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Abstract

their combination necessary for their optimal use.

different target organisms are presented.

get organism.

a combined score might be the best choice.

Background: Genome context methods have been introduced in the last decade as automatic methods to predict
functional relatedness between genes in a target genome using the patterns of existence and relative locations of
the homologs of those genes in a set of reference genomes. Much work has been done in the application of
these methods to different bioinformatics tasks, but few papers present a systematic study of the methods and

Results: We present a thorough study of the four main families of genome context methods found in the
literature: phylogenetic profile, gene fusion, gene cluster, and gene neighbor. We find that for most organisms the
gene neighbor method outperforms the phylogenetic profile method by as much as 40% in sensitivity, being
competitive with the gene cluster method at low sensitivities. Gene fusion is generally the worst performing of the
four methods. A thorough exploration of the parameter space for each method is performed and results across

We propose the use of normalization procedures as those used on microarray data for the genome context scores.
We show that substantial gains can be achieved from the use of a simple normalization technique. In particular,
the sensitivity of the phylogenetic profile method is improved by around 25% after normalization, resulting, to our
knowledge, on the best-performing phylogenetic profile system in the literature.

Finally, we show results from combining the various genome context methods into a single score. When using a
cross-validation procedure to train the combiners, with both original and normalized scores as input, a decision
tree combiner results in gains of up to 20% with respect to the gene neighbor method. Overall, this represents a
gain of around 15% over what can be considered the state of the art in this area: the four original genome con-
text methods combined using a procedure like that used in the STRING database. Unfortunately, we find that these
gains disappear when the combiner is trained only with organisms that are phylogenetically distant from the tar-

Conclusions: Our experiments indicate that gene neighbor is the best individual genome context method and
that gains from the combination of individual methods are very sensitive to the training data used to obtain the
combiner's parameters. If adequate training data is not available, using the gene neighbor score by itself instead of

1 Background

In recent years, large-scale genome sequencing has
resulted in a steep growth in the number of fully
sequenced genomes. Part of the sequencing effort is to
automatically annotate the genome with structural infor-
mation (for example, location of open reading frames
and coding regions) and functional information. Much
of this annotation process relies on finding homologs of
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the target genes in other annotated genomes. The target
gene often inherits the function of its homologous
sequences, when available. Using this method, genes
that do not have an annotated homologous sequence in
any other genome cannot be assigned a function.

Genome Context Methods

Genome context analysis denotes a family of techniques
used to infer functional relationships between genes
using a comparative analysis approach that allows for
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the inference of function across genes that may not
share sequence similarity. These techniques are based
on assumptions drawn from knowledge about evolution-
ary processes. For example, the phylogenetic profile
method [1] uses the patterns of occurrence of a gene
across a set of genomes. Two genes with similar occur-
rence patterns are likely to be functionally related. The
assumption is that organisms are under evolutionary
pressure to encode either both genes or neither gene if
the genes are related. Other genome context techniques
use evidence such as protein fusions [2-4], proximity of
genes within the genome [4,5], and proximity of homo-
logous sequences of the genes across a list of reference
genomes [4]. These methods will be explained in detail
in Section 2.

Many other sources of information have been used for
functional prediction (see, for example, [6,7]), including
mRNA co-expression data, MIPS functional similarity, GO
functional similarity, co-essentiality, and co-regulation. All
these extra sources of information rely on data other than
that available in the annotated genome sequence. In this
paper, we limit our study to features that can be extracted
automatically from the annotated genome.

Normalization of Genome Context Scores

Genome context methods generate numeric values, or
scores, for pairs of genes. These scores are assumed to be
correlated with the probability that the two genes are
functionally related. Unfortunately, scores, in most cases,
indirectly capture other characteristics of the two genes
involved. For example, measures of similarity between
two phylogenetic profiles might be affected by how
frequent the genes are in the list of genomes used to
compute the profiles. This bias in the scores can degrade
the performance of genome context methods. The pro-
blem of score bias is, in fact, a common problem across
many statistical processing problems. A well-known
example of data that suffers this problem in bioinfor-
matics is microarray data. In this case, measurements
coming from different microarrays are affected not just
by the differences we intend to study, but also by differ-
ences in the scanner or in the production of the array.
Normalization procedures are designed to compensate
for this problem [8,9]. In this paper, we adapt two nor-
malization procedures that have been used for the micro-
array problem to the problem of estimating functional
relations from genome context scores. We demonstrate
varying degrees of relative gain in sensitivity of as much
as 40% depending on the type of score, at operating
points corresponding to high specificity.

Combination of Genome Context Scores
The different genome context scores implemented in
this paper capture somewhat different information
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about the samples. Hence, one would expect that com-
bining these scores into a single score should lead to a
score that is better than any of the individual ones.
Combination of genome context scores has been
explored in many papers [4,7,10-15]. Two related meth-
ods are used in the STRING database [14,16] and the
Prolinks database [4]. In both cases, scores are first indi-
vidually transformed into confidence measures using a
labeled training set. The resulting confidence measures
are then combined into a single measure by picking the
maximum [4] or using a simple product expression [14].
The same product expression is used in [12], but in this
case the individual scores are first weighted by a factor
that depends on the performance of the method. In all
these cases, the authors present the results of the com-
bination on the same data used to train the transform
into confidence measures or find the weights for the dif-
ferent methods. That is, the parameters of the combina-
tion are the optimal parameters on the data where
results are being reported. This results in an optimistic
prediction of the gains that can be achieved from com-
bination. It is not clear from these experiments whether
such results would generalize to unseen data.

More complex combination procedures have also been
proposed. In [11] a support vector machine is trained to
combine three different genome context method scores,
showing that the combination outperforms the individual
methods (both sensitivity and specificity are improved)
when the combiner is trained with cross-validation
on Escherichia coli gene pairs. That is, gene pairs are
randomly split into sets and each set is classified using
the combiner trained on all remaining sets. Combination
results including many other information sources apart
from genome context methods (for example, mRNA
co-expression data and GO functional similarity) are pre-
sented in [7]. In this case, the combiner is also trained
using cross-validation, although the dataset includes gene
pairs from the complete MIPS catalog, not from a single
organism. Results show a modest gain in performance
from combination, although none of the scores that are
used in the final combination correspond to genome con-
text scores.

Some of the papers mentioned above (for example,
[10-12]) present the performance of the systems after a
hard decision on the label of each sample has been made.
Sometimes this is done because the system directly out-
puts a binary decision. At other times, the hard labels are
obtained by thresholding of a continuous score with
some predetermined threshold. In either case, comparing
systems that make hard decisions is not straightforward,
since, generally, systems end up at different operating
points. If neither the false positive nor false negative rate
of two systems is the same, there is no direct way to com-
pare them, unless one of the systems has a strictly smaller
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value for both measures, in which case it can be declared
better than the other (this is the case for some results in
the papers cited above). When that is not the case, a per-
formance measure that combines the two types of errors
is generally used to compare the systems. Choosing such
a performance measure implies a rather arbitrary deci-
sion on the costs of the different types of errors.

Hence, in our judgment, not enough strong evidence on
the degree of improvement that can be obtained from
combination procedures for genome context scores has
yet been presented in the literature. Furthermore, to our
knowledge, no attempt has yet been made at training
combination procedures for genome context methods on
certain organisms to apply them on other organisms not
included in the training set. This is, arguably, the most
realistic scenario where the goal is to assign functional
relatedness labels to a new organism for which no or little
manual curation has yet been done and for which no
related strain has been curated either. In such a case,
cross-validation or train-on-test results would not be
applicable. In this paper, we present comparative results of
combination performance when training the combiner on
organisms that are phylogenetically distant to the test
organism and using cross-validation on the test organism.

Parameter Tuning for Genome Context Methods

In addition to introducing the normalization procedure
for genome context scores, and showing several combi-
nation results, we present a large set of experimental
results exploring the parameter space of the different
methods. Some experimental studies on the optimal set-
tings of the parameters of the genome context methods
have been presented in the literature. Sun et al. [17]
explore the performance of the phylogenetic profile
method when the distance metric is given by mutual
information for different values of the BLAST E-value
threshold and different composition of the reference list.
These same parameters are explored in [18], along with
the metric used to compute the distance between phylo-
genetic profiles. Cokus et al. [19] also explore different
metrics, some of them rather sophisticated, and propose
a new one that outperforms all other metrics tried in
their paper. To our knowledge, optimization studies of
this type have not been performed for genome context
methods other than phylogenetic profile.

In this paper, we thoroughly explore the parameter
space of each method, including the percent similarity
required in the gene fusion method and the E-value
threshold used to infer homology. Furthermore, six differ-
ent metrics of phylogenetic profile similarity are explored,
including the metric proposed by Cokus et al. [19]. We
also include a study of the effect of the size and composi-
tion of the list of reference genomes on all methods and a
comparison of results of the different methods across
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different organisms. We show most results in terms of
receiver operating characteristic (ROC) curves, which
allow us to compare systems without committing to a
certain set of costs for the different types of errors.

Summary of Contributions

The contributions of this paper are (1) a normalization
procedure for the genome context scores that improves
performance of the mutual information phylogenetic
profile method by around 25%, resulting, to our knowl-
edge, on the best-performing phylogenetic profile
method to date; (2) a thorough exploration of the effect
on performance of the parameters of the different gen-
ome context methods; (3) a comparison of performance
of the different methods on a set of bacterial organisms,
from where we observe a variation of a factor of 2 in
the sensitivity achieved by the different methods across
organisms, and a rather consistent ranking of the differ-
ent methods with the gene neighbor methods giving
substantially better performance than any phylogenetic
profile method for most organisms; and (4) a study of
the effect that the training data has on the performance
of the combination methods for the genome context
scores, resulting in the very important conclusion that
cross-validation results commonly presented in the
literature can be overly optimistic about the benefits
that can be achieved from combination.

Direct comparison of results across papers in the area
of genome context methods are many times impossible
due to changes in databases, testing protocols and defi-
nition of performance measures, sometimes leading to
apparent contradictory conclusions. This was one moti-
vation for the thorough study presented in this paper. In
Section 4, whenever possible, conclusions found in the
literature will be contrasted with our own conclusions.

2 Genome Context Methods

Given two genes G; and G, in a certain target genome, we
wish to compute a measure of the likelihood that they are
functionally related. We study the four types of genome
context methods widely used in the literature: phyloge-
netic profiles, gene neighbor, gene cluster, and gene fusion
(or Rosetta Stone). Three of these methods rely on infor-
mation about the presence of homologous sequences for
the genes in the target genome on a list of reference
organisms. In genome context methods, homology is
generally inferred using the degree of sequence similarity
given by the E-value. Even though sequence similarity
does not directly imply homology, this is a practical and
computationally efficient way to infer it commonly used in
bioinformatics. The sequence similarity information used
here is obtained from the Comprehensive Microbial
Resource (CMR) database [20]. The CMR database is
loaded into an Oracle relational database using the
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BioWarehouse toolkit [21] for ease of access. We consider
a sequence to be homologous to the query sequence if the
E-value obtained from CMR is smaller than a certain
threshold E.

In this paper, the value of the threshold E is tuned to
optimize the performance of the methods. CMR uses
blastp to generate the E-values. Matches with percent of
similarity smaller than 40% or percent of identity smaller
than 10% are discarded. Two filters are used by CMR to
mask off segments of the query sequence that have low
compositional complexity: SEG [22] and XNU [23].

Genome context methods can be grouped into two cate-
gories: full coverage and restricted coverage. Full-coverage
methods are those that can generate scores for all possible
gene pairs from a genome, while restricted-coverage meth-
ods generate scores only for some pairs. The phylogenetic
profile and the gene neighbor methods are full coverage,
while the gene cluster and the gene fusion methods are
restricted coverage. The gene cluster method generates a
score only when two genes are adjacent in the genome
and coded in the same strand, and the gene fusion method
generates a score only when the two genes from the target
genome are found fused into a single gene in some other
genome. Table 1 shows a summary of the genome context
methods implemented in this paper.

2.1 Phylogenetic Profiles Method
The phylogenetic profile (PP) of gene G is a binary vector
encoding the presence (indicated with a 1) or absence
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(indicated with a 0) of a homologous sequence of G in a
list of reference genomes. The length of the PP vector is
given by the number of genomes in the list. Given the PPs
for two genes, the product PP is defined as the vector that
contains a 1 only in the positions in which both PPs have
a 1 and 0 otherwise. If we think of the PPs for each gene
in a target genome as forming a matrix where each row
corresponds to a gene, then the columns of this matrix are
the organism profiles, while the rows are the gene
profiles. It is assumed that two genes having similar PPs
are likely to be functionally related, since evolutionary
pressure favors the simultaneous preservation or elimina-
tion of two genes that function together. Several measures
have been proposed in the literature to quantify the dis-
tance between two PPs. Here, we compare five of the most
common measures: mutual information (which, in plots
and tables we will call pp-mutual-info), Pearson coeffi-
cient (pp-pearson), Jaccard coefficient (pp-jaccard),
hypergeometric p-value (pp-pval), and weighted hyper-
geometric p-value (pp-wpval). Furthermore, we imple-
ment a sixth PP method called weighted hypergeometric
p-value with runs (pp-wpval-with-runs) proposed in [19]
aimed at relaxing some of the assumptions made in the
computation of the other metrics. In the following we give
mathematical definitions of the first four measures and
conceptually describe the remaining two. Given two PPs,
p1 and p», for genes G; and G,, where p; (i) is 1 if organ-
ism i in the reference list contains a homolog of gene Gy
and 0 otherwise, define

Table 1 Genome context methods implemented in this paper

Method Name Description
(Coverage)
Phylogenetic pp-mutual- Similarity between the phylogenetic profiles (PPs) of two genes across a list of reference genomes using the
Profiles (Full) info mutual information between the two PPs as similarity measure.
pp-pearson As above, using the Pearson correlation as measure.
pp-jaccard As above, using the Jaccard coefficient as measure.
pp-pval As above, using the p-value of the observed PPs given by the hyper-geometric distribution that assumes that
the probability of a homolog of gene G; appearing in genome i is independent and identical to the
probability of a homolog of gene G, appearing in genome j, for all genes and all genomes.
pp-wpval Same as pp-pval but relaxing the assumption that the probability of a homolog of a target gene appearing in
genome | is the same for all i.
pp-wpval- Similar to pp-wpval but using a heuristic to compensate for the assumption of independence of the genomes.
with-runs
Gene Neighbor gn-InX Measure of the relative distance between homologs of two genes in a list of reference genomes. The measure
(Full) is given by the negative logarithm of the product of the relative distances between genes across all genomes
that contain homologs for both genes.
gn-pval P-value measure for the observed value of gn-InX.
gn-norm-InX  Normalized version of gn-InX where its value is divided by the total number of genomes found to contain
both homologs.
Gene Fusion of P-value for the observed number of times two genes are found fused into a single gene in the reference
(Restricted) genomes.
Gene Cluster gc Relative distance in bases between two genes that are adjacent and coded in the same strand in the target
(Restricted) genome.

The short name used in the rest of the paper to refer to each method is listed in the second column. The methods are explained in detail in Section 2.
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where jacc, pval, pear, and muti are short for pp-
jaccard, pp-pval, pp-pearson, and pp-mutual-info respec-

tively, and p, = ZMI (i) / M . These PP distance mea-
i=

sures assume more or less explicitly that the event
“genome i contains a homolog of gene G;” is indepen-
dent and identically distributed to the event “genome j
contains a homolog of gene G,“ for any i and j and any
pair of genes G; and G,”. That is, they assume that the
presence of a certain gene in a certain genome does not
influence the presence of any other gene in that genome
or in any other genome. This is, of course, not the case
when phylogenetically related genomes are present in
the reference list, since the existence of a gene in one of
the genomes would strongly suggest its presence in a
related genome.

The weighted p-value (which we will call pp-wpval),
relaxes the assumption of the probabilities for “genome
i contains gene G”I; being identical across all genomes,
preserving the assumption of independence. In this
method, a p-value is calculated assuming that the prob-
ability that a gene G from the target genome is con-
tained in genome i is given by the fraction of all the
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genes in the target genome that are contained in gen-
ome i. There is no closed form expression for the
p-value computed under these relaxed assumptions. See
[24] for a recursive method to estimate this probability.

In [19], Cokus et al. propose a heuristic to compensate
for the effect of making the independence assumption.
A tree is created by hierarchically clustering the organ-
ism profiles. For this, the Jaccard distance is used, since
it is a real distance metric, satisfying the triangle
inequality. This tree is then swiveled by rotating the left
and right branches under each node such that the sum
of the distances between neighboring leaves is mini-
mized. By reading the tree leaves in order, a sorted list
of organisms is obtained. Cokus et al. then assume that,
if PP vectors are obtained from such a list, a product PP
vector that contains few runs of consecutive 1 s can be
considered as less evidence for functional relatedness
than a vector that contains many runs of consecutive
1 s, since consecutive 1 s correspond to phylogenetically
related organisms. A heuristic measure designed to cap-
ture this intuition is proposed as the ratio between the
weighted hypergeometric p-value and a p-value for the
observed number of runs in the product PP. We call
this measure the pp-wpval-with-runs. Cokus et al.
compare their heuristic method with a highly sophisti-
cated method proposed earlier with the same goal of
relaxing the independence assumption [25]. They find
that their method outperforms the more complex and
much more computationally expensive method in a ran-
dom subset of samples used for comparison.

2.2 Gene Neighbor Method

The second set of genome context methods studied in
this paper incorporates information that the PP methods
ignore: the distance between the homologs of two genes
on the reference genomes for which both genes have
homologs. We implement the gene neighbor method as
introduced in [4]. The assumption behind this method
is that genes that are located near each other across a
set of reference genomes are likely to be functionally
related [26].

Consider two genes from the target genome, G; and
G,. Let d; be the distance between the homologs of
these two genes in a genome i with N; genes. The dis-
tance is computed as the number of genes that appear
between the two homologs plus 1. Hence, adjacent
genes have a distance of 1. When the two genes G; and
G, have the same homolog in genome i, the distance is
defined to be 1 instead of 0. This is done to avoid hav-
ing x in Equation (2) below be zero whenever two genes
have the same homolog in some genome, which would
force us to effectively ignore the distances observed in
all other genomes. If the genes are independent, then,
for a circular chromosome, the distance (measured in
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units of genes) between the genes seen as a random
variable, D; , is uniformly distributed between 1 and
(N; - 1)/2 (ignoring boundary details about whether N;
is even or odd and the few cases in which the two
homologs are the same gene). Then, the probability that
the distance between the two genes is smaller than the
observed distance, d; , is given by

2d;
N;-1 .

p; =Pr(D; <d;) = (1)

We have defined p; as the cumulative distribution
function of the random variable D, , but it can also be
seen as a random variable P; = 2D; /(N; - 1) measuring
the relative distance between the two genes. As a ran-
dom variable, P; has a uniform distribution between 0
and 1.

Given pq reference genomes in which both genes, G;
and G,, have homologous sequences, and assuming
independence across genomes, we can compute the
joint probability that the distances are smaller than the
observed distances, as

M
x:Pr(DlSdl,...,DMSdM):Hpi. )

i=1
Our simplest score for the gene neighbor family of

methods is given by —]og(x) = _zgl log(p;) - We call

this score gn-InX. We also use a normalized version of
this score given by log(x)/ p4 that we call gn-norm-InX.

As in the case of p;, x is a probability but it can also
be seen as a random variable, X. Bowers et al. [4] derive
a p-value for this random variable. Since P; has a uni-
form distribution between 0 and 1, - log(P;) has an
exponential distribution with rate parameter 1 and,

hence, —Jog(X)= Zfl —log(P;) is the sum of yy inde-

pendent random variables having exponential distribu-
tions, and it is distributed as Gamma with scale
parameter equal to 1 and shape parameter equal to pf .
Applying the Gamma cumulative distribution function,
we get

P(X £ x) = P(-log(X) = —log(x))

M-1
=) e ClHON(~ log(x))* / k!
k=0 (3)
M-1
=x Y (-log(x))"/k!
k=0
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This formula gives the probability that the product X
of the relative distances between the homologous
sequences of G; and G, across all genomes where both
genes have homologous sequences is smaller than the
observed value, assuming that the positions of these
sequences are independent of each other and that the
distances are independent across genomes. We call this
measure, P(X < x), the gene neighbor p-value gn-pval.
Small values of this probability suggest that one or both
of these assumptions do not hold. Since what we want
to quantify with this measure is the degree of depen-
dence between the locations of the genes, we should
choose the reference genomes such that the second part
of the assumption holds as much as possible, ensuring
that small values of this probability can only be due to
the dependence we wish to measure. If highly related
genomes are present in the reference list, the second
assumption is violated since it is likely that the distances
between homologs will be similar across all related gen-
omes and not independent as it is assumed in the com-
putation of the p-value. As we will see, this intuition is
supported by our results, where we find that having a
list of reference genomes that does not contain highly
related organisms is beneficial to the performance of
this method.

2.3 Gene Cluster Method

Genes that are located on the same operon are more
likely to be functionally related than genes that are not.
The gene cluster method [4] computes the distance in
bases between two adjacent genes that are transcribed
in the same direction. This distance has been found to
be a good predictor of whether the genes are in the
same operon [27]. Instead of using the p-value expres-
sion introduced in [4], we simply use the raw distance
in bases between the genes multiplied by a factor m that
aims to normalize this distance to make it genome inde-
pendent and is given by the number of genes in the
genome divided by the total number of intergenic bases
in the genome. Since the expression in [4] is monotoni-
cally increasing with this normalized distance, both
scores lead to identical performance. In plots and
figures, we call this measure gc.

This method, in contrast to the two previous methods,
has restricted coverage. That is, it does not generate a
score for every possible pair of genes. In fact, if the target
genome contains N genes, from the N” possible gene
pairs, at most N will have a gene cluster score. For the
purpose of comparing performance across methods, we
assign a plus-infinity score to all gene pairs that do not
get a valid gene cluster method. That is, genes that are
not adjacent and transcribed in the same direction are
considered to be infinitely distant under this method.
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2.4 Gene Fusion

The gene fusion method [2-4] is based on the assump-
tion that two genes in a target genome that have been
fused together in some reference genome, have a high
likelihood of being functionally related. Given two genes
G; and G, from the target genome, we search the refer-
ence genomes for genes Gy that appear to be formed by
the fusion of G; and G,. These genes have been called
Rosetta Stones in the literature [2]. To declare a gene Gp
in the reference genomes to be a Rosetta Stone, we
require that Q% of the G; and G, sequences is found in
Gz and that the BLAST E-values for both matches are
at most E. Results for different values of Q and E are
presented in this paper. As a score, instead of simply
assigning a 1 when a Rosetta Stone is found and 0
otherwise, we use the p-value given by the hypergeo-
metric distribution as described in [4]. This score lowers
the rank of cases in which Rosetta Stones could have
been found by chance due to the query genes, G; and
G,, being composed of common domains that generate
many matches in the reference genomes.

As in the case of the gene cluster method, the gene
fusion method has restricted coverage, since it generates
scores only for those gene pairs for which a Rosetta
Stone has been found in the reference genomes. As for
the gene cluster method, when no score is generated by
this method for a certain gene pair, an extreme value is
assigned, in this case, a p-value of 1.

3 Score Normalization

To find which genes in a certain target genome are
functionally related, we can compute the genome con-
text scores for all possible gene pairs in the genome. For
each genome context method, we can then sort the
obtained scores and choose the top N scores as positive
examples. That is, a threshold is chosen and a decision
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is made that all pairs for which the score is larger than
that threshold are functionally related genes.

The problem with this procedure is that the scores
across different genes might not be comparable with
each other. For example, a pair of genes that both have
homologous sequences in most organisms in the refer-
ence organism list will be likely to have a small value of
x (Equation 2), simply because many numbers smaller
than 1 would be multiplied to obtain x. This introduces
a bias that makes the gn-InX scores from different genes
incomparable. The threshold chosen to make the final
decision will then have to accommodate the biases from
the different genes, leading to suboptimal performance.
The left plot in Figure 1 shows the distributions of
negative and positive samples for the gn-InX scores,
dividing the samples into those where both genes are
frequent and where both genes are infrequent. Fre-
quency of a gene is measured as the proportion of
organisms in which the gene has a homologous
sequence. We can see that samples corresponding to
two infrequent genes have a very different distribution
of scores than those samples corresponding to two fre-
quent genes. As a consequence, choosing a single
threshold to classify samples into positive and negative
for both types of samples will lead to clearly suboptimal
results. This problem can be seen as an issue of the par-
ticular score, and measures can be taken to mitigate
the bias. The gn-norm-InX is, in fact, designed as a
bias-compensated version of gn-InX, since it is normal-
ized by the number of common organisms. Neverthe-
less, as we will see in the results, data-driven techniques
for normalizing the scores can lead to better results
than trying to guess the source of the bias and compen-
sating for it using some heuristic.

The problem of score bias occurs in several types of
data. Within bioinformatics, the most common example
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Figure 1 Distribution of the gn-InX score (see Table 1) for samples where both genes are frequent and samples where both genes are
infrequent, for each sample class. Dashed lines correspond to positive samples (gene pairs where the products of the two genes belong to
the same metabolic or signaling pathway or protein complex), solid lines correspond to negative samples (all other pairs). Note that the curves
are distributions, not histograms. Hence, the large unbalance between positive and negative samples cannot be seen here. (Left) Distributions
before normalization. (Right) Distributions after znorm composed normalization.
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of data that suffers from this problem is microarray
data. Several types of normalization methods have been
proposed in the literature to compensate for the bias in
this type of data. In this paper we extend two of these
normalization methods, which have been shown to per-
form relatively well compared to other methods [9,28],
to the genome context scores. The idea behind both
methods is to force the distribution of scores to be
equal across all elements. In the case of the microarray
data, the elements are the individual arrays. In our case,
the elements are genes within the target genome.

We can arrange the genome context scores for a cer-
tain target genome in a matrix M. Each entry in this
matrix is the score value for a pair of genes. Since all
genome context methods are symmetric on the two
genes in the pair, M will be a symmetric matrix. We
can now apply a transformation to each row to equalize
the distribution of all rows. We explore two different
transforms: z-normalization (znorm) and rank-normali-
zation (rnorm), also called quantile normalization [28].

Znorm computes the mean y; and standard deviation
o; over each row, and normalizes each score M;; using
the expression

pgorm = Mi—HE. @
o

After this transformation is applied, each row will
have zero mean and unit standard deviation.

A more sophisticated transformation was proposed
for microarray data in [9]. In this case, the empirical
distribution of the rows is forced to coincide with a
target mean distribution. This target distribution is
obtained by sorting the elements of each row, creating
a new matrix M, , and then finding the mean over
each column. The original scores are then transformed
by mapping them to the mean value corresponding to
the rank of the score within its row. We also explored
the use of target distributions given by the median
over each column of M, and by the rank divided by
the total number of columns. This last target distribu-
tion corresponds to mapping each row to a uniform
distribution. Neither of these two alternatives gave a
consistent gain over using the mean distribution
and, hence, results are not shown for these cases. For
both normalization methods, the resulting normalized
matrix is not symmetric. Using such a matrix would
result in a different score for gene pair (G;,G,) than
for (G,,G1). We solve this problem by creating a new
matrix formed by the average of the normalized matrix
and its transpose.

Finally, both procedures described above effectively
compensate for the bias introduced by one of the genes
in the pair, ignoring the effect from the other gene.
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After averaging the resulting matrix with its transpose,
the effect of both genes is taken into account in the
final score, although independently from each other.
One simple approach to jointly compensate for the
effect of both genes is to flip the matrix obtained by
normalizing over the rows along its diagonal and repeat
the normalization procedure. This compensates for the
bias due to the other gene in the pair, after the effect of
the first gene has been considered. The resulting matrix
is again averaged with its transpose to convert it into a
symmetric matrix. We call this procedure a composed
normalization, and denote it by adding-comp to the
name of the basic normalization method.

The right plot in Figure 1 shows the distribution of
the same scores as in the left plot after znorm com-
posed normalization was applied to the scores. We can
see that scores for frequent and infrequent genes are
now much better aligned. A single threshold can now
be used to classify into positive and negative samples for
both groups of samples.

4 Results and Discussion

This section presents a large number of experimental
results on the genome context methods described in
previous sections. We explore the space of parameters
of the different methods, including the reference list of
organisms and the normalization methods. We also pre-
sent results on different target organisms and on the
combination of individual methods to generate a single
unified genome context score.

Results are presented on 10 target organisms chosen
from tier 1 and tier 2 of BioCyc version 13.1 [29-32].
These organisms have gone through a relatively large
amount of curation through the years and, hence, we
believe that we can determine a gold standard of func-
tional relatedness for these genomes with reasonable
accuracy.

The reference genomes used to compute the genome
context methods are obtained from BioCyc [29,30]
version 13.1. From the 481 organisms available in this
version of BioCyc, some organisms for which the gene
names in CMR could not be reliably mapped to gene
names used in BioCyc were discarded. The full list of
reference organisms used in this paper contains 460
organisms. This list is available at http://brg.ai.sri.com/
functional-relatedness/.

4.1 Gold Standard of Functional Relatedness

Two proteins might be functionally related for a variety
of reasons, some of which are ill defined. Proteins might
bind with each other in a transient manner or in a
stable manner (forming a protein complex). Proteins
might take part in the same metabolic or signaling path-
way. Proteins could also be considered functionally
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related if, for example, they are expressed in the cell
under the same environmental conditions, and are
involved in the cell’s response to those conditions.

Ideally, a gold standard for testing genome context
methods should label pairs of proteins that are func-
tionally related for any reason as positive samples, and
everything else as negative samples. Unfortunately,
bioinformatics databases do not normally contain
manually curated information about all possible types of
functional relationships between proteins and, hence,
positive samples for genome context methods are
usually created using a subset of the possible cases. In
many papers, pairs of proteins belonging to the same
metabolic pathway are taken to be the positive samples
[4,10,12,14]. Note that, in this case, the gold standard
will be affected by the way a pathway is defined. In
[33], Green and Karp show that a pair of genes ran-
domly selected from a BioCyc pathway [30] is more
likely to be related by a genome context method than is
a pair of genes randomly selected from a KEGG path-
way [34]. Other databases for testing genome context
methods include as positive samples proteins that
belong to the same protein complex [7,12,35], or that
were found to interact in some protein-protein interac-
tion database [12].

In this work, samples are given by pairs of genes
instead of pairs of proteins. Since for bacterial genomes
the correspondence is mostly one-to-one, this choice
has little effect in the gold standard.

We label a pair of genes as a positive sample if the
products of the two genes catalyze reactions in the same
metabolic pathway, belong to the same protein complex,
or take part in the same signaling pathway. With this
definition we are including all positive cases available
from manual curation in the BioCyc databases (EcoCyc
version 13.1 contains 922 protein complexes and 300
pathways curated from the literature. The BioCyc tier 2
databases also contain curated complexes and pathways,
some of which were curated from the literature, others
of which were inferred by curators). This gold standard
fails to label as positive samples pairs of genes whose
products bind with each other in a transient way, and,
perhaps, other less well-defined cases of functional
relatedness.

A simple approach to obtain negative samples for the
gold standard would be to take all possible gene pairs in
the target genome, find the positive samples from the
information available in the database and label all other
pairs as negative samples. This approach would work
well if all genes in the genome had been curated with
their function (or functions). Nevertheless, as discussed
above, to this date, no genome has been fully annotated
with functions for all its genes and, hence, a gold stan-
dard obtained by the procedure above would contain
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some proportion of negative samples which are actual
positive samples yet to be discovered or annotated. To
avoid this problem, Hu et al. [15] include as negative
samples only gene pairs whose products belong to dif-
ferent pathways that do not overlap [15]. In this paper,
we choose a similar, though slightly more inclusive,
approach. We define the gold standard to contain only
pairs of genes for which some knowledge of their func-
tion is available. The resulting set includes all possible
positive samples within the full set of gene pairs from a
genome, but discards the portion of the negative exam-
ples that is more likely to result on labelling errors.
A gene is included in the list of known-function genes if
it satisfies any of the following conditions: (1) the gene
encodes an enzyme that catalyzes a reaction present in
our database, (2) the gene has been annotated with a
leaf node from the GO molecular function ontology, (3)
the gene encodes a protein that is a substrate in a reac-
tion, or (4) the gene encodes a protein that is a sigma
factor or a transcription factor of known function. We
call this set of samples, including both positive and
negative samples, the known-function set.

For the experiments focused on parameter tuning, we
further reduce the number of pairs considered with
respect to the known-function set by choosing genes
that are labeled as enzymes that catalyze small-molecule
reactions in the annotated genome and, hence, are likely
to be members of metabolic pathways. We will call
these genes sm-enzyme genes, for short. This reduces
the number of total pairs for Escherichia coli K-12 by a
factor of 10 and allows us to run the large number of
experiments we present here. Furthermore, the gold
standard for the subset of samples involving only genes
that are labeled as enzymes in BioCyc is likely to con-
tain relatively fewer errors than the known-function set,
since genes that are known to produce enzymes have
usually undergone more study than those that are not,
giving us somewhat higher confidence on the gold stan-
dard. We call these samples the sm-enzyme set. Results
in Section 4.7 show that the most important conclusions
obtained on the sm-enzyme set do not vary when the
known-function set of genes is considered. Combination
results in Section 4.8 are presented on both sets of
samples.

Table 2 shows the list of target organisms considered
with the total number of genes, the number of genes
used in the known-function set and the number used in
the sm-enzyme set, the total number of samples
obtained by pairing up those sm-enzyme genes (given
by (e - 1)e/2, if e is the number of sm-enzyme genes),
the proportion of positive samples within those and the
fraction of genes in the genome that have homologous
sequences in Escherichia coli K-12 (ECK12). This last
measure gives an idea of the similarity between the
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Table 2 List of target organisms used in the experiments
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short name full name #gen. #w/fn. #enz. #samp. %pos weight
ECK12 Escherichia coli K-12 substr. MG1655 4496 3185 1000 495510 0.621 1.000
EC157 Escherichia coli O157:H7 EDL933 5475 1032 706 248865 1.327 0.884
ECCFT Escherichia coli CFT073 5379 721 577 166176 0.968 0.856
SHIG Shigella flexneri 2a str. 2457T 4207 886 597 177310 1.020 0.795
VCHO Vibrio cholerae O1 biovar El Tor str. N16961 3949 863 583 169653 1.244 0.528
CAULO Caulobacter crescentus CB15 3818 919 615 188805 0.964 0.362
MTBC Mycobacterium tuberculosis CDC1551 4235 760 569 161596 1.157 0.238
MTBR Mycobacterium tuberculosis H37Rv 3968 811 578 166753 1.409 0.238
FRANT Francisella tularensis tularensis SCHU $4 1671 491 317 50086 1.512 0.230
HPY Helicobacter pylori 26695 1609 415 228 25878 1.946 0.155

The columns correspond to the short and full names for the organism, the total number of genes in the genome, the number of genes with some functional
annotation, the number of genes that encode enzymes that catalyze small-molecule reactions, the total number of pairs of such genes (which corresponds to the
number of samples used to report results, except in Sections 4.7 and for some results in Section 4.8 where all known-function genes are paired to create samples
instead of just small-molecule enzymes), the proportion of positive samples among these samples, and the fraction of genes in the genome that have

homologous sequences in ECK12. Organisms are sorted by this last column.

corresponding organism and ECK12. The rows in this
table are sorted by this last column. Hence, organisms
closer to the top are more similar to ECK12 than those
closer to the bottom. The short names in the first col-
umn of this table will be used throughout the rest of the
paper to identify the organisms. The difference between
the known-function genes and the sm-enzyme genes is
much larger on ECK12 than in the other organisms.
This is a direct consequence of the large amount of
manual curation that has been done in this database.

The gold standard for all organisms in table 2 for the
sm-enzyme and the known-function sets are available
for download at http://brg.ai.sri.com/functional-related-
ness/.

4.2 Performance Measures

Genome context methods studied in this paper output
continuous numeric values that we call scores. Given the
output of a certain genome context method for gene
pairs in a target organism, a classification decision can
be made by choosing a threshold and deciding that any-
thing above that threshold corresponds to a positive
sample. Depending on the final goal for obtaining func-
tional relationship labels, one might want to choose a
conservative threshold that selects only very high confi-
dence positive samples, or a looser threshold that allows
for detection of a larger fraction of all positive samples.
In the following discussion, and in the rest of the paper,
we will assume that higher values of a score indicate
stronger evidence of functional relatedness. If the origi-
nal scores do not comply with this assumption (as in
the case of p-values where values closer to zero indicate
stronger evidence of functional relatedness), we simply
reverse their sign. Given a certain threshold, the number
of true positives (tp), false positives (fp), true negatives

(tn), and false negatives (fn) can be obtained. True posi-
tives and negatives are samples correctly labeled by the
system (that is, positive samples for which the score was
larger than the threshold or negative samples for which
the score was smaller than the threshold). False positives
and false negatives are samples for which the system
assigned the wrong label. Several measures of perfor-
mance based on these numbers can be computed. In
this work we will use sensitivity and specificity, which
are defined as tp/p and tn/n, where p is the total num-
ber of positive samples and n, the total number of nega-
tive samples.

Sensitivity and specificity can be computed only after
a threshold has been chosen, which implies having
made a decision about the cost incurred when commit-
ting each type of error. A more general way of evaluat-
ing a system, without focusing on a certain application
or sets of costs, and without making a decision about
the threshold we wish to use, is through ROC curves,
which show the sensitivity and specificity values at each
possible threshold along the range of the score. A
system S; that has higher specificity values than another
system S, for any sensitivity value can be declared better
than S,, independently of the application.

In this work, we will present ROC curves focused on
the region of high specificity. This is the only useful
region of the ROC curve for this task since, given the
highly unbalanced number of samples, where around
99% are negative, low specificity values would result in a
very large proportion of false positive samples. For
example, a specificity value of 90% would correspond, in
the case of ECK12, to 49,642 false positives for the sm-
enzyme set. At that level of specificity, the best genome
context method gives a sensitivity of around 48%, which
corresponds to approximately 1,400 true positives.
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Hence, at that operating point only around 3% of the
selected samples are true positives. Lower values of spe-
cificity make the situation even more extreme. This cri-
terion of reporting results on the top scoring pairs is
used in most genome context papers when showing the
cumulative accuracy in the top p% samples as sorted,
from largest to smallest, according to their score values.
In those cases, the largest value of p is chosen to be a
small percentage of the total number of gene pairs (up
to 25,000 samples are selected for E. coli in Figure 5 in
[4] and 10,000 in [19], out of around 10 million possible
pairs).

Apart from showing ROC curves, we will show curves
of sensitivity when the threshold is chosen such that the
top p% of the samples are labeled as positive, for differ-
ent (small) values of p. This allows us to compare many
methods at once in a single figure, which would not be
possible using ROC curves.

4.3 Results for Individual Genome Context Methods

We present results for each of the genome context
methods, comparing their performance for different
values of the relevant parameters for the method.
Results in this section are presented on the sm-enzyme
gold standard set for ECK12 (first line in Table 2). As
reference organisms we use the complete set of 460
organisms from BioCyc. For the two scores, pp-wpval
and pp-wpval-with-runs, that are computed using
iterative algorithms and suffer numerical underflow
problems when the reference list is too big in size (or
when the weights of the organisms involved are too
close to 0 or 1 [19]), we use a subset of 216 organisms
obtained by clustering (see Section 4.4) from the full
list.

4.3.1 Results for full-coverage methods

As explained in Section 2, the phylogenetic profile, gene
neighbor, and gene fusion methods all use homology
information for their computation. In this work, as is
generally done in implementations of genome context
methods, two genes are assumed to be homologous if the
sequence similarity E-value returned by BLAST is smaller
than a certain threshold. Thresholds from 107° [4] to 107
*[12,17] have been reported in the literature. In the addi-
tional file 1, we explore the performance of all genome
context methods for a range of E-value thresholds from
10° to 107 and find 10™* to be approximately optimal.
This is the value we use for the rest of the experiments
unless explicitly stated otherwise.

Several methods can be used to measure the distance
between two phylogenetic profiles, as discussed in
Section 2.1. Figure 2 shows (the upper-left corner of) the
ROC curves for the six different distance measures. We
see that, except for the Jaccard coefficient, all other
simple measures lead to similar performance. The most
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Figure 2 ROC curves on the sm-enzyme gold standard set for
ECK12 for the phylogenetic profile method using different
distance metrics and E = 10™. The stars and squares correspond
to the sensitivity and specificity obtained for each system when
choosing the top 1% and 5% samples. The full list of reference
genomes is used to generate all these scores except pp-wpval and
pp-wpval-with-runs, for which a smaller list of size 216 obtained by
clustering is used.

sophisticated measure, pp-wpval-with-runs gives a gain
over the simpler measures at the operating points consid-
ered here (this region is comparable to the region used to
present results in the original paper of Cokus et al. [19]),
although it is substantially worse than the others at lower
specificity points (not shown). The weighted p-value is
slightly better than the other simpler measures. Never-
theless, pp-wpval requires an expensive iterative algo-
rithm for its computation. It does not seem that the gain
in performance is worth the extra computation cost.

Figure 3 shows the ROC curves for the three different
gene neighbor scores for E = 10, and, for comparison,
the pp-wpval-with-runs scores from Figure 2. The gn
methods are clearly better than the pp methods over all
operating points of interest. The fact that gene neighbor
methods outperform the simpler methods based on
only the phylogenetic profiles was also observed in [4],
where the gn-pval measure was first introduced. Sun et
al. [12] found a different trend, but their comparison is
based on final decisions made by each method after
thresholds have been chosen. As a consequence, their
comparisons are confounded by the fact that methods
generate different numbers of positive decisions (with
differences of a factor of 20 between some of them).
Hence, we believe that their results are not indicative of
the relative performance of the methods since arbitrary
operating points are chosen for each of them, or forced
by the methods themselves, since their implementation
of some of the methods does not output scores but
hard decisions.
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Figure 3 ROC curves on the sm-enzyme gold standard set for
ECK12 for the gene neighbor methods and for the best
phylogenetic profile method from Figure 2, pp-wpval-with-
runs using E = 10™ See caption for Figure 2 for an explanation of
the stars and squares. The full list of reference genomes is used to
generate all gene neighbor scores.

4.3.2 Results for restricted coverage methods

Additional file 1 shows results when varying the two
tunable parameters in the gene fusion method (see
Section 2.4): the E-value threshold E, and the minimum
percent of overlap required between the query genes
and the matching gene, Q. We find that Q = 50 and E =
10™* give a good trade-off between coverage and perfor-
mance. We use these values for any gene fusion scores
in the rest of the paper. Figure 4 shows the ROC curves
for the gene cluster method, which has no tunable para-
meters, the gene fusion method with the parameters
indicated above, and the best scores from the gene
neighbor and the phylogenetic profile families. Note that
this figure shows a much smaller corner of the ROC
curve than Figures 2 and 3. We see that the gc method
achieves higher specificities than the best full-coverage
method (gn-pval), for sensitivities of up to about 8%.
Higher sensitivities cannot be achieved by the gc
method because of its restricted coverage nature.

4.4 Results Varying the Reference Organism List

This set of experiments explores the effect of the choice
of reference organisms used to compute the genome
context scores. As in Section 4.3, we present results on
the sm-enzyme gold standard set for ECK12. The list of
reference organisms is then varied by subsetting the
complete list of 460 organisms. This study is motivated
by the fact that, as we commented in Section 2, most
genome context scores rely on an assumption of inde-
pendence of the genomes in the reference list. When
many closely related genomes are present in the list,
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Figure 4 ROC curves on the sm-enzyme gold standard set for
ECK12 for the gene cluster method (gc), the gene fusion
method (gf), the best gene neighbor method (gn-pval) and the
best phylogenetic profile method (pp-wpval-with-runs). £ = 10
and Q = 50 are used. The full list of reference genomes is used to
generate all scores except pp-wpval-with-runs, for which a smaller
list of size 216 obtained by clustering is used.

this assumption is violated, potentially resulting in
degradation of performance. To eliminate closely related
organisms from the reference list, a clustering procedure
is used. Organisms are grouped into closely related clus-
ters and a representative organism is chosen for each
cluster, discarding all other organisms in the cluster.
The clusters are obtained with the same algorithm used
to compute the pp-wpval-with-runs scores: hierarchical
clustering using the Jaccard distance on the organism
phylogenetic profiles as similarity measure between
organisms. Hierarchical clustering creates a tree where
the root corresponds to a single cluster containing all
organisms, the nodes correspond to smaller and smaller
clusters and the leaves correspond to individual organ-
isms. By pruning this tree at different levels, different
numbers of clusters can be obtained. A principled way
to perform the pruning is to enforce a certain maximum
within-cluster distortion. A maximum distortion of 0
would only be satisfied by the leaves. As the maximum
distortion is increased, the pruning occurs higher up in
the tree and larger and fewer clusters are selected. For
each cluster, the representative organism is chosen as
the one that has the smallest average distance to all the
others in the cluster. The resulting lists of reference
organisms are available for download at http://brg.ai.sri.
com/functional-relatedness/.

The clustering procedure not only reduces the bias of
the reference list toward certain regions of the phylo-
geny (the desired effect), but also reduces its size (a
potentially undesirable effect). To assess the effect that
the size of the list has when no special selection of
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organisms is performed, we also present results when
the smaller lists are obtained by random sampling of the
original list. Three different random lists are run for
each method. The results for random lists presented in
the figures correspond to the performance averaged
over these three lists.

Figure 5 shows the sensitivity within the top 1% and 5%
samples as sorted by each genome context method, vary-
ing the list of organisms used for computing these scores
and the method used to obtain the subsets. The genome
context scores shown in this figure are a selected subset of
those we implemented, including all three gene neighbor
methods and two phylogenetic profile methods. From the
pp methods, we keep the best method on the operating
points of interest, pp-wpval-with-runs, and one of the
simpler ones, pp-mutual-info. For the pp-wpval-with-runs
score we report results only for smaller list sizes since, as
mentioned earlier, the computational and algorithmic
issues become much more complex when the size of the
list becomes large. As described before, the size of the lists
(x-axis in the figure) is varied by changing a threshold in
the clustering algorithm that determines the maximum
within-cluster distance. The size of the random lists is
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fixed to coincide with the sizes of the lists obtained by
clustering.

We can see that, for small lists, the random method
results in better performance. We believe that this is the
case because when few organisms are chosen with the
clustering method, a large proportion of the chosen
organisms do not have enough homologous sequences
of the target organism’s genes. For example, when 51
organisms are chosen by clustering, only 17 of them
have homologous sequences for more than 20% of the
ECK12 genes. On the other hand, when 51 organisms
are chosen at random, 38 of them have homologous
sequences for more than 20% of the ECK12 genes.

The most interesting conclusion from Figure 5 is
that, if the number of clusters is chosen correctly, clus-
tering gives an advantage over using the original list of
organisms. In particular, the best genome context
method, gn-pval, improves around 7% on the top 5%
samples when choosing the list of organisms by clus-
tering relative to the result obtained using the full list
of organisms. This same tendency was reported in [17]
for the phylogenetic profile method when using a
mutual information distance metric. We believe the
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Figure 5 Sensitivity within the top 1% samples (left) and top 5% samples (right) on the sm-enzyme gold standard set for ECK12 as
sorted by each genome context method, varying the list of organisms used for computing these scores. Parameter £ is set to 10™. Solid
lines correspond to subsets of organisms chosen by the clustering method, and dashed lines correspond to a random selection of organism
subsets. The full reference list corresponds to the right most point in each figure (number of organisms equal to 460).
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reason for the gain obtained from the smart selection
of organisms is that the computation of the genome
context scores assumes independence of the organisms
in the list. This, of course, is far from true in the full
list of reference organisms, which contains several
large groups of related genomes. For example, the list
contains 9 strains of Escherichia coli and 11 of Strepto-
coccus pyogenes. After clustering, on the other hand,
fewer correlated organisms appear in the list and the
assumption of independence is satisfied more closely.
For example, lists of size 279 or smaller contain a sin-
gle strain of Escherichia coli and a single strain of
Streptococcus pyogenes.

The fact that going beyond 300 organisms seems to be
unnecessary for most genome context methods is a
direct consequence of the size and composition of our
original list of 460 organisms. If a list of M organisms
widely spread across the phylogenetic tree was available,
then perhaps the optimal list size would be closer to M.

The gn-InX score seems to be an exception to most of
the observations made above. As mentioned earlier, this
score is highly affected by bias across different genes. As
we will see, after normalization, this score behaves very
similar to gn-pval.

The best sensitivity in these curves is around 32% for
the top 1% samples. That is, when choosing the top 1%
samples, we find around 32% of all the functionally
related gene pairs in the database. For ECK12, a score
that has 32% sensitivity corresponds to a proportion of
positive samples among the top 1% samples of around
24%. That is, around 76% of the selected samples are
errors. This apparently low accuracy is due to the enor-
mous imbalance between the two classes of samples. As
Table 2 shows, less than 0.62% of the gene pairs in
ECK12 are positive samples. A system that randomly
labeled a sample as positive would then have 0.62% accu-
racy. A 24% accuracy is then a 38-fold improvement
with respect to making a random decision about the
functional relationship of the genes when choosing 1% of
the total number of gene pairs. Results for the two
restricted-coverage scores, gf and gc, are not presented
here. For gc, the reference organisms list is not used and,
hence, its performance does not vary with the chosen list.
For gf, we found that the larger lists of size above 300
lead to very similar performance and coverage. Smaller
lists do not degrade the performance, but restrict the
coverage. Overall, the list of size 343 is approximately
optimal across methods from the four families. This is
the list size we use for the rest of the experiments
described in this paper unless explicitly stated otherwise.

4.5 Normalization Results
Figure 6 shows the results for four genome context
scores for different kinds of normalization methods when
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using the organism list of size 343 obtained by clustering.
Conclusions about normalization performance do not
vary widely across lists. Results for all lists will be pre-
sented later in this section for a selected normalization
procedure. Normalization results are shown only for the
full coverage genome context methods. For the other
methods, normalization can be performed by ignoring
the entries in the matrix corresponding to gene pairs for
which no valid score was produced by the method when
estimating the statistics for the row. Nevertheless, for
these scores normalization does not lead to improve-
ments, and it is, arguably, not reasonable to expect so
since only a small percentage of the pairs involving a
certain gene generate a valid score with which to estimate
the statistics.

We note that, even though results are presented on a
subset of all possible gene pairs from the target genome
(in this case corresponding to sm-enzymes), the normal-
ization is performed on the full matrix of scores where
the columns and rows are all the genes in the target
genome. This is the only fair way to perform the nor-
malization since it does not assume any knowledge
about the function of the genes. Furthermore, fortu-
nately, we have observed that using the full matrix of
scores to perform normalization is, in fact, better than
using the matrix of scores corresponding to the subset
of pairs being used to report results.

We see that large improvements are obtained from
normalization from two of the four genome context
scores shown in Figure 6, gn-InX and pp-mutual-info,
and more modest improvements for a third one, gn-
norm-InX. After normalization, gn-InX outperforms gn-
norm-InX, which was substantially better before normal-
ization. These results demonstrate the advantage of
compensating for the bias in a data-driven manner
instead of through the use of heuristics. Results for the
other pp methods are similar to those for pp-mutual-
info, showing large improvements after normalization.
The exception to this is pp-wpval-with-runs, for which
smaller gains from normalization are observed com-
pared to the other PP methods.

We believe the lack of gain from normalization on the
gn-pval method is due to a combination of two effects.
First, gn-pval is intrinsically more immune to gene-depen-
dent biases than gn-InX given that it is already normalized
by definition for one of the biggest sources of bias in gn-
InX: the number of organisms that contain both genes.
This same reason also explains why gn-norm-InX shows
little gain from normalization. Second, gn-pval has a very
different distribution from gn-InX, having very marked
peaks at 0 and 1, probably making the estimation of a nor-
malization transformation less robust.

The composed versions of the two normalization
methods lead to modest gains with respect to the
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Figure 6 ROC curves on the sm-enzyme gold standard set for ECK12 for four genome context methods using different types of
normalization procedures: znorm, rnorm and their composed variants, and the original unnormalized scores (nonorm). Parameter £ =
10 and a reference list of size 343 obtained by clustering are used to generate these scores.

simpler versions. Since the gains are small and, as we
discuss later, these gains do not hold for the known-
function gold standard set, we choose to use the non-
composed version of znorm for the rest of the paper.
We choose znorm over rnorm for its simplicity, since
both lead to very similar performance.

Figure 7 shows the sensitivity for the top 1% and 5%
samples for the unnormalized scores and for the znormed
scores for reference lists of different sizes with the organ-
isms chosen by clustering. Normalization results are
shown only for the three scores for which it gives a signifi-
cant gain to avoid clutter. For these methods normaliza-
tion helps across all lists. After normalization, gn-InX
becomes comparable to gn-pval (unnormalized). From the
pp methods, pp-mutual-info greatly benefits from normal-
ization, resulting in better performing scores than pp-
wpval-with-runs, which for the top 1% samples was
substantially better before normalization.

Finally, Figure 8 shows the ROC curves for selected
genome context methods for the list size of 343. We
can see that, as we already observed in Figure 7, gn-pval
and gn-InX.znorm are almost indistinguishable at the
operating points of interest. Clearly, even after normali-
zation, pp scores are still substantially worse than gn

scores. As we have already seen in Figure 4, gene fusion
is by far the worst of all methods. Overall, the ranking
of the different methods agrees with the findings in Fig-
ure 5 in [4].

4.6 Results Varying the Target Organism

Figure 9 shows the results for the different target organ-
isms on the sm-enzyme set for three genome context
scores (chosen among the full-coverage scores for being
the best in their category either before or after normali-
zation) when using the organism list of size 343
obtained by clustering. Solid lines show performance of
the original scores, and dashed lines show performance
of the znorm scores for the system of the corresponding
color. These lines are shown only for methods where
normalization gives a gain in performance for ECK12, to
reduce clutter. Organisms are sorted as in Table 2. We
can see that the ranking of performance of genome con-
text scores is mostly independent of the target organism,
with gn-pval and gn-InX.znorm performing mostly iden-
tically to each other and outperforming all other meth-
ods across all organisms, except for some cases where
the phylogenetic profile methods shows slightly better
performance. On all 10 organisms znorm gives gains in
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either the top 1% or 5% samples over nonorm for the
pp-mutual-info score. For the gn-InX scores, znorm
gives gains from 15% to 40% in sensitivity for the top
1% samples, except for HPY, for which only a small gain
is observed.

The restricted coverage scores, gf and gc, generate
valid scores for fewer than 1% of gene pairs. The cov-
erage varies across organisms from 0.07% to 0.23% for
the gc method and from 0.20% to 0.88% for the gf
method. Figure 10 shows the sensitivity within the top
0.2% and 0.07% samples for these two scores and for
the gn-pval scores for comparison. Note that, naturally,
in this figure, the y-axis corresponds to much lower
sensitivity values than in Figure 9, since we are select-
ing much fewer samples. The general observation from
these plots is that the gf method is clearly worse than
the gn-pval method for all organisms. The gc method,
on the other hand, slightly outperforms the gn-pval
method for some organisms. In both Figures 9 and 10,
we observe a large variation in the absolute value of
the sensitivity across organisms for each genome con-
text method. This behavior might be due to actual
inherent differences between the organisms, but it
might also be due to varying degrees of curation across

them, which makes the gold standard for each organ-
ism more or less reliable.

4.7 Results Including All Known-Function Genes

All results in the earlier sections were obtained on a
subset of all possible gene pairs in the target genomes.
The subset corresponds to pairs of genes where both
genes are labeled as enzymes that catalyze small-mole-
cule reactions. This was done mainly for computational
reasons, to allow for faster execution of the large num-
ber of experiments we ran. Furthermore, as mentioned
before, we believe that the gold standard for the sm-
enzyme subset is likely to be more accurate than for
other sets of genes. In this section, we show a subset of
results when testing on a larger set of pairs including all
genes of known function for comparison. Both gold
standard sets are described in detail in Section 4.1.

For ECK12, the sm-enzyme gold standard set contains
10 times fewer samples than the known-function set.
This difference is mainly due to negative samples. While
the sm-enzyme set contains around half a million sam-
ples, of which 3056 are positive, the known-function set
contains 5 million samples with 6330 of them being
positive. Hence, the ratio of positive-to-negative samples
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Figure 8 ROC curves on the sm-enzyme gold standard set for
ECK12 for selected genome context methods: the best two
gene neighbor methods, gn-pval and gn-InX.znorm, and its
unnormalized version gn-InX, the best phylogenetic profile
method after normalization, pp-mutual-info.znorm, and its
unnormalized version, pp-mutual-info, the gene-fusion
method, gf, and the gene cluster method, gc. Normalized
version are shown in dashed lines with the same color as the
corresponding unnormalized method. Parameters £ = 10* and Q =
50 and a reference list of size 343 obtained by clustering are used
to generate these scores.

is reduced by 5 times in the known-function set. The
positive samples in the known-function set that are not
found in the sm-enzyme set correspond mainly to pro-
tein complexes. In addition, around 300 of those extra
positive samples correspond to pairs of genes whose
products are found in macro-molecule reactions and,
hence, were not considered in the sm-enzyme set. The
consequence of the large difference in the number of
negative samples is that, at the same level of specificity,
the known-function set contains 10 times more false
positives than the sm-enzyme set. Here, we present
results in a corner of the ROC curve, corresponding, as
we did for the enzyme subset, to choosing around
25,000 samples (as in [4]). This corresponds, for this set
of samples, to a minimum specificity of 99.5%.

Figure 11 shows that the qualitative conclusions
obtained from the sm-enzyme set are still valid for the
known-function set of samples, although the actual
details of the relative performance change from one sub-
set to the other (compare with Figure 8). In summary:
(1) the gene neighbor methods are substantially better
than the phylogenetic profile methods; (2) the gene
fusion method is substantially worse than the others;
and (3) normalization results in a large improvement in
the performance of both gn-InX and pp-mutual-info.
The main qualitative difference between Figures 8 and
11 is that the gene cluster method is now not the best
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of all methods in the low-sensitivity operating points.
Furthermore, even though we do not present results
for this observation, we note that the composed normal-
ization methods which, for the sm-enzyme set were giv-
ing slightly better performance than the simple
methods, do not lead to improved performances in this
set. This behavior is likely due to a small set of a few
dozen genes that contain very few homologs in the
reference lists. The composed normalization procedures
do not work well for these genes, resulting in a large
number of false positives being generated for them. This
is an issue that we plan to address in future research.

4.8 Results from Combining Genome Context Methods
Individual genome context methods capture information
about the coevolution (or lack of coevolution) of a certain
pair of genes in different ways. Each family of methods
relies on a different assumption and is based on different
information found in the target and reference genomes
about the genes in the target genome. Hence, it is reason-
able to think that the combination of the individual gen-
ome context methods should lead to better performance
than any individual method by itself. Here, we explore
this issue by implementing combination procedures that
take the individual scores from the different genome con-
text methods and fuse them into a single, possibly better-
performing, score. We present two sets of combination
results using (1) a simple procedure similar to those used
in [4] and [14], and (2) decision trees trained using the
minimum-message-length criterion. While individual
genome context scores do not require the use of a data
set with gold standard labels for their generation, most
combination methods do require such data set to obtain
the optimal combination parameters. In this section we
explore the effect that training data has on the perfor-
mance of the combination for the two combiners under
study.

The Prolinks paper [4] and the STRING database [14]
use similar approaches for combination. In [4] individual
genome context scores are transformed into confidence
measures by mapping each score value to the percent of
positive samples that have a score larger than this value.
This measure is called cumulative accuracy in [4].
Cumulative accuracy is computed on the test data itself
and cannot be generalized to unseen scores since the
mapping is obtained on the particular score values
observed by sorting the test scores from larger to smal-
ler and recording the percent of positive samples from
top to bottom. The combination is then performed by
taking the maximum confidence measure for each sam-
ple across all genome context methods. The paper
shows that the combination is always better than the
best individual method although by a very small amount
(see Figures 2 and 5 in [4]). A variation of this method
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is used in the STRING database [14,16]. In this case, a
curve given by hill equations is fitted to the observed
cumulative accuracy on the test samples for each gen-
ome context method. The scores are then transformed
using this curve instead of directly using the cumulative
accuracy. After transformation, the scores are combined
using the function s = 1 - II;(1 - s;) where the s;s are
the transformed scores corresponding to the individual
methods [16]. As in the Prolinks case, [14] shows that
the combined score is always better than the individual
scores, although only slightly.

In this paper, we implement a method similar to that
used in the STRING database. The transformation is
given by fitting a curve to the cumulative accuracy
obtained on a training set, although instead of using hill
curves, we fit cubic smoothing splines [36] using the R
function smooth.spline [37]. This should not result in
any significant difference in conclusions since both
types of curves are able to adequately fit the kind of
samples obtained from genome context methods. Since
the transformation is given by a generic function that
can be learned on some data set and applied on another,
this method allows us to test the generalization power of
the combination approach, which could not be done

with the nonparametric transformation used in the Pro-
links paper [4]. After the individual scores are trans-
formed, the combination is performed using the product
function proposed in [16] and described above. We
found this function to work slightly better than the
maximum function used in Prolinks in most cases. In
the remainder, we call this combiner the confidence-pro-
duct combiner.

The IND software package was used to train the deci-
sion tree combiners [38,39]. We compute combination
scores using a bagging procedure [40]. The combined
score is computed as the average of the output generated
by 10 trees trained using different sets of samples. The
alternative sets are obtained using the standard proce-
dure of random sampling with replacement from the ori-
ginal set of samples. This bagging procedure has been
found to lead to significantly better performance than
single trees in a wide range of applications. Since the
number of negative samples is extremely large and, for
ECK12, around 800 times larger than the number of
positive samples (on the known-function set), when we
choose the set of negative samples used to train each
tree, we select only a fraction of them. Hence, if the origi-
nal training set contains P positive samples and N
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negative samples, the final training set for each bagged
tree will contain P positive samples (sampled with repla-
cement from the original P samples, which means that
some samples might be chosen twice and some samples
might never be chosen) and 10*P negative samples (also
chosen by randomly sampling the original set of N nega-
tive samples with replacement).

All gene pairs involving a small set of genes (from one
to eight genes depending on the organism) for which no
homology information is found in the CMR database
are ignored when training the trees and, for consistency,
when fitting the splines in the simpler combination
method. The lack of homology information results in
genome context scores that are outliers with respect to
the score distribution, which results in strange artifacts
on the probabilities output by the trees if those samples
are kept during training.

Figure 12 shows combination results when using a 10-
fold cross-validation procedure on ECK12 for training
the combiners. Normally, cross-validation results are
obtained by randomly splitting all available samples
(gene-pairs, in our case) into N sets and training the
combiner for each set on the remaining N - 1 sets.
Results are then reported on the full set after collecting

back the scores obtained on the N sets. This is the proce-
dure used, for example, in [7,11]. In this work, we use a
modified procedure to ensure that similar pairs are not
distributed across sets, since this results in an optimistic
estimation of the performance. For this, the ECK12 genes
are first grouped into “similar gene” groups. Each group
contains all genes that are similar (E-value smaller than
107%) to at least one other gene in the group. Pairs of
groups are then randomly split into 10 sets and then
expanded to pairs of genes by pairing each gene in one of
the groups in each pair with every other gene in the
other group of the pair. By using this procedure we
ensure that if pair (G, G,) is similar to (G3z, G4) in the
sense that G, is similar to G3 and G, is similar to G,
these two pairs will end up in the same set. The standard
cross-validation procedure does not guarantee this and,
hence, combiners are trained using pairs that are similar
to those in testing. Since similar pairs also have identical
or very similar set of genome context scores, the standard
cross-validation procedure results in overly optimistic
results. In our experiments, the standard cross-validation
procedure results in an overestimation of the sensitivity
of up to 5% relative to the performance obtained with the
proposed cross-validation procedure. Using the proposed
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Figure 11 ROC curves for selected genome context methods
on the known-function gold standard set for ECK12 (all
previous figures showed results for the sm-enzyme set).
Parameters £ = 10 Q = 50 and a reference list of size 343
obtained by clustering are used to generate these scores. This figure
is the same as Figure 8, changing only the set of gene pairs on
which the methods are tested. Dashed lines correspond to
normalized versions of the corresponding scores of the same-color
line. The stars and squares correspond to the sensitivity and
specificity obtained for each system when choosing the top 0.1%
and 0.5% samples.

cross-validation procedure is particularly important for a
fair assessment of the performance when complex
combiners, like the decision tree one, are being tested.
Two different sets of scores are used for combination in
Figure 12. The set called orig-scores, corresponds to the
four scores standard in the genome context literature:
gn-pval, pp-mutual-info, gc and gf. These are the same
scores used in [4] and [14]. The set orig+new-scores
includes those four scores plus some of the scores
proposed in this paper: gn-InX, gn-InX after znorm and
pp-mutual-info after znorm. The color of the curves indi-
cates the set of scores used for combination. Solid curves
correspond to the confidence-product combiner and
dashed curves to the decision tree combiner. The figure
also shows the gn-pval and gn-InX.znorm curves in gray
as a reference. Since these are the best individual scores,
combination curves can be compared to these curves to
assess the advantage of the procedure over using the
single best score. The left plot shows the results for
the sm-enzyme set and the right plot shows results for
the known-function set. When testing on the sm-enzyme
set, the sm-enzyme subset of samples from the training
sets is used for training, while when testing on the
known-function set, the known-function subset of sam-
ples is used for training. We can see that, in both cases,
the best combiner is given by the decision tree including
the new scores. This is an intuitive result: a relatively
more complex combiner is required to make use of all
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the power of a larger set of scores. The other three com-
biners are almost undistinguishable from each other and
slightly better than the best individual system only for
the sm-enzyme set. Overall, we see a gain between 10%
and 20% in sensitivity for a fixed value of specificity in
the best combined score with respect to the gn-pval
score.

The cross-validation results even though fair in the
sense that train data is carefully chosen to not contain
similar samples to those in testing, can still be consid-
ered optimistic. In cross-validation, combiners are
trained using gene pairs from the same organism (or set
of organisms) than the test gene pairs. As we saw in
Figure 9, the performance of the genome context meth-
ods varies across different organisms. A combiner
trained using samples from one set of organisms might
not be optimal in another set. In practice, genome con-
text methods are generally used to generate functional
relationship scores for gene pairs that do not belong to
an organism for which we have enough annotation to
create a gold standard. Hence, to realistically estimate
the performance one should expect in practice for a cer-
tain combination method, the training data should be
obtained from organisms other than those present in
the test data.

Figure 13 shows the same combination results as in
Figure 12 but obtained using training samples from the
organisms in Table 2 that are more distant from ECK12:
CAULO, MTBC, MTBR, FRANT, HPY. The other
organisms in the table are not used for training since
they are too similar to ECK12 and would, again, result
on an optimistic assessment of the performance for
most practical cases in which highly annotated strains
from the same species as the test data or other closely
related organisms are not available for training. In these
figures we see drastically different results from those in
Figure 12. In the sm-enzyme set, the gain from includ-
ing the additional scores has disappeared and all combi-
ners give similar performance, only slightly better than
the best individual score. More notably, in the known-
function set, most combiners are worse than the best
individual score. Only the confidence-product combiner
trained with the original plus the new scores does not
show a degradation over the best individual scores.
Furthermore, the decision tree combiner behaves worse
than the confidence-product one. Due to its higher
complexity, this combiner adapts more to the training
data than the simpler one and, hence, when the test
data does not follow the patterns observed in training,
the performance is severely affected. Note that this
behavior is not exclusive to decision tree combiners.
Any combination strategy that involves a significant
amount of parameters (like support vector machines
with non-linear kernels) will be prone to overfitting of
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the training data. The confidence-product combiner,
which has few parameters to learn, has a more stable
performance, much more independent of the data used
for training. On the other hand, as we have seen, also as
a consequence of this lack of complexity this combiner
is worse than the decision tree combiner when good
training data is available.

The fact that the effect of the training data is much
more marked when the known-function sets are used for

training and testing instead of the sm-enzyme sets might
be due to several factors. It is possible that the genome
context scores on the known-function set of samples are
less consistent across organisms than in the sm-enzyme
set, making the learning of the combination function
inherently harder. More likely, this behavior might be
due to the fact that, as mentioned earlier, the gold stan-
dard is probably less reliable in the known-function set
than in the sm-enzyme set. While ECK12 is a highly
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curated database, the rest of the organisms used in this
paper have undergone much less curation, making the
gold standard on these organisms lower quality since
pathways or complexes that exist in the organisms might
not appear in the database. For these organisms, it is rea-
sonable to expect the quality of the labels to be better for
genes that have been tagged as enzymes than for other
genes which might not have been studied as much.
Furthermore, it is possible that the kinds of functional
relationships we are currently not considering in our
gold standard (for example, interactions due to proteins
transiently binding to each other or other kinds of func-
tional relationships not captured by our labeling proce-
dure, as explained in Section 4.1) correspond to a larger
proportion of samples on the known-function set than in
the sm-enzyme set. If, for either reason, the gold standard
is indeed less accurate on the known-function set than in
the sm-enzyme set, since the combiner is learning from
these labels, we would expect the combiner to perform
worse on the known-function set.

The implication of the results presented here is that
combination results trained on a certain database might
not generalize to organisms that are not well repre-
sented in this database. Furthermore, the benefits from
using more complex combination procedures might be
overestimated when training and testing on the same
organism (or set of organisms). The only way to fairly
assess whether a combination procedure will be able to
generalize to unseen organisms that are not closely
related to those available for training is to devise the
training and testing databases in a way that is represen-
tative of the actual testing conditions. How distant to
the test organisms the train organisms should be
depends on how the combiner will be used. If the goal
is to use the combiner on organisms for which no clo-
sely related organism is available for training, this same
kind of criteria should be used to select the training
data when trying to assess the performance of the com-
bination procedure.

5 Conclusions

We present a systematic study of individual genome
context methods and their combination, which we
believe is needed to better understand how to optimize
these techniques. The families of methods studied in
this paper are the gene cluster, gene neighbor, gene
fusion, and phylogenetic profile. These are the methods
widely used in the literature and in publicly available
databases [41]. We propose the use of normalization
techniques for the genome context methods and show
that it can produce large performance gains. We study
the optimal parameters for each method and the effect
that the reference list of genomes has on its perfor-
mance. We also show the performance of the different
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methods for a set of bacterial organisms. Furthermore,
we present a careful study of the effect that the training
data has on a combination procedure used to merge all
genome context scores into a single score.

In comparative experiments across different individual
methods, we find that methods that compute summary
measures of the distance between homologs of the
genes in the target genome across a list of reference
organisms, commonly called gene neighbor methods,
lead, in most cases, to the best overall performance of
all genome context methods. Although this result was
observed earlier [4], we have demonstrated that it is
true for any choice of reference organism list and for
almost all organisms on which we tested. In absolute
terms, performance of the genome context methods var-
ies widely (up to a factor of two) across organisms, but
generally their ranking does not, the gene neighbor
method being invariably among the best. The gene clus-
ter is, for some organisms, competitive with the gene
neighbor method at low sensitivities. Phylogenetic pro-
file methods are generally worse than gene neighbor
methods, in many cases by a large margin. The gene
fusion method is the worst across most organisms. Note
that the gene fusion and gene cluster methods are quali-
tatively different from the gene neighbor and phyloge-
netic profile methods in that they can generate scores
only for a small proportion of gene pairs. With this con-
sideration, we believe that the gene neighbor method
can be considered the overall best genome context
method in the literature since it leads to the best perfor-
mance on most organisms and is able to generate scores
for all gene pairs in the target genomes.

Three of the four genome context method families
rely on the extraction of homologs for the genes in the
target genome. As commonly done in bioinformatics,
sequence similarity is used as a way to detect homology.
For this, a threshold on the BLAST E-value must be
chosen. A thorough study of the performance of the dif-
ferent methods varying the value of this threshold indi-
cates that the optimal value is in the vicinity of 107
While this same value was found to be optimal for a
phylogenetic profile method in [17], our results indicate
that this value is also approximately optimal for all
other genome context methods.

We also show that the size and composition of the
reference organism list has a significant influence on the
performance of the genome context methods. Organism
lists containing many organisms that are closely related
to each other negatively affect the performance of some
methods since they violate their independence assump-
tion. Reference lists can be pruned to exclude highly
related organisms using a clustering procedure resulting
in relative gains on sensitivity of around 5%. Overall, the
optimization of the E-value threshold and the list of
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reference organisms results in a gain of around 8% in
the sensitivity of the gene neighbor method with respect
to the system presented in [4], which uses an E-value
threshold of 10'° and no pruning of the list of reference
organisms.

Genome context scores suffer, as do many other
scores from different statistical processing problems,
from a bias effect: scores are affected not only by the
characteristic we wish to detect (in our case, functional
relationship), but by other characteristics that consis-
tently affect the values of the scores for a certain group
of samples. Score normalization methods aimed at com-
pensating for this bias are in standard use in signal pro-
cessing problems but have not yet, to our knowledge,
been applied to genome context methods.

We implement two score normalization procedures
borrowed from microarray analysis. We show that score
normalization methods aimed at equalizing the distribu-
tion of scores across genes leads to large gains of
as much as 40% on some genome context methods.
A relative gain of around 25% is observed on the phylo-
genetic profile method that uses mutual information as
the similarity metric between profiles. With this
improvement, this normalized phylogenetic profile score
is, we believe, the best performing in this family of
methods since it outperforms a method introduced in
[19], which has in turn been shown to outperform
other, some very sophisticated and computationally
complex, phylogenetic profile methods. Finally, results
from combining the individual genome context scores
testing on E. coli K-12 gene pairs are presented. Two
combination approaches are compared: a simple
approach that converts each individual set of scores into
confidence measures and combines them with a simple
nontrainable function, and a more complex approach
that uses decision trees as combiners. We show that,
when a cross-validation procedure is used for training,
the decision tree combiner can greatly outperform the
simpler combiner. In this case, large gains are obtained
when three scores proposed in this paper, two of them
normalized as explained above, are added for combina-
tion to the four original scores previously proposed in
the literature. Specifically, when cross-validation on all
known-function E. coli K-12 gene pairs is used for train-
ing and seven scores are used for combination, a gain in
sensitivity of around 20% is obtained with respect to the
best individual score given by a gene neighbor method.
This gain can be compared to that obtained with the
simpler combiner method when combining only the
four original scores. This system is comparable to those
used for the Prolinks paper [4] and in the STRING data-
base [14,16,42]. For this system we find that the gains
from combination on E. coli K-12 gene pairs with
respect to the gene neighbor method are less than 4%.
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Hence, our system results in a gain with respect to the
state of the art in genome context methods when well-
matched data is used to train the combiner.

To our knowledge, combination performance has
always been tested either by training the combiner para-
meters on the test samples (for example, [4,14]), or
using a cross-validation procedure (for example, [7,11]).
These procedures (particularly train-on-test) are
expected to lead to an optimistic assessment of the
gains that can be achieved from combination on organ-
isms that are not well represented on the training data.
In this paper, we explore the performance of the two
combiners mentioned above when training data from
organisms other than the target organism is used. We
find that when organisms that are phylogenetically dis-
tant from the target organism are used to train the com-
biners both combination methods fail to give gains with
respect to the single best individual score. Nevertheless,
adding the normalized scores proposed in this paper
seems to add some robustness to the procedure, allow-
ing the simpler combiner to be at least as good as the
individual best score.

Our conclusion is that, if genome context scores are
to be used on organisms that are not well represented
or phylogenetically similar to those available to generate
a gold standard, and a single score needs to be gener-
ated for each gene pair, then either the single best score,
the gene neighbor p-value, should be used by itself or a
simple combiner (with few parameters) should be
trained, preferably using the normalized scores proposed
in this work. Using a complex combination procedure
that leads to large gains on cross-validation experiments
is likely to lead to suboptimal results on these unseen
organisms.

Additional material

Additional file 1: Study of the effect of E and Q parameters. In this

file we show results on the effect of the parameters E (E-value threshold
for inferring homology) on the gene neighbor, phylogenetic profile and
gene fusion methods and Q (percent overlap for finding Rosetta Stones)
on the gene fusion method.
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