes an
actual alternative binding register to HLA-DP. This is
conceivable, as two alternative binding registers for
CLIP have been experimentally identified for another
class II allotype, HLA-DQ2 (HLA-DQA1*0501/
DQB1*0201) [57].

Conclusions
The MultiRTA model introduced in this paper gener-
alizes our previously reported single-type RTA model to
multiple related MHC allotypes. We fit both HLA-DR
and HLA-DP models and found that the HLA-DR

model achieved accuracy competitive with NetMHCII-
pan, while using a much simpler and physically interpre-
table model of peptide-MHC binding. The HLA-DP
multi-type model is the first of its kind, however limited
variability between different allotypes combined with
less available binding data yielded a model with consid-
erably lower coverage than the HLA-DR model. In the
future, expected additional experimental peptide binding
data, particularly for distantly related MHC allotypes
will expand the coverage of both models.
Other peptide-class II MHC binding prediction meth-

ods make use of additional peptide properties such as
its length and the peptide flanking residues (PFRs) not
used by MultiRTA. Including these properties in the
MultiRTA model could possibly further improve its
accuracy. For example, the NetMHCIIpan method uses
the average BLOSUM scores over the peptide flanking
residues (or PFRs, adjacent to the 9-mer core), lengths
of the N- and C-terminal PFRs, and the peptide length.
The inclusion of peptide length was previously shown to
lead to potentially strong overfitting due to database-
dependent length profiles [32] so that care is needed in
interpreting any improvements in prediction perfor-
mance with this property. The same study found that
including information on PFRs further improved predic-
tion performance. X-ray structures of peptide-MHC
complexes show peptide-MHC residue interactions out-
side of the 9-mer peptide core, supporting the idea that
PFRs can potentially make additional contributions to
peptide binding affinity.
We were able to identify some of the most important

determinants of both promiscuous and allele-specific
peptide binding from the optimal MultiRTA parameters.
While many deduced HLA-DR binding motifs agreed
with previous studies, the relative importance of differ-
ent HLA-DP core residue positions in determining bind-
ing specificity disagreed with two previous studies
[37,50]. This difference may be due to the different
method that we used to quantify the importance of each
peptide core residue to the binding specificity. Both our
analysis and those in the previous studies defined pep-
tide residue positions with large variability in binding
affinities as important for binding specificity, however
the variability measures were different. In Caselli et al.
2002 [50] and Sidney et al. 2010 [37], variability was cal-
culated from the binding affinities of single residue
mutants of a reference peptide, whereas our analysis cal-
culated the standard deviation in the MultiRTA para-
meters contributing to the predicted binding affinity at
that position. If one assumes independent contributions
of each peptide residue to the overall binding affinity, as
is implicit in the MultiRTA model, then both
approaches should yield the same qualitative result. Pos-
sible reasons for the discrepancy are unexpected shifts
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in the binding register for single mutants in the other
analyses or inaccurate MultiRTA parameter values.
Interestingly, the analysis of Sidney et al. 2010 [37] also
found the peptide position two residues N-terminal to
P1, which is outside of the 9-mer core, to be important
for binding specificity, but less so than P1 and P6. This
lends further support to that idea that accounting for
PFRs in MultiRTA may improve its accuracy.
Overall, the analysis of important binding determi-

nants showed that considerable sequence diversity is tol-
erated at the peptide core positions. This combined with
uncertainty in the peptide binding register renders char-
acterization of peptide binding specificity in terms of
anchor residue preferences, which has proven useful for
class I MHC, impractical for class II MHC. Thus more
sophisticated descriptions of peptide binding prefer-
ences, such as MultiRTA, are needed for accurate
predictions.
As mentioned above, the expected availability of addi-

tional experimental peptide binding data will improve
the accuracy and coverage of the MultiRTA prediction
models. Targeted analysis of peptide binding to MHC
allotypes distantly related to allotypes represented in the
current training data could expand coverage the most.
As more binding data becomes available, an HLA-DQ
model is also a possibility. However the large variability
of the a chain, not present in HLA-DR and HLA-DP,
will require a large quantity of experimental binding
data for diverse allotypes in order to obtain a model
with adequate coverage.

Additional material

Additional file 1: This table contains experimental peptide binding
data for DRB1*1301, which was not included in the training set. All
data were downloaded from IEDB [36].

Additional file 2: Tables S1 and S3 give the MHC residue group
variants for each peptide core residue for HLA-DR and HLA-DP,
respectively, while Tables S2 and S4 show all variations of peptide-
contacting MHC residues appearing in the training set for HLA-DR
and HLA-DP, respectively.

Additional file 3: This table contains a list of HLA-DR model
parameters, bijl, representing interactions between specific peptide
and MHC residues. They are divided by peptide core residue number
and presented in decreasing order of magnitude.

Additional file 4: This table contains an ordered list of HLA-DP
model interaction parameters in the same format as Additional file 3.
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