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Abstract

Background: A relevant problem in drug design is the comparison and recognition of protein binding sites.
Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the
site since the conformation, size and chemical composition of the protein surface are all relevant for the
interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-
ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved.

Results: In this paper we propose a new method for local structural alignment of protein surfaces based on
continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method
finds the isometric transformation (rotation plus translation) that best superimposes active regions of two
structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional
(3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more
efficient global optimization approach along with a new dissimilarity measure. The reported computational
experience and comparison show viability of the proposed approach.

Conclusions: Our method performs well to detect similarity in binding sites when this in fact exists. In the future
we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant
proteins and applying a clustering technique to the results of all comparisons to classify binding sites.

Background

The function of a protein typically depends on the
structure of specific binding sites located at the surface
of the protein where the interaction with a ligand takes
place. The identification of protein binding sites, their
classification and analysis is of much interest for drug
design and treatment of diseases. Binding sites recogni-
tion is generally based on geometry often combined
with physico-chemical properties of the site since the
conformation, size and chemical composition of the
protein surface are all relevant for the interaction with a
specific ligand.

In this paper we address the problem of optimally
aligning protein surfaces, i.e. of finding atom pairs on
two protein surfaces that occupy spatially equivalent
positions. Our computational method integrates geome-
try with chemical properties of the matched atoms. It
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can be applied to the comparison of binding sites as
well as of any other surface patches, such as cavities,
that may be of interest.

Although the literature in protein surface alignment is
not as vast as the one on complete structure or fold
alignment, nevertheless several matching strategies have
been designed for the recognition of protein-ligand
binding sites and of protein-protein interfaces. They
include hashing techniques [1,2], graph theoretic meth-
ods [3-6], descriptors based on moments [7] and
moment invariants [8], shape descriptors such as spin
images [9-11]. A few web servers have recently become
available [12-16].

Most of the proposed methods require the solution to
a 3D matching problem which is a well-studied problem
also in computer vision and robotics. It can be formu-
lated as follows: given two sets A and B of points, find
two possibly large subsets A" of A and B’ of B with high
degree of similarity. There are various ways of defining
the similarity between two point sets in 3D space lead-
ing to the proposal of different distance functions and
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associated algorithms; they include the root mean
square distance, the closest point distance [17], the
Hausdorff distance [18], the bottleneck distance [19].

An important aspect of the matching is the choice of a
suitable surface representation; in the literature common
ways of representing a surface are Connolly’s represen-
tation [20], alpha-shapes [21] and pseudo-vertices [2]. In
our approach, we represent the surface as a cloud of
points, each corresponding to a surface atom. Thus, the
protein surface alignment problem is the same as the
aforementioned 3D matching problem.

One possible way to solve the surface alignment pro-
blem is by using the well-known Iterative Closest Point
(ICP) algorithm [17] from which we draw our inspira-
tion. The ICP algorithm, originally introduced in the
area of computer vision for image registration, has been
used in bioinformatics [22] for the alignment of com-
plete protein structures. Indeed, we take a similar
approach for surface alignment, namely we search for
the isometric transformation which best superimposes
two given protein structures.

Our main contribution is in the adoption of a different,
more efficient global optimization approach along with a
new dissimilarity measure. The global optimization algo-
rithm we design belongs to the class of controlled random
search methods [23-25]. These methods, although heuris-
tic in nature, are very efficient and reliable for the global
minimization of nonlinear multivariate functions of several
variables. In the past years, controlled random search algo-
rithms have been successfully used to solve many real
world problems, see for instance [26-31]. The dissimilarity
measure we propose is based on the solution to an “Asym-
metric Assignment Problem” on a bipartite graph asso-
ciated to the matching problem. Our method is capable of
generating very accurate local alignments. We benchmark
it on various sets of protein structures from the PDB [32],
and compare its performance with that MolLoc [12].

Notations and Assumptions
In this section we introduce some notations and
assumptions that will be used throughout the paper.
Given two protein structures P and Q, let us denote
by P and Q the two finite sets of points corresponding
to the atoms of the active sites of the two structures P
and Q, respectively. We let
n=|P| and m=|Q)|

and assume, without loss of generality, that n < m.
The set P is conventionally representative of a query
shape while Q defines a reference model shape.

An isometric transformation in three-dimensional space
can be defined by a unit quaternion a, = (aq, a1, a,, as)' €
R* (||a,|| = 1) and by a translation vector a, € R>. Let
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al = (a:a:) be the transformation defining vector and

denote by T, the corresponding transformation, so that
y =T, (x) = R(a,)x +a,

for every x € %3, where R (a,) is the rotation matrix
defined by the unit quaternion a, as follows:

Rii Ry, Rys
R(a,)=| Rz Ry, Ry
Ri3 Ry Rss

where
_ 2,2 2 2
Ry =ag +ai —a; —a;z,
Ry, =2(aa, —ayas3),
Ri3 =2(aja; +aga,),

_ 2 2 2 2
R,, =ay +a; —aj —a;3,

Ry3 =2(ayas —aay),
Rs;5 :aé +a§ —al2 —a%

Let ® € R be the set of all vectors a € R’ defining
an isometric transformation in R>. Given a transforma-
tion vector a € O, let T, (P) = P, denote the set of
points obtained by applying the transformation T, to
every point of P, that is

T,(P)=P,={y:y=R(a,)p+a, Vpe P}

Let: w: P —> Q denote a point to point mapping that
associates to every point of P a point of Q. Since, as
assumed above, P and Q are finite sets, the class ¥ of all
mappings y has finite cardinality given by |¥| = m".

Let w € ¥ be a given mapping and a be a vector
defining an isometric transformation, then the mean
square error function between P and Q is the following

f(wa)=— " ()~ RaJp—a, I W

peP

The surface alignment problem consists in finding a
mapping y* € ¥ of points in P to points in Q and an
isometric transformation a* such that

fW*,a*) < f(,a),

forall ye Yand a e O.

The problem can also be formulated in terms of the
following definition of an assignment. A function ¢ € ¥
is an assignment from P to Q if, by definition, it is injec-
tive, that is for every py, p» € P, p1 # p, implies ¢(p;) =
$(p2).
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Let us denote by ® € ¥ the class of all possible
assignments from P to Q. Obviously, since P and Q are
finite sets, @ is finite as well and its cardinality is |®| =
mm-1)...(m-n + 1).

Results

Algorithm

A well-known algorithm for shape alignment is the
Iterative Closest Point Algorithm [17]. This algorithm
stems from the idea that, once a mapping ¢ € ¥ is
fixed, it is possible to compute the isometric transforma-
tion ¢ € O that minimizes the function f(&, a) (a
closed-form expression for a(zz ) has been given in [33]
where we refer the interested reader for the relevant
details). Let a(4) ) be the minimizer of f( ¢, a), that is

a(y) = arg min f(1, a).

Hence, the problem implicitly considered by the ICP
Algorithm is the following two-level optimization problem

min,, f(¢,a)
stipe ¥ 2)

a= argmiél f(,a).

As it is stated in [17], where ICP has been originally
proposed, the method converges to a solution which is
a local minimum of the two-level Problem (2). Futher,
in [17] it has been shown that the final transformation
a and mapping ¢ obtained by Algorithm ICP heavily
depend on the initial relative positioning of sets P
and Q.

In this section we discuss the use of a continuous glo-
bal optimization algorithm for the solution of the shape
alignment problem. To this aim, it is necessary to refor-
mulate the shape alignment problem in a complemen-
tary way with respect to Problem (2). More in
particular, the inner-level problem becomes the one
defining the mapping function y (instead of the trans-
formation a) once the transformation vector a € ® is
fixed in the outer level.

Namely, we consider the following two-level optimiza-
tion problem

min, f(4, a)
stae © 3)

¥ =argmin f(3),a).

Problem (3) can be reduced to a one-level optimiza-
tion problem by considering that for every vector a €
O, the inner-level problem of (3) admits a globally opti-
mal solution, which we denote by
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Y(a) = arg min f,a) (4)

and represents the closest point mapping. Hence, Pro-
blem (3) can be equivalently stated as

rar;ig 3g(a) (5)

where g(a) = fly(a), a). Every global solution a* of (5)
is, by definition, a solution such that f (v (a*), a*) < f (v
(a), a), for all a € O.

Observe that the computation of function g requires
the computation of the optimal mapping y (a), that is,
the solution to Problem (4). This latter problem can be
solved with a time complexity O(nm) in the worst case
[17] which can be relevant for » and m large. Moreover,
due to its definition, g(a) is a non-smooth (Lipschitz)
continuous function and its derivatives are not available.
Indeed, for the minimization of function g(a) we can
neither directly use its derivatives nor approximate them
through finite differences since this would require too
much time and produce numerical derivatives which are
unreliable because of the non-smoothness of function g.

On the basis of the above observation we propose the
use of a controlled random search method for the solu-
tion to Problem (5). In the following we briefly recall
the global optimization algorithm that we use and
which was originally proposed in [25] and successively
improved in [24]. It is a population based algorithm in
the sense that, through-out the entire optimization pro-
cess, a population of points is maintained and iteratively
updated in such a way that they cluster around the glo-
bal minima of the objective function. Roughly speaking,
the method is composed of two distinct and consecutive
phases: a global phase and a local phase. During the glo-
bal phase an initial population of points (defining roto-
translations in three-dimensional space) is generated by
randomly sampling a sufficiently large set of points over
some feasible domain. Then, at every iteration of the
local phase, a new point is generated and the population
is updated if this new point improves on the worst
point of the population. More in details, the algorithm
can be described by the following steps.

1. initialization Let N = 6 and choose an integer
M > N. The objective function is sampled on a set
S of M points a € R’ randomly chosen within the
feasible domain ® strictly containing the global
minimizer.

2. stopping criterion If the maximum and mini-
mum values of the objective function over S are suf-
ficiently close to each other, namely
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&max ~ &min <€

where
8max = MaxX g((l), &min = min g((l)
ae$s ac$S
then STOP.

3. search phaseN +1 points are randomly chosen in
the set S. Then,
(a) the weighted centroid a, of the N + 1 points
is computed;
(b) the new trial point 4 is computed by doing a
weighted reflection of the centroid onto the worst
point among the selected N + 1 points.
Namely, let a' be the worst point, then

Et:(l+a)ac —aa', and i=Wa

where o €(0,1) is a reflection parameter and

1/6& 0 .. 0
0 1/& 0 0
0 0 1/& 0 .. ..0
w=| o 0 1/& 0 0 0]
0 0 1 0 0
0 0 1 0
0 0 1

& =||(aparaya3) ]|

The normalization matrix W is introduced to
ensure that the first four components of the
resulting point represent a unit quaternion (i.
e. a rotation).
The parameter a is iteratively updated during
the optimization process [24] in such a way
that its value tends to zero as the iteration
count increases and the difference gpax - Zmin
decreases.
4. updating phase If the objective function value on
the new point 4 improves on the maximum function
value over S, then the set S is updated by adding the
new point and discarding the worst one. Otherwise the
set S is left unchanged and the new point is discarded.
The algorithm continues iterating through steps 2-4.

The algorithm starts by randomly choosing M > N
points over the feasible set ®. In the literature, a
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typically accepted value of M is 25N [25,29]. This value
is able to convey to the algorithm sufficient ability to
find the global minimum point without excessively slow-
ing down the convergence.

A new dissimilarity measure

In this section we propose a new dissimilarity measure
between two given sets of points of two proteins. This
measure is based on a distance other than the closest
point distance.

In particular, it can be noted that, using the closest
point distance, it can happen that different points of set
T,(P) are mapped to the same point of set Q. This, in
turn can yield a distance value which is small just because
many points are all mapped to the same closest point.

In order to avoid this undesirable effect, we consider
the function f{¢, a) defined in (1) where ¢ e ® is an
assignment function and let, for every a, ¢(a) be a glo-
bal solution to problem

rggéig f(p.a). (6)

Problem (6) can be formulated as a 0, 1-optimization
problem and is, indeed, the combinatorial optimization
problem known as the Asymmetric Assignment Problem
(AAP).

In particular, let G (P, Q, E), E € P x Q, be the bipar-
tite directed graph characterized by the two sets of
nodes P and Q and by the edges between all pairs of
nodes, one of P and the other of Q. Then, for every pair
e = (p, q) € E, define

c. =la-T.0)|

Let s € {0, 1}'*! be the edge incidence vector and con-
sider the following minimum cost assignment problem

minc s
N

2 s,=1, VpeP

e (p) @)

Z 5,51, Vge Q

ecd(q)
se {0,131,

where, 6" (p) and J” (q) are the sets of edges leaving
node p and, respectively, entering in node q.

Note that the constraints of Problem (7) require each
node p € P to be assigned to exactly one node g € Q
and each node g € Q to be assigned to at most one
node p € P, which is why Problem (7) is known as
Asymmetric Assignment Problem.
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Clearly, it is

flp(a)a)=c's*

where s* is the optimal solution to Problem (7).

Problem (7), and hence (6), can be solved very efficiently
by ad-hoc codes that have time complexity
O(Jnm log(nC(1,))) Where C(T,)=maxypeo{lla ~T.(p)l}, see
for instance [34].

We are now able to define our new dissimilarity mea-
sure, that we call matching distance.

Definition 1 Given an isometric transformation a € ©
and two distinct sets of points P and Q, the matching
distance between T, (P ) and Q is given by fi¢(a), a).

Reasoning as in the preceding section, we can now
search for a global solution to problem (5) where now g

(a) = flg(a), a).

Integration of physico-chemical properties

Up to this point, the discussed approach is based on
geometry only. However, as is well known in biology,
there are other properties that affect the binding of
molecules. For instance, electrostatic as well as hydro-
phobic-hydrophilic properties play an important role in
protein-protein and protein-ligand interactions. Thus,
we consider a variant of our approach in which we inte-
grate physico-chemical properties. Specifically in the
graph G(P, Q, E) we assume that the edge e = (p, q) is
present only if the two atoms p € P and g € Q have the
same physico-chemical properties. According to [35], we
say that p and g have the same physico-chemical prop-
erties if they are both Acceptor (ACC), Donor (DO),
Acceptor/Donor (AD), Aliphatic (ALI) or Aromatic (PI).
Furthermore, we assume that, for every p € P at least a
node g € Q exists such that (p, g) € E.

Testing
We applied our method, referred to as Continuous
Optimization (CO) method in the following, to the com-
parison of binding sites of proteins. We integrated phy-
sico-chemical properties in our method, as discussed in
the previous section. The structures of the proteins in
complex with specific ligands are taken from the PDB
[32]. The binding sites are extracted by a simple algo-
rithm that finds all protein atoms within a certain dis-
tance (4.0 A) from an atom of the ligand. We run our
algorithm on pairs of binding sites producing in output
the list of matched atoms on the two binding sites, the
rigid transformation that best superimposes them, and
the RMSD after superposition.

We benchmarked CO on a dataset of 100 proteins in
complex with 9 ligands that differ in chemical composi-
tion as well as in size and shape. The results of all-to-all
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pairwise comparisons are visualized by means of a dis-
tance matrix and by the ROC curves. The goal is to
evaluate the ability of CO in assigning a binding site to
the correct group of proteins, i.e. those binding the
same ligand.

We then present more detailed results on a set of 19
binding sites of proteins in complex with the ligand
ATP with the goal of judging the quality of the align-
ments. For each comparison we report the number of
aligned atoms as well as their RMSD after superposition.
The results on this dataset are compared with those of
another method, MolLOC [12], which derives the same
two measures, i.e. number of aligned atoms and RMSD.

Classification of proteins according to their bound ligand
In the first experiment we perform all-to-all compari-
sons on a dataset of 100 proteins in complex with one
of 9 ligands: AMP, ATP, FAD, FMN, GLC, HEME,
NAD, PO4, and Steroid. This dataset was used in [36]
for an analysis of shape variation in protein binding
sites. The proteins were carefully selected, with a num-
ber of criteria, so that the dataset is non-redundant and
the binding sites are not evolutionary related.

The results of all-to-all comparisons are illustrated by
means of the distance matrix of Figure 1. An entry of the
matrix corresponds to a protein pair and contains a value
related to the number of aligned atoms of the binding
sites of the pair. Namely, in the matrix we report

5[ pum. aligned atoms
n+m

where n and m are the numbers of atoms of the two
binding sites. The proteins are listed along the rows and
columns of the matrix so that proteins binding the
same ligand are grouped together. Horizontal and verti-
cal black lines on the matrix separate different groups
of proteins. The matrix is color-coded from 0 to 1, with
red corresponding to high number of aligned atoms and
therefore high similarity in the shape of the binding
sites and blue to the lowest degree of similarity. A good
classification of sites based on bound ligands implies
the presence of mostly red areas around the main diag-
onal, corresponding to pairwise comparisons within the
same group of proteins, i.e. in complex with one speci-
fic ligand. This can be in fact observed in the image
matrix although with different degrees for the different
groups of proteins. As it is known [36], ligand PO4
tends to be rigid, exhibiting little conformational varia-
bility in the binding. Not surprisingly, the corresponding
area is the one showing the highest degree of similarity.
The method CO appears to perform well also in distin-
guishing the PO4 group from any other group, as PO4



Bertolazzi et al. BMC Bioinformatics 2010, 11:488
http://www.biomedcentral.com/1471-2105/11/488

Page 6 of 11

GLC FMN FAD ATP AMP

HEM

NAD

PO4

TES

AMP ATP FAD FMN GLC

shape of the binding sites and blue to the lowest degree of similarity.

Figure 1 Distance matrix. The matrix shows the results of all-to-all comparisons. The 9 ligands are indicated along the rows and columns and
the proteins binding each ligand are grouped together. The grid of horizontal and vertical black lines separates different groups of proteins. The
matrix is color-coded from 0 (blue) to 1 (red), with red corresponding to high number of aligned atoms and therefore high similarity in the

NAD

HEM PO4 TES

binding sites are more similar to themselves than to
binding sites of other groups. Similar considerations
apply to steroid and GLC. A good performance is also
obtained for the HEME group, although the discrimi-
nating power with the NAD group is not clear. As
noted in [37], ligand ATP has great variation in its con-
formation when binding different proteins: it can be in
an extended conformation or in a compact one, result-
ing in different sizes and shapes of the binding regions.
This is reflected in our experiments, as can be seen

from the distance matrix where blue or green areas are
present.

An important aspect of an alignment method is its
ability to retrieve, for a given query binding site, those
proteins of the dataset binding the same ligand. To eval-
uate CO in this task we resort to ROC curves. The
results of the comparisons of the query with all other
proteins are ranked from the best to the worst in terms
of the number of aligned atoms. A pairwise comparison
in the ranked list is considered correct or true positive if
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the other protein of the pair binds the same ligand as
the query. The results are summarized by the receiver
operating characteristic (ROC) curves in Figure 2 that
display the fraction of true positives or correct answers
vs. the fraction of false positives for all positions of the
ranked solutions. The best possible prediction results
would yield a curve through the point in the upper left
corner or coordinate (0, 1) of the ROC space. A comple-
tely random guess would give a point along a diagonal
line from the left bottom to the top right corners. We
repeated this experiment with each protein of the data-
set as query. Each curve in Figure 2 shows the average
values obtained on all query proteins of a group. As
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expected, the curve corresponding to PO4 (in green)
deviates the most from the diagonal line being the clo-
sest to the top-left corner of the ROC square. Thus CO
has a good success in predicting a PO4 binding site. By
contrast, the worst performance is achieved for NAD
binding proteins with the associated curve in dotted
black.

From the above sets of experiments we can conclude
that CO has a good accuracy in the retrieval of similar-
ity information: for a given query binding site the high-
est scoring solutions are generally the binding sites of
the dataset in complex with the same ligand as the
query. Furthermore, when a good similarity in the
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Figure 2 ROC curves. The curves reported in the figure show the fraction of true positives or correct answers vs. the fraction of false positives
for all positions of the ranked solutions. Each curve in the figure shows the average values obtained on all query proteins of a group. As
expected, the curve corresponding to PO4 (in green) deviates the most from the diagonal line being the closest to the top-left corner of the
ROC square. Thus CO has a good success in predicting a PO4 binding site. By contrast, the worst performance is achieved for NAD binding
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binding is expected because of the relative rigidity of the
ligands, CO is able to capture such a similarity, as
shown in the distance matrix.

Comparing CO with other alignment methods on ATP
binding sites

Several studies have been conducted to evaluate and
compare different methods for determining the struc-
tural similarity of proteins. For instance, a comprehen-
sive assessment of structural alignment methods is
presented in [38] where six publicly available programs
are evaluated on almost 9 million pairs of proteins.
However, a similar large-scale experiment is not avail-
able for the related problems of aligning protein sur-
faces and binding sites, despite the growing number of
methods and web servers available. There are several
factors that contribute to the difficulty of the compari-
son. First, different methods solve different instances
of the matching problem: some methods compare
binding sites, while others recognize binding sites in
cavities or even entire surfaces. Second, the methods
differ in the input representations and scoring func-
tions. For instance, in CO the input points are the
atom centers, in Multibind a reduced set of points, the
pseudo-centers. In [36] the points are the spherical
sample points derived from the atomic coordinates.
MolLoc, on the other hand, uses Connolly’s [39] points
and a richer surface representation based on local

Table 1 Comparison of CO with MolLoc
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shape descriptors of surface points. As for the scoring
function, although most methods produce the RMSD
of the superimposed structures, some methods have a
different native scoring function that cannot be easily
derived by other methods.

As a comprehensive evaluation of all the techniques is
beyond the scope of this paper, only MOlLoc will be
considered in comparison with CO. The reason for
choosing MolLoc is that both methods judge the quality
of the alignments by the number of aligned atoms and
their RMSD after superposition. Such measures are
available at MolLOC website. As Multibind does not
report the RMSD of two aligned structures at its website
it will not be considered here. Moreover, the method in
[36], based on spherical harmonics and benchmarked on
the same dataset of 100 proteins, is not used in our eva-
luation because it computes a measure of similarity of
two shapes without an alignment.

As observed in [38], although the ROC curves are a
valid tool for assessing the quality of a classification
approach they are often of limited value in comparing
different methods; in fact such curves take into account
only the ranking of the alignments not their quality. For
this reason, since we want to assess the quality of the
alignments we choose the geometric measure SAS
[38,40,41]. Clearly, a better match has a higher number
of aligned atoms and smaller RMSD. Since the two mea-
sures are not independent SAS combines them into a

co MolLoc

Rank Protein Pair N. corresp atoms RMSD SAS N. corresp atoms RMSD SAS
1 atpE-Thck 62 1.2 1.94 45 13 2.89
2 TatpE-1phk 57 091 16 63 09 143
3 TatpE-1csn 50 1.18 2.36 55 09 1.64
4 TatpE-Tnsf 34 2.1 6.21 11 14 12.73
5 TatpE-1j7k 25 1.81 724 25 16 64
6 TatpE-1e8xA 24 1.74 7.25 20 1.7 85
7 TatpE-1f9aC 21 217 10.33 18 16 8.89
8 TatpE-Tkay 20 1.9 9.5 8 17 21.25
9 TatpE-Tyag 20 192 96 17 16 941
10 TatpE-1a82 19 202 1063 13 19 14.62
11 TatpE-1jjv 18 1.76 9.78 10 18 18
12 TatpE-1gn8A 17 237 13.94 14 16 1143
13 TatpE-1b8aA 16 2.05 12.81 10 2 20
14 TatpE-1mjhA 16 2.28 14.25 14 19 13.57
15 TatpE-1e2q 15 1.39 927 5 1.8 36
16 TatpE-Tkp2A 13 1.51 11.62 15 19 1267
17 TatpE-T1ayl 12 1.21 10.08 16 2 125
18 TatpE-1g5t 7 2.26 3229 8 16 20

avg.SAS 10.04 avg.SAS 12.88

Pairwise comparisons of the binding site of protein 1atp with other 18 proteins all binding ATP (columns 2). The results of CO (columns 3-5) and MolLoc
(columns 6-8). For a de_nition of SAS see the text. The comparisons are ranked based on the number of corresponding atoms in CO (column 3).
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single expression: SAS = (RMSD x 100)/(num. aligned
atoms).

We run both programs on the set of 19 proteins used
in [42] for a related although different problem, that is
binding site recognition within a cavity. The proteins all
bind ligand ATP and are from different families accord-
ing to the structural classification SCOP [43].

We performed pairwise comparisons of the active site of
the Catalytic Subunit of cAMP- dependent Protein-Kinase
(pdb code 1atp, chain E) with each of the remaining pro-
teins of the input data set. Of the set of proteins only
three belong to the same SCOP family as latp, namely
1phk, 1csn and 1hck. In Table 1 for each comparison we
report the number of aligned atoms along with the RMSD
obtained by CO (columns 3-4) and MolLoc (colums 6-7).
The entries of the table are listed and ranked according to
the number of corresponding atoms obtained by CO (col-
umn 3). We observe (see Table 1) that both methods cor-
rectly rank at the top three positions the proteins in the
same family as latp, that is 1phk, lhck and Ilcsn.
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Furthermore for the same three proteins the RMSD is
typically very low (approx. 1.5 A). Lower scores are
obtained for distantly related proteins, as for instance 1g5t.
The table also reports the SAS measure for CO (column 5)
and MolLoc (column 8) and their average at the bottom of
the same two columns. As a lower SAS value indicates a
better match, it follows that CO on average achieves a bet-
ter quality than MolLoc with respect to this measure.

Figure 3 shows an example superimposition of the
binding sites of ligand ATP of proteins latp and lhck
after the computed rototraslation is applied.

We conclude this section by reporting that the execu-
tion times of CO on average on all 18 pair-wise compari-
sons considered in this experiment was 14.06 s for a total
of 253.1 s on an Intel Pentium IV processor running at
2.66Ghz with 1Gb main memory. As we mentioned
before, the low computational complexity of our pro-
posed approach is one of the key points of our design.
We do not report the execution times of MolLoc since
they are not available from the web server interface.

Figure 3 Example of a computed superimposition. Comparison of CO with MolLoc. Pairwise comparisons of the binding site of protein 1atp
with other 18 proteins all binding ATP (columns 2). The results of CO (columns 3-5) and MolLoc (columns 6-8). For a definition of SAS see the
text. The comparisons are ranked based on the number of corresponding atoms in CO (column 3).
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Discussion and Conclusions

The main challenge for a method that compares and
classifies binding sites is to be able to cluster the binding
sites in groups according to the type of ligands they bind
while at the same time allowing some conformational
variability within the same group, as is often observed for
binding sites of different proteins complexed with the
same ligand. The difficulty arises because of the variety of
ways in which a ligand can bind proteins. Although we
expect a computational method to be able to distinguish
among different types of ligands relatively well, there are
obviously cases when only experimental methods can
determine the binding affinity of two molecules.

Our proposed method, CO, performs well to detect
similarity in binding sites when this in fact exists. In the
future we plan to do a more comprehensive evaluation
of the method by considering large datasets of non-
redundant proteins and applying a clustering technique
to the results of all comparisons to classify binding sites.
A systematic evaluation of CO with other existing meth-
ods will be done through the introduction of a common
scoring function that will overcome the problem that
the available methods use native scoring functions diffi-
cult to export to other methods.
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