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Abstract

Background: Circadian rhythms are 24 hour oscillations in many behavioural, physiological, cellular and molecular
processes that are controlled by an endogenous clock which is entrained to environmental factors including light,
food and stress. Transcriptional analyses of circadian patterns demonstrate that genes showing circadian rhythms
are part of a wide variety of biological pathways.
Pathway activity method can identify the significant pattern of the gene expression levels within a pathway. In this
method, the overall gene expression levels are translated to a reduced form, pathway activity levels, via singular
value decomposition (SVD). A given pathway represented by pathway activity levels can then be as analyzed using
the same approaches used for analyzing gene expression levels. We propose to use pathway activity method
across time to identify underlying circadian pattern of pathways.

Results: We used synthetic data to demonstrate that pathway activity analysis can evaluate the underlying
circadian pattern within a pathway even when circadian patterns cannot be captured by the individual gene
expression levels. In addition, we illustrated that pathway activity formulation should be coupled with a
significance analysis to distinguish biologically significant information from random deviations. Next, we performed
pathway activity level analysis on a rich time series of transcriptional profiling in rat liver. The over-represented five
specific patterns of pathway activity levels, which cannot be explained by random event, exhibited circadian
rhythms. The identification of the circadian signatures at the pathway level identified 78 pathways related to
energy metabolism, amino acid metabolism, lipid metabolism and DNA replication and protein synthesis, which
are biologically relevant in rat liver. Further, we observed tight coordination between cholesterol biosynthesis and
bile acid biosynthesis as well as between folate biosynthesis, one carbon pool by folate and purine-pyrimidine
metabolism. These coupled pathways are parts of a sequential reaction series where the product of one pathway is
the substrate of another pathway.

Conclusions: Rather than assessing the importance of a single gene beforehand and map these genes onto
pathways, we instead examined the orchestrated change within a pathway. Pathway activity level analysis could
reveal the underlying circadian dynamics in the microarray data with an unsupervised approach and biologically
relevant results were obtained.

Background
Circadian rhythms are 24 hour oscillations in many
behavioural, physiological, cellular and molecular pro-
cesses that are controlled by an endogenous clock which
is entrained to environmental factors including light,
food and stress [1]. These oscillations synchronize

biological processes with changes in environmental fac-
tors thus allowing the organism to adapt, anticipate, and
respond to changes effectively.
Some examples of the biological processes and para-

meters that show circadian oscillations include body tem-
perature, sleep-wake cycles, endocrine functions, hepatic
metabolism and cell cycle progression [2]. Furthermore,
disruption of circadian oscillations is linked to many dis-
eases and disorders including cancer, metabolic
syndrome, obesity, diabetes, and cardiovascular diseases.
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In mammals, the central (sometimes referred to as the
master) clock is present in the suprachiasmatic nucleus
(SCN) in the anterior part of the hypothalamus. Circa-
dian oscillators that are present in other parts of the
brain and in other organs are referred to as “peripheral
clocks” and are controlled by the central master clock. At
the molecular level the clock mechanism involves a tran-
scriptional and post-transcriptional auto-regulatory nega-
tive feedback loop consisting of BMAL1 and CLOCK
transcription factors which form the positive arm and the
PERIOD and CRYPTOCHROME transcription factors
which form the negative arm of the feedback loop [3,4].
In addition to these core transcription factors, many
other transcription factors which are directly regulated
by the core factors including REV-ERBs, RORs and PAR-
bZip transcription factors are also involved in the regula-
tion of the circadian expression of the transcriptome
which in turn regulates various biological processes [5-7].
Transcriptional analyses of circadian patterns [1,8-10],

performed in both drosophila and mammalian systems,
demonstrate that genes showing circadian rhythms are
part of a wide variety of biological pathways. The
expression of several circadian rhythms in a single path-
way may ensure a tighter circadian regulation of a path-
way or be parts of the circadian clock taking place in
other biological functions. The issue of this type of ana-
lysis, however, is that moderate but steady changes in
the gene expression levels within a pathway could be
missed if relatively few individual genes appear signifi-
cant. Consequently, the identification of biological path-
ways related to circadian phenomenon could be missed.
We propose to analyze the gene expression data at the

pathway level. The starting point of such an analysis is
that moderate but steady circadian patterns in the gene
expression levels within a pathway could be missed if
relatively few individual genes appear circadian. The
effectiveness of this approach was illustrated in a study
comparing gene expression profiles in muscle of type 2
diabetics (DM2) relative to non-diabetics by [11]. Gene-
set enrichment analysis (GSEA) revealed a subset of
genes involved in oxidative phosphorylation as being dif-
ferentially expressed, even though no single gene
appeared as differentially expressed between samples.
The relationship between oxidative phosphorylation and
DM2 is richly supported by the literature [11]. To
address the time course gene expression data, Rahnen-
fuhrer et al. identified the degree of co-expression of
genes within a pathway over time [12]. First, the average
correlation between gene expression levels within a
pathway is computed. Then, the significance of the aver-
age correlation of within a pathway is evaluated by a
randomization procedure based on the entire microar-
ray. This method, however, can only evaluate whether
there is a significant gene expression pattern within a

pathway but cannot illustrate the significant pattern
itself. Therefore, this method is not able to identify the
circadian pattern of a pathway. Alternatively, pathway
activity method [13] can identify the significant pattern
of the gene expression levels within a pathway. In this
method, the overall gene expression levels are translated
to a reduced form, pathway activity levels, via singular
value decomposition (SVD). A given pathway repre-
sented by pathway activity levels can then be as analyzed
using the same approaches used for analyzing gene
expression levels [13]. Yet, pathway activity method is
applied only to evaluate the differentiation between two
treatment groups [13,14], i.e. control and treated sam-
ples. We propose to use pathway activity method across
time to identify underlying circadian pattern of
pathways.
Liver is an important organ that is involved in carry-

ing out a wide variety of critical processes including sys-
temic energy regulation processes, metabolism and
detoxification of both endogenous and exogenous com-
pounds and hormonal production [9]. Liver is the only
tissue that stores glucose in the form of glycogen that
can be released in response to glucagon or epinephrine
to maintain systemic concentrations [15]. In addition to
glucose storage and release, liver can also synthesize glu-
cose de novo through the process of gluconeogenesis. In
addition to carbohydrate metabolism, the liver is central
to whole body lipid metabolism. About one-half of the
cholesterol in the body is produced in the liver, much of
which is used for bile acid synthesis [16]. Furthermore,
liver is the most important organ that is involved in the
metabolism of many drugs and hence contributes to the
disposition of these compounds from the body [2].
Proper timing of these processes is of utmost impor-
tance for the maintenance of the homeostasis in the sys-
tem. Previous studies have shown that circadian
rhythms are observed at all levels of organization in
liver from molecular to the cellular level such as enzyme
activity, gene expression, metabolite concentration, DNA
synthesis and morphological changes [17]. One of the
important levels of organization in the cell is biochem-
ical pathways, which are the ensemble of biochemical
reactions to fulfil a particular function. An appreciation
of the circadian characteristics of the biological path-
ways in liver is essential for understanding both the nor-
mal physiological and pathophysiological functioning of
liver.
In this paper, we used synthetic data to demonstrate

that pathway activity analysis can evaluate the underly-
ing circadian pattern within a pathway even when circa-
dian patterns cannot be captured by the individual gene
expression levels. In addition, we illustrated that path-
way activity formulation should be coupled with a sig-
nificance analysis to distinguish biologically significant
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information from random deviations. Next, we per-
formed pathway activity level analysis on a rich time
series of transcriptional profiling in rat liver [9]. The
over-represented specific patterns of pathway activity
levels exhibited circadian rhythms.

Methods
Experimental Data
Fifty-four male normal Wistar animals (250-350 g body
weight) were housed in a stress free environment with
light: dark cycles of 12 hr:12hr. Animals were sacrificed
on three successive days at each of 18 selected time
points within the 24 hour cycle. The time points were
0.25, 1, 2, 4, 6, 8, 10, 11, 11.75 hr after lights on to cap-
ture light period and 12.25, 13, 14, 16, 18, 20, 22, 23,
23.75 h after lights on to capture the dark period. To
obtain a clear picture, two 24 hour periods were conca-
tenated to obtain a 48 hour period and are meant only
as a visual check that curves do in fact “meet” at the
light/dark transitions Our research protocol adheres to
the ‘Principles of Laboratory Animal Care’ (NIH publi-
cation 85-23, revised in 1985) and was approved by the
University at Buffalo Institutional Animal Care and Use
Committee. The details of the experiment can be found
in [9]. The data is available under the accession number
GSE8988 http://www.ncbi.nlm.nih.gov/geo/.

Circadian signature of gene expression levels
The circadian pattern of a gene expression is approxi-
mated using the sinusoidal model A · sin(B ·t + C) [9].
The coefficients are amplitude (A), frequency (B), and
phase (C) of the model. The frequency of the sinusoidal
model identifies the essence of the circadian behaviour,
which is characterized by one full period in 24 hour.
The multiplication of total time (t, 24 hr) and frequency
(B) should be equal to 2·π in order to characterize one
full period (circadian) by the sinusoidal model.
A non-linear curve fitting algorithm is used to define

the parameters of the sinusoidal model that would fit
best to the gene expression levels over time. The fitted
models that have the coefficient B between 0.24 and
0.28 are kept for further analysis to assure the circadian
dynamics. Once a model is built for a given gene
expression level, the correlation between the data and
the model is the criterion to define the circadian signa-
ture. Genes are characterized as exhibiting circadian pat-
tern if the correlation between the gene expression and
the fitted sinusoidal model is equal or greater than 0.8.

Pathway Activity Levels
We adapted the pathway activity level formulation to
include an additional statistical analysis to evaluate path-
way levels [13]. The pathway activity analysis begins
with mapping gene expressions of microarray onto

pathways. Pathway annotations of gene expressions are
retrieved from the publicly available database The Mole-
cular Signatures Database (MSigDB) [18]. Subsequently,
gene expression levels within a given pathway are
reduced to the pathway activity levels using singular
value decomposition (SVD). It is considered that path-
way activity levels express the underlying dynamics of a
pathway. Next, the significance of the pathway activity
levels is evaluated with respect to a randomly permu-
tated microarray data. Then, pathways are filtered out
based on the significance analysis.
The matrix ΞP (k,t) is composed of k genes and t dif-

ferent conditions (correspond to time points and sam-
ples) for the gene expression matrix of a given pathway
P of size k genes and t samples, and is normalized to
have a mean of 0 and a standard deviation of 1. The sin-
gular value decomposition (SVD) of ΞP (k,t)is given as:

Ξ P P P pk t U k k S k t V t t, , , ,( ) ( ) ⋅ ( ) ⋅= ′ ( ) (1)

The columns of the matrix UP (k, k)are the orthonor-
mal eigenvectors of ΞP (k,t). The SP (k,t) is a diagonal
matrix containing the associated eigenvalues, and the

columns of the matrix ′V t tp( , ) are projections of the

associated eigenvectors of ΞP (k,t). As the elements of SP
(k,t) are sorted from the highest to the lowest, the first

row of ′V t tp( , ) , represents the most significant corre-

lated gene expression pattern within a pathway across
different samples. Pathway activity level, PALP (t) is

defined as the first eigenvector of the ′V t tp( , )

P L t V tP pA ( ) = ′ ( ),1 (2)

The first column of UP (k, k) is a vector of weights,
one weight for each gene within the pathway. The
weights can be positive or negative values indicating
the direction of the expression levels with respect to the
pathway activity levels. A higher absolute weight of a
gene specifies a higher contribution to PALP (t)
The fraction of the overall gene expression (fP) that is

captured by PALP (t) is:
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To evaluate whether PALP (t) can represent significant
information of the pathway of interest, referred as the
significance analysis of PALP (t) in this study, we per-
form an additional analysis. This analysis indicates
whether there is significant expression pattern shared by
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individual genes within a pathway [14]. This is per-
formed by evaluating the significance of the fP value.
First, 10,000 random gene sets of the same size of each
pathway are generated from the microarray. Next, the fP
values for the random data sets are evaluated and com-
pared to the actual fP value. The p-value of fP is com-
puted as the fraction of the fP of the randomly
generated matrices that exceeded the actual fP . If the fP
of the randomly generated matrices exceeds the actual
fP by more than 5%, then the actual fP is attributed to a
random variation in the microarray data (p-value <
0.05). Finally, the pathways are filtered based on the
associated p-value of their fP value.
Subsequently, PALP (t) (Eq. (2)) is applied to describe

the pathway activity levels over time. Each entry of
PALP (t) represents the pathway activity level of corre-
sponding experimental condition (ΞP (k,t)includes repli-
cate measurements at each time point). However, PALP
(t) do not indicate any up-or down-regulation in path-
way behaviour, instead PALP (t) evaluates the relative
change across different experimental conditions. The
sign PALP (t) can be chosen based on the pattern the
genes that have the highest contribution to PALP (t)
(PALP (t)≡-PALP (t)) [13].

Clustering Analysis of Pathway Activity Levels
To cluster the statistically significant pathway activity
levels, we applied an unsupervised clustering approach
proposed by Nguyen et al. [19]. This approach was
applied to detect the significant clusters of co-expressed
genes. In this study, we use pathway activity levels
instead of gene expression levels.
First, ANOVA is used as a part of the clustering algo-

rithm of the pathway activity levels, where three repli-
cates of each measurement are averaged [20]. Therefore,
we applied ANOVA (p-value < 0.01) to remove the
pathway activity levels that are not statistically changing
across time points prior to the clustering calculation.
ANOVA analysis ensures that the observed changes in
pathway activity levels occur over time. Following,
repeated measurements are averaged for clustering [20].
Subsequently, the optimum number of clusters are
decided after considering several clustering methods
(hclust, diana, kmeans, pam, som, mclust), metrics
(Euclidian, Pearson correlation, and Manhattan) and an
agreement matrix that quantifies the frequency which
two pathways belong to the same cluster based on the
pathway activity levels. Then a subset of pathways is
selected to ensure that no pathway is present with an
ambiguous cluster assignment with any other pathway
in the analysis with a confidence level δ. The δ is the
threshold to say whether the agreement level of two
pathways belong to one (δ). or two clusters (1 -δ) is con-
sistent or not. The last step is dividing the selected

subset into a number of patterns based on the agree-
ment matrix. The details of the algorithm can be found
in [19]. In this analysis we use δ = 0.65.

Synthetic Data
A hypothetical pathway that consists of 45 gene expres-
sions across T = 54 samples (3 replicates at 18 time
points) is constructed following previously described
methods. The gene expression values within the syn-
thetic pathway, gi, are generated based on a widely
accepted model of periodic gene expression

g ti t= + +   ·cos( · )  (4)

Where b is a positive constant, ω ∈ (0, π), � uniformly
distributed in (-π, π] where εt is a sequence of uncorre-
lated random variables with mean 0 and variance s2 ,
independent of �. We assume � = 0 for all simulated
profiles. In order to simulate different signal to noise
ratios we also assume the amplitude for baseline varia-
tion constant, but add different noise component ε for
individual profiles. The ε value for each fraction was
taken as a random number εt ∈[0,50·i], i = 0,1,2,...100.
When the noise level, i, is zero, all 45 genes have the
same circadian pattern. As we increase the noise level,
the profiles of the individual gene expressions deviate
from the circadian pattern and converge to random
variation.
To quantify the effect of the noise level on the indivi-

dual genes within the synthetic pathway, 1000 replicates
of the synthetic pathway are generated at different noise
levels. For each generated replicate, the fraction of the
circadian genes within the synthetic pathway is evalu-
ated and then compared to a given percentage value, i.e.
50%. If the actual the fraction of the circadian genes
within the synthetic pathway is smaller than the 0.5, the
event that 50% of the genes within the synthetic path-
way are circadian is attributed to a random variable.
The ratio of the total number of the event that 50% of
the genes within the synthetic pathway are circadian to
1000 identifies the p-value. In addition to p-value for
the event that 50% of the genes within the synthetic
pathway are circadian, p-values for the event that 10%
and 90% of the genes within the synthetic pathway are
circadian at different noise level.
We evaluate the PALP (t) of the synthetic data as the

noise level is increased and a non-linear curve fitting
algorithm is used to define the parameters of the sinu-
soidal model that would fit best to the pathway activity
levels over time. The procedure for the determination of
circadian pattern of pathway activity levels is similar to
the determination of circadian pattern of gene expres-
sion levels. The synthetic pathway is identified as exhi-
biting a circadian pattern if the correlation between
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PALP (t) and the fitted sinusoidal model is equal to or
greater than 0.8.

Results
Synthetic Data
To test the hypothesis that pathway activity analysis can
identify changes that emerge at the pathway level that
cannot be identified at the individual gene expression
level, a synthetic pathway consisting of 45 genes was
constructed and data representative of circadian pattern
is generated at different noise levels. Subsequently we
compared the significance of the event when 90, 50 and
10% of the genes within the synthetic pathway are circa-
dian. These results are compared with the significance
of the synthetic pathway showing circadian pattern in its
pathway activity level in Figure 1. For either method, a
significance value close to unity indicates that the event
is highly likely. A typical threshold used to consider the
significance of an event is 0.95. The purpose of this ana-
lysis is to evaluate the effect of noise level on the num-
ber of genes showing circadian pattern within the
pathway.
From Figure 1, we observe that at low noise levels (0 <

i < 6) we are confident that at least 90% of the genes
within the synthetic pathway are circadian. However,

the confidence level of detecting 90% of the genes is cir-
cadian decreases sharply as we increase the noise level.
At this noise level, the underlying circadian pattern can
be identified via both evaluating the circadian genes and
pathway activity levels. At a noise level of 17, we can
confidently conclude that only 50% of the genes are cir-
cadian. At higher noise levels, i.e. i = 30, we cannot
even conclude that 10% of the genes are circadian (p-
value > 0.05). Thus gene expression alone will not be
able to provide information about the significant circa-
dian pattern at this noise level. However, pathway activ-
ity analysis predicts with high confidence level (p-value
< 0.0001) that there is an underlying circadian pattern
within the synthetic pathway at this noise level (i = 30).
Therefore, pathway activity levels are more robust than
the gene expression levels in identifying underlying
expression pattern within a pathway.
Nevertheless, a critical issue arises when we consider

whether the variation captured by PALP (t) can repre-
sent the overall gene expression within a pathway.
While we can be confident that a circadian pattern does
exist, we cannot be confident that this pattern is real or
due to random variations. To address this issue of ran-
dom noise in the data vs. real gene expression changes,
we evaluated the significance of the PALP (t) (presented

Figure 1 Effect of noise level on the circadian dynamics of the synthetic pathway. As the noise level is increased, the significance (1-p-
value) of the event that synthetic pathway is circadian and the events that 10, 50 and 90% of the genes within the synthetic pathway are
circadian are illustrated. The calculations of the p-values are explained in the methods section.
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in Figure 2 at different noise levels). Even though PALP
(t) might predict confidently a circadian pattern, that
event could be the results of random variability in the
data, as quantified by the significance of PALP (t). For
example, at a = 10, the significance of the synthetic
pathway being circadian is high; however, the signifi-
cance of PALP (t) is considerably lower. This result indi-
cates that the observed pattern cannot be solely
attributed to the underlying structure of the data.
Therefore, determining significance level PALP (t) is
necessary for a reliable representation of circadian
pathways.

Circadian Signatures of Pathways in Rat Liver
We analyzed a rich time series of transcriptional profil-
ing in rat liver where the rats were maintained in 12:12
hours light/dark cycle and exposed to the least possible
environmental disturbances to minimize stress. We eval-
uated pathway activity level analysis on the microarray
data and following applied a clustering analysis of the
pathway activity levels.
As a result of the significance analysis fP 486 of the

638 defined pathways in MSigDB are considered for
further analysis. Having eliminated the pathway activity
levels that do not exhibit a significant change over
time (ANOVA, p-value < 0.01), the clustering analysis

yielded five significant patterns of pathway activity
levels (Figure 3). We follow an unsupervised approach
and identify the emergent pathway activity level pat-
terns that appeared to have sinusoidal circadian pat-
terns. The significant clusters represent the most
populated pathway activity levels patterns within the
data, whereas the rest of the data can be associated
with random deviations. To quantify the characteristics
of the circadian patterns, we perform the approxima-
tion of the centroid of each cluster to a sinusoidal
function. The correlation between the centroid of each
cluster and the associated fitted sinusoidal model exhi-
bit high correlation (correlation = > 0.96, given on top
of each graph in Figure 3). The outline of this analysis
is depicted in Figure 4.
The peak and nadir points are referred as the turning

points. Cluster 1, Cluster 2 have their turning points
around the middle of the light period (~6th-8th hours of
the 24 hour cycle) and around the middle of the dark per-
iod (~18th and 20th hours 24 hour cycle). Cluster3, Cluster
4 and Cluster 5 have their turning points around the tran-
sition between the light and the dark period (~10th-13th
hours of the 24 hour cycle) and their the turning points
around the beginning of the light period and at the end of
the dark period (~1st -2nd hours and ~20th and 22nd of the
24 hour cycle).

Figure 2 Effect of noise level on the significance of PAL. As the noise level is increased, the significance (1-p-value) of the event that
synthetic pathway is circadian and the significance of PAL are illustrated.
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Evaluating pathway activity levels resulted cases where
two pathways have similar fraction of overall gene
expression captured by PALP (t), fP values, however the
associated p-values, vary significantly. In example, fP
MAPK Pathway, Nicotinate and nicotinamide metabo-
lism and glycine, serine and threonine metabolism path-
way are 0.23, 0.21 and 0.22 respectively (top panel of
Figure 5). On the other hand, their associated p-values
are rather different; 0.66, 0.12 and 0, respectively (top
panel of Figure 5). Depending on the size of the path-
ways, which is number of the genes within a pathway, fP
value can be obtained from random variations. Therefore,
fP value itself is not an objective feature to identify
whether the information captured overall gene expres-
sion by PALP (t)is significant. The significance analysis of

PALP (t) enables us to filter out pathways that exhibit cir-
cadian rhythms by chance. For example, MAPK pathway
and Nicotinate and nicotinamide metabolism may be
identified as exhibiting circadian pattern without the sig-
nificance analysis of PALP (t) because PALP (t) of MAPK
Pathway and Nicotinate and nicotinamide metabolism
exhibit high correlation with the fitted sinusoidal model
(bottom left and bottom middle panels in Figure 5).
Glycine, serine and threonine metabolism exhibit both

significant PALP (t) and high correlation with the fitted
sinusoidal model (top right and bottom right panels in
Figure 5). To study the effect of individual gene expression
on the pathway activity level, we depict the relationship
between the weights and the correlation of the individual
genes (the correlation between gene expression levels and

Figure 3 The five significant clusters identified by a consensus clustering analysis [19] using δ = 0.65. The pathway activity level (PAL) of
pathways represents the presented curves and the exact reverse curves; PAL = (-) PAL. The signs of PAL are chosen so that PAL has the similar
patterns for a better representation and clustering purposes. The centroids of each cluster is shown with the red error bars, the fitted sinusoidal
model to the centroids of each cluster is depicted in white.
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the fitted sinusoidal model that represent the circadian
pattern) in glycine, serine and threonine metabolism path-
way Figure 6. The weight of a gene characterizes its contri-
bution to the pathway activity level compared to the rest
of the genes in the pathway.

It can be seen from Figure 6, that Gldc, Cth, Chka,
Chkb, Cbs, Bhmt and Shtm1 exhibit circadian patterns
(correlation > 0.8) and also their weights are among the
highest (weight > | -0.25|). In addition, the genes, which
correlation is slightly under the threshold (correlation

Figure 4 The outline for clustering analysis of pathway activity levels. Pathway activity analysis begins with mapping gene expression onto
known pre-defined groups of genes, pathways. Subsequently, the pathway activity levels are calculated using SVD and the significance of
pathway activity levels are evaluated. Pathways are filtered based on the significance of the PALs. Following, the over-populated patterns are
identified by using a consensus clustering approach proposed in [19]. Then, the parameters of the sinusoidal model A · sin(B · t + C) that would
best fit the centroids of the pathway activity levels (in each clusters) are characterized. Finally, the correlation between fitted sinusoidal model
and the centroids of the pathway activity levels in each cluster is evaluated.
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~> 0.7) such as Gatm, Shtm2 and Alas1, have comparably
higher absolute weights (weight ~> | -0.25|). The positive
and negative values of weights indicate the direction of
the gene expression when compared to the pathway
activity level. In example, the genes that have negative
weights have their peak in the early light period and their
nadir in the early dark period (e.g. Chka, Cth), whereas
the genes that have positive values have their nadir in the
early light period and peak in the early dark period (e.g.
Shmt1) (Figure 7.). The pathway activity levels of glycine,
serine and threonine metabolism (bottom right panel in
Figure 5) follow the genes that have the positive weight
value (e.g. Chka, Cth) and have its turning point in the

early light period. The sign (positive or negative) of the
weights can be chosen to represent pathway activity level
as pathway activity levels indicate the overall orchestrated
significant change in the gene expression within a path-
way. Furthermore, we observe that there are genes, which
correlation is slightly under the threshold (correlation ~>
0.7) but they have low absolute weights (weight ~< 0)
such as Atp6voc and Sardh. The expression pattern of
these genes, (as an example we depicted the expression
pattern of Atp6voc in Figure 7) does not coincide with
the rest of the genes that have higher absolute weights,
therefore do not contribute to the pathway activity level
as much and has low weights.

Figure 5 Pathway activity levels for select pathways. A) The comparison of the fp to the permutated fp for MAPK Pathway, nicotinate and
nicotinamide metabolism and glycine, serine and threonine metabolism pathway. The mean and the standard deviation interval of permutated
fp is given. The same value of fp can be obtained by randomly permutated data in MAPK Pathway and nicotinate and nicotinamide metabolism,
whereas the fp captured by randomly permutated data is much lower compared to fp in glycine, serine and threonine metabolism pathway
B) Pathway activity levels and fitted sinusoidal models for the pathways. The mean and the standard deviation interval of the pathway activity
levels are given. The correlation between pathways activity level and fitted sinusoidal model is presented for each pathway on top of each
graph.
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By applying SVD, a number of possible correlated
variables (gene expressions) are mapped onto a smaller

number of uncorrelated variables (the rows of ′V t tp( , )

in Eq. (1). Pathway activity is denoted as the most sig-
nificant data pattern which corresponds to the first row

of ′V t tp( , ) (Eq.(2))as the elements of SP (k,t) are sorted

from the highest to the lowest (Additional File 1). The
latter rows correspond to the other patterns which sig-
nificances are determined with the associated eigenva-

lues. The matrix ′V t tp( , )

is orthonormal matrix; therefore the rows represent
different data patterns. The two sets of circadian pat-
terns in glycine, serine and threonine metabolism (Fig-

ure 7) are retrieved via the first two rows of ′V t tp( , ) .

′V tp( , )1 and ′V tp( , )2 have high correlation with fitted

sinusoidal model (Additional File 2.). The p-value of

′V tp( , )1 is statistically significant whereas the p-value of

′V tp( , )2 is not statistically significant.

Table 1 provides the detailed list of identified pathways
in each cluster. In total, there are 78 pathways in five

clusters. The list of genes in these pathways, associated
gene expressions, the weights, the correlation between
fitted sinusoidal model and the individual gene expres-
sions can be found in Additional File 3. The identification
of the circadian signatures at the pathway level identified
biologically relevant processes. As such, gene expression,
metabolite concentration and enzyme activity in energy
metabolism (e.g. glycolysis and gluconeogenesis), amino
acid metabolism (e.g. lysine degradation, urea cycle)
[23,24], lipid metabolism (e.g. fatty acid biosynthesis) [25]
and DNA replication and protein synthesis (e.g. DNA
replication reactome, Purine metabolism) [26] exhibited
having circadian dynamics in mammals liver.
In addition, we evaluated the enrichment of the path-

ways with the genes that exhibited circadian patterns in
[9]. MSigDB database [18] offers an annotation tool that
explore gene set annotations to gain further insight into
the biology behind a gene set in question. The end result
is a p-value indicating the significance of the overlap of
the genes with a pathway http://www.broadinstitute.org/
gsea/msigdb/annotate.jsp.
The genes that exhibit circadian dynamics in [9] have

been mapped to 34 pathways (Additional File 4), nine of
which have significant p-value < 0.05.

Figure 6 The relationships between weight and the correlation of the genes within glycine, serine and threonine metabolism. The
correlation is between gene expressions and the fitted sinusoidal models and is set to identify circadian genes. The threshold for circadian
genes is correlation > 0.8. The weights are evaluated from the SVD analysis. The absolute value of the weights represents the contribution of the
individual genes to the pathway activity level. The genes that have higher correlation values have relatively higher absolute weights.
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To further explain the biological significance of the
pathway activity level analysis, we studied the coordina-
tion between different pathways that is another level of
organization in cellular processes, especially in cases
where the product of one pathway is the substrate of
another pathway. One classic example is the production
of bile acids and it needs cholesterol as its starting
material. Previous studies have shown that the pathways
for steroid and bile acid biosynthesis are coordinated
and coupled with cholesterol biosynthesis pathway for
maximizing the efficiency of these processes. It has been
established that bile acid levels are tightly controlled to
ensure appropriate cholesterol catabolism, and promote
optimal solubilization and absorption of fat and other
essential nutrients [25,27]. Figure 8 shows the fitted
sinusoidal models of PAL curves for cholesterol and bile
acids biosynthesis. From the Figure 8, we could see that
both pathways shows circadian rhythmicity with the

phase of oscillations for cholesterol biosynthesis with a
peak reaching at 15 hours after lights on, but the bile
acid biosynthesis pathway shows a slight time lag in its
oscillation with the peak occurring at 17 hours after
lights on. In the figure, the PAL curves reach its peak
during the mid-dark period and nadir during the mid-
light period. As mentioned previously, the peak and
nadir of PAL curves represent the maximum variation
in the temporal gene expression in the pathway and the
exact reverse of the PAL curve is mathematically same
as the PAL curve itself (PAL-PAL). But from the litera-
ture, we know that these pathways peak during the dark
period when the animals are actively feeding. Further-
more, the circadian oscillations in expression of many of
the genes involved in the pathway (including the rate
limiting genes like HMGCR for cholesterol biosynthesis
[16] and CYP7A1 for bile acid biosynthesis [28] peaks
during the dark/active period in the 24 hours light/dark

Figure 7 Selected gene expressions within glycine, serine and threonine metabolism. The correlation between the gene expression levels
and the fitted sinusoidal models and the weights, which are evaluated via SVD analysis, of the genes are given on top of each graph. The signs
(positive and/or negative) of weights indicate opposite direction in the gene expression.
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cycle. So to deduce the biological significance of the
PAL curve, along with the PAL curve pattern one
should take into account of the oscillation patterns of
the individual gene expression (including the rate limit-
ing genes) along with any existing knowledge about the
biological function and regulation of a given pathway.
Additional file 5 and 6 provides the expression of indivi-
dual genes in these pathways. Similar coupling of path-
ways are observed such as folate biosynthesis and one

Table 1 Circadian pathways and associated cluster
numbers

Pathway name Cluster ID

ASCORBATE AND ALDARATE METABOLISM 1

BUTANOATE METABOLISM 1

PURINE METABOLISM 1

LIMONENE AND PINENE DEGRADATION 1

DNA POLYMERASE 1

ATP SYNTHESIS 1

DNA REPLICATION REACTOME 1

LYSINE DEGRADATION 1

HISTIDINE METABOLISM 1

PHENYLALANINE METABOLISM 1

3 CHLOROACRYLIC ACID DEGRADATION 1

G1 TO S CELL CYCLE REACTOME 2

FATTY ACID METABOLISM 2

BILE ACID BIOSYNTHESIS 2

UREA CYCLE AND METABOLISM OF AMINO GROUPS 2

VALINE LEUCINE AND ISOLEUCINE DEGRADATION 2

TRYPTOPHAN METABOLISM 2

P53 SIGNALING PATHWAY 2

CELL CYCLE KEGG 2

G2 PATHWAY 2

ARGININE AND PROLINE METABOLISM 2

RNA POLYMERASE 2

IFNA PATHWAY 2

ST TYPE I INTERFERON PATHWAY 2

POLYUNSATURATED FATTY ACID BIOSYNTHESIS 3

CELL COMMUNICATION 3

ANTIGEN PROCESSING AND PRESENTATION 3

MRP PATHWAY 3

FRUCTOSE AND MANNOSE METABOLISM 3

TYROSINE METABOLISM 3

ETC PATHWAY 4

TYROSINE METABOLISM 4

MALATEX PATHWAY 4

PROTEASOME PATHWAY 4

ALANINE AND ASPARTATE METABOLISM 4

GLYCOLYSIS AND GLUCONEOGENESIS 4

SA CASPASE CASCADE 4

CHOLESTEROL BIOSYNTHESIS 5

GLYCEROPHOSPHOLIPID METABOLISM 5

TERPENOID BIOSYNTHESIS 5

RNA TRANSCRIPTION REACTOME 5

BIOSYNTHESIS OF STEROIDS 5

CIRCADIAN EXERCISE 5

CYANOAMINO ACID METABOLISM 5

FEEDER PATHWAY 5

GLYCEROLIPID METABOLISM 5

Table 1 Circadian pathways and associated cluster num-
bers (Continued)

GLYCINE SERINE AND THREONINE METABOLISM 5

METHIONINE METABOLISM 5

LYSINE BIOSYNTHESIS 5

NUCLEOTIDE SUGARS METABOLISM 5

ETHER LIPID METABOLISM 5

SPHINGOLIPID METABOLISM 5

ONE CARBON POOL BY FOLATE 5

BASAL TRANSCRIPTION FACTORS 5

CIRCADIAN RHYTHM 5

LYSINE BIOSYNTHESIS 5

LYSINE DEGRADATION 5

MEF2 D PATHWAY 5

METHANE METABOLISM 5

METHIONINE METABOLISM 5

METHIONINE PATHWAY 5

ONE CARBON POOL BY FOLATE 5

SA G1 AND S PHASES 5

SELENOAMINO ACID METABOLISM 5

TID PATHWAY 5

TOLL PATHWAY 5

APOPTOSIS 5

APOPTOSIS GENMAPP 5

CARM ER PATHWAY 5

EPONFKB PATHWAY 5

FXR PATHWAY 5

G1 PATHWAY 5

GSK3 PATHWAY 5

LEPTIN PATHWAY 5

P53 PATHWAY 5

RACCYCD PATHWAY 5

SA REG CASCADE OF CYCLIN EXPR 5

TALL1 PATHWAY 5

*) Since gene products can function in multiple pathways, some pathways
that may not be active in liver can be identified as circadian. For example
small cell lung cancer, SNARE interactions in vesicular transport, prion disease
are not defined in liver tissue. For the statistical analysis, we are not biased by
the tissue specific pathways; however an additional filtering is performed for
the biologically relevant pathways.
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carbon pool by folate are coupled with purine and pyri-
midine metabolism [29].

Discussion
The goal of this study is to characterize the dynamic
evaluation of pathways based on transcriptional profil-
ing. Pathway activity level formulation enabled us to
identify circadian signatures of pathways by reducing
the overall gene expression level to a single response.
We improved the former formulation of the pathway
activity level analysis with an additional significance ana-
lysis that enhanced our ability to detect relevant circa-
dian changes and reduce the false positives.
Synthetic data was used to demonstrate that pathway

activity levels formulation are more robust than the
individual gene expression levels in identifying underly-
ing circadian expression pattern within a pathway. It
was shown that pathway activity levels can capture the
orchestrated change of all the gene expression within a
pathway, whereas analysis at the individual gene expres-
sion levels could miss moderate but steady changes in
the gene expression levels within a pathway. In addition,
synthetic data is used to illustrate that the significance
analysis of pathway activity levels is necessary to evalu-
ate whether the identified circadian pattern is signifi-
cant. Even though pathway activity levels identify a
circadian pattern, the data captured by the pathway

activity levels may not be significant and can be asso-
ciated with random variations in the data.
In addition, we evaluated pathway activity levels based on

a rich time series of transcriptional profiling in rat liver [9]
where the rats were maintained in 12:12 light/dark cycle
and exposed to the least possible environmental distur-
bances to minimize stress. Unlike the synthetic data, we
did not know the underlying patterns in the microarray
data. As a result of the clustering analysis, the most popu-
lated patterns of pathway activity levels exhibited circadian
rhythms (Figure 3). The over-representation of specific pat-
terns in the data cannot be explained by random events.
Therefore, we can conclude that pathway activity level can
identify the underlying circadian pattern in the data.
The five main clusters shown in Figure 3 represent the

presented curves and the exact reverse curves; PAL = (-)
PAL. The turning points can characterize both the peak
and the nadir points in biochemical processes. In Figure
3, the signs of PALs are chosen so that PALs have the
similar patterns for a better representation and cluster-
ing purposes. The sign of PAL can be chosen based on
the pattern the genes that have the highest contribution
to PAL. For example, we represent pathway activity
levels of cholesterol biosynthesis and bile acid synthesis
peaking in dark period (Figure 8). From the literature;
we know that these pathways peak during the dark per-
iod when the animals are actively feeding.

Figure 8 Fitted sinusoidal models of pathway activity levels for cholesterol biosynthesis and bile acid biosynthesis.
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Moreover, the list of the genes that exhibit circadian
dynamics were mapped to 34 pathways. Our unsuper-
vised approach identified the entire 34 mapped pathway,
whereas nine of mapped pathway exhibited statistically
significant enrichment. Additional biologically relevant
pathways were identified by pathway activity level analy-
sis such as pathways related to cell cycle, DNA replica-
tion and apoptosis exhibited having circadian dynamics
in mammals [26,30]. Similar to synthetic data, analysis
of biological data emphasizes studying at the individual
gene expression levels could miss changes at the path-
way level.
Characterizing the circadian regulation at the pathway

level is an important piece of information that may help
reveal the complex relationships such as understanding
the liver functioning. The biological relevance of pathway
activity level formulation to analyze circadian rhythms is
well illustrated by analyzing coupled pathways. As shown
in Figure 8, PAL analysis suggests that bile acid biosynth-
esis pathways are intrinsically coupled with cholesterol
biosynthesis pathway, which is the case as reported by
previous studies. Furthermore, this is physiologically
important as cholesterol is an important substrate for the
biosynthesis of both bile acids. Bile acids are involved in
the digestion of dietary lipids and higher levels of bile
acid biosynthesis occur during the dark period which
represents the active feeds period in rats.
Moreover, we observe series of pathways related to

protein synthesis and degradation having circadian pat-
terns. Studies examining the gene expression and
enzyme activities related to amino acid metabolism
showed persistent circadian rhythms [17]. These studies
indicate that amino acid metabolism components tend
to correlate with food intake. Though no conclusive evi-
dence is available, transport and metabolic substrates of
amino acids have shown clock-regulated changes.
This current analysis is limited, as any pathway

method, by currently available pathway knowledge. For
example, there are two genes, SHMT1 and SHMT2,
which have exactly opposite circadian oscillations in
gene expression and hence opposite weights. SHMT1 is
a cytosolic enzyme and SHMT2 is a mitochondrial
enzyme. Though they catalyze the same reaction, the
cellular purposes of these enzymes are different. In addi-
tion, several genes not linked to known pathways are
not considered in pathway analysis. As more specific
pathway databases such as tissue specific pathway data-
bases or cellular compartment specific pathway data-
bases are created and the pathway knowledge databases
are improved, the power of this pathway analysis
method will increase. Another limitation of this study is
that it looks the dynamics of the pathway only at
the mRNA levels. But it is a known fact that many

biological processes are also regulated at the levels of
translation of proteins (like microRNA regulation), acti-
vation state (phosphorylation, functionalization, etc),
degradation and interaction with other proteins. But
again this is just the limitation of the dataset available
and we are confident that the methodology can be
applied to any proteomics, microRNA arrays dataset, etc
in the same way as we applied for our dataset.

Conclusions
In summary, rather than assessing the importance of a
single gene beforehand and map these genes onto path-
ways, we instead examined the orchestrated change
within a pathway. Pathway activity level analysis could
reveal the underlying circadian dynamics in the microar-
ray data with an unsupervised approach and biologically
relevant results were obtained. We believe that our ana-
lysis of circadian pathways based on transcriptional pro-
filing can contribute to filling the gaps between
circadian regulation and biochemical activity. While
transcriptional profiling is a valuable tool for unreveal-
ing potential connections between the circadian clock
and biochemical activity [31], complementing the tran-
scriptional studies with proteomic and metabolomics
analyses will provide new insights to the circadian
phenomenon.

Additional material

Additional file 1: The relative values of the associated eigenvalues
for glycine, serine and threonine metabolism. The bars indicate the
variation in the data captured by each individual eigenvector for glycine,
serine and threonine metabolism pathways. T solid line represents the
data variability captured by the corresponding eigenvectors when
randomly generated data (of the same dimension) were used. No
apparent distinction between the actual data and randomly generated
data was identified after the first eigenvalue, as quantified by the
calculated p-values.

Additional file 2: The first 4 rows of V ′
P (t, t) that are retrieved from

SVD calculations of Glycine, serine and threonine metabolism the
elements of SP (k, t) are sorted from the highest to the lowest.
1) V ′

P (t, 1) 2) V ′
P (t, 2) 3) V ′

P (t, 3) 4) V ′
P (t, 1)

Additional file 3: Pathway activity levels of five clusters and
associated information of the genes in pathways. The excel file
contains two sheets. First sheet, Pathway Activities includes the pathway
activity levels and associated cluster numbers. Second Sheet contains the
genes in selected pathways and associated information such as gene
expression, weights and correlations.

Additional file 4: Enriched pathways by circadian genes. The
circadian genes were mapped to canonical pathways provided by
http://www.broadinstitute.org/gsea/msigdb/. p-values indicate the
significance of the overlap of the circadian genes within a pathway

Additional file 5: Individual gene expressions in cholesterol
biosynthesis. Associated weights and correlations with the fitted
sinusoidal model were given on top of each panel.

Additional file 6: Individual gene expressions in bile acid
biosynthesis. Associated weights and correlations with the fitted
sinusoidal model were given on top of each panel.
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BackgroundCircadian rhythms are 24 hour oscillations in many behavioural, physiological, cellular and molecular processes that are controlled by an endogenous clock which is entrained to environmental factors including light, food and stress 1. These oscillations synchronize biological processes with changes in environmental factors thus allowing the organism to adapt, anticipate, and respond to changes effectively.Some examples of the biological processes and parameters that show circadian oscillations include body temperature, sleep-wake cycles, endocrine functions, hepatic metabolism and cell cycle progression 2. Furthermore, disruption of circadian oscillations is linked to many diseases and disorders including cancer, metabolic �syndrome, obesity, diabetes, and cardiovascular diseases. In mammals, the central (sometimes referred to as the master) clock is present in the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus. Circadian oscillators that are present in other parts of the brain and in other organs are referred to as �peripheral clocks� and are controlled by the central master clock. At the molecular level the clock mechanism involves a transcriptional and post-transcriptional auto-regulatory negative feedback loop consisting of BMAL1 and CLOCK transcription factors which form the positive arm and the PERIOD and CRYPTOCHROME transcription factors which form the negative arm of the feedback loop 34. In addition to these core transcription factors, many other transcription factors which are directly regulated by the core factors including REV-ERBs, RORs and PAR-bZip transcription factors are also involved in the regulation of the circadian expression of the transcriptome which in turn regulates various biological processes 567.Transcriptional analyses of circadian patterns 18910, performed in both drosophila and mammalian systems, demonstrate that genes showing circadian rhythms are part of a wide variety of biological pathways. The expression of several circadian rhythms in a single pathway may ensure a tighter circadian regulation of a pathway or be parts of the circadian clock taking place in other biological functions. The issue of this type of analysis, however, is that moderate but steady changes in the gene expression levels within a pathway could be missed if relatively few individual genes appear significant. Consequently, the identification of biological pathways related to circadian phenomenon could be missed.We propose to analyze the gene expression data at the pathway level. The starting point of such an analysis is that moderate but steady circadian patterns in the gene expression levels within a pathway could be missed if relatively few individual genes appear circadian. The effectiveness of this approach was illustrated in a study comparing gene expression profiles in muscle of type 2 diabetics (DM2) relative to non-diabetics by 11. Gene-set enrichment analysis (GSEA) revealed a subset of genes involved in oxidative phosphorylation as being differentially expressed, even though no single gene appeared as differentially expressed between samples. The relationship between oxidative phosphorylation and DM2 is richly supported by the literature 11. To address the time course gene expression data, Rahnenfuhrer et al. identified the degree of co-expression of genes within a pathway over time 12. First, the average correlation between gene expression levels within a pathway is computed. Then, the significance of the average correlation of within a pathway is evaluated by a randomization procedure based on the entire microarray. This method, however, can only evaluate whether there is a significant gene expression pattern within a pathway but cannot illustrate the significant pattern itself. Therefore, this method is not able to identify the circadian pattern of a pathway. Alternatively, pathway activity method 13 can identify the significant pattern of the gene expression levels within a pathway. In this method, the overall gene expression levels are translated to a reduced form, pathway activity levels, via singular value decomposition (SVD). A given pathway represented by pathway activity levels can then be as analyzed using the same approaches used for analyzing gene expression levels 13. Yet, pathway activity method is applied only to evaluate the differentiation between two treatment groups 1314, i.e. control and treated samples. We propose to use pathway activity method across time to identify underlying circadian pattern of pathways.Liver is an important organ that is involved in carrying out a wide variety of critical processes including systemic energy regulation processes, metabolism and detoxification of both endogenous and exogenous compounds and hormonal production 9. Liver is the only tissue that stores glucose in the form of glycogen that can be released in response to glucagon or epinephrine to maintain systemic concentrations 15. In addition to glucose storage and release, liver can also synthesize glucose de novo through the process of gluconeogenesis. In addition to carbohydrate metabolism, the liver is central to whole body lipid metabolism. About one-half of the cholesterol in the body is produced in the liver, much of which is used for bile acid synthesis 16. Furthermore, liver is the most important organ that is involved in the metabolism of many drugs and hence contributes to the disposition of these compounds from the body 2. Proper timing of these processes is of utmost importance for the maintenance of the homeostasis in the system. Previous studies have shown that circadian rhythms are observed at all levels of organization in liver from molecular to the cellular level such as enzyme activity, gene expression, metabolite concentration, DNA synthesis and morphological changes 17. One of the important levels of organization in the cell is biochemical pathways, which are the ensemble of biochemical reactions to fulfil a particular function. An appreciation of the circadian characteristics of the biological pathways in liver is essential for understanding both the normal physiological and pathophysiological functioning of liver.In this paper, we used synthetic data to demonstrate that pathway activity analysis can evaluate the underlying circadian pattern within a pathway even when circadian patterns cannot be captured by the individual gene expression levels. In addition, we illustrated that pathway activity formulation should be coupled with a significance analysis to distinguish biologically significant information from random deviations. Next, we performed pathway activity level analysis on a rich time series of transcriptional profiling in rat liver 9. The over-represented specific patterns of pathway activity levels exhibited circadian rhythms.MethodsExperimental DataFifty-four male normal Wistar animals (250-350 g body weight) were housed in a stress free environment with light: dark cycles of 12 hr:12hr. Animals were sacrificed on three successive days at each of 18 selected time points within the 24 hour cycle. The time points were 0.25, 1, 2, 4, 6, 8, 10, 11, 11.75 hr after lights on to capture light period and 12.25, 13, 14, 16, 18, 20, 22, 23, 23.75 h after lights on to capture the dark period. To obtain a clear picture, two 24 hour periods were concatenated to obtain a 48 hour period and are meant only as a visual check that curves do in fact �meet� at the light/dark transitions Our research protocol adheres to the �Principles of Laboratory Animal Care� (NIH publication 85-23, revised in 1985) and was approved by the University at Buffalo Institutional Animal Care and Use Committee. The details of the experiment can be found in 9. The data is available under the accession number GSE8988 http://www.ncbi.nlm.nih.gov/geo/.Circadian signature of gene expression levelsThe circadian pattern of a gene expression is approximated using the sinusoidal model A � sin(B �t + C) 9. The coefficients are amplitude (A), frequency (B), and phase (C) of the model. The frequency of the sinusoidal model identifies the essence of the circadian behaviour, which is characterized by one full period in 24 hour. The multiplication of total time (t, 24 hr) and frequency (B) should be equal to 2�� in order to characterize one full period (circadian) by the sinusoidal model.A non-linear curve fitting algorithm is used to define the parameters of the sinusoidal model that would fit best to the gene expression levels over time. The fitted models that have the coefficient B between 0.24 and 0.28 are kept for further analysis to assure the circadian dynamics. Once a model is built for a given gene expression level, the correlation between the data and the model is the criterion to define the circadian signature. Genes are characterized as exhibiting circadian pattern if the correlation between the gene expression and the fitted sinusoidal model is equal or greater than 0.8.Pathway Activity LevelsWe adapted the pathway activity level formulation to include an additional statistical analysis to evaluate pathway levels 13. The pathway activity analysis begins with mapping gene expressions of microarray onto pathways. Pathway annotations of gene expressions are retrieved from the publicly available database The Molecular Signatures Database (MSigDB) 18. Subsequently, gene expression levels within a given pathway are reduced to the pathway activity levels using singular value decomposition (SVD). It is considered that pathway activity levels express the underlying dynamics of a pathway. Next, the significance of the pathway activity levels is evaluated with respect to a randomly permutated microarray data. Then, pathways are filtered out based on the significance analysis.The matrix �P (k,t) is composed of k genes and t different conditions (correspond to time points and samples) for the gene expression matrix of a given pathway P of size k genes and t samples, and is normalized to have a mean of 0 and a standard deviation of 1. The singular value decomposition (SVD) of �P (k,t)is given as:�P(k,t)=UP(k,k)�SP(k,t)�V2p(t,t)�The columns of the matrix UP (k, k)are the orthonormal eigenvectors of �P (k,t). The SP (k,t) is a diagonal matrix containing the associated eigenvalues, and the columns of the matrix V2p(t,t)are projections of the associated eigenvectors of �P (k,t). As the elements of SP (k,t) are sorted from the highest to the lowest, the first row of V2p(t,t), represents the most significant correlated gene expression pattern within a pathway across different samples. Pathway activity level, PALP (t) is defined as the first eigenvector of the V2p(t,t)PALP(t)=V2p(t,1)�The first column of UP (k, k) is a vector of weights, one weight for each gene within the pathway. The weights can be positive or negative values indicating the�direction of the expression levels with respect to the pathway activity levels. A higher absolute weight of a gene specifies a higher contribution to PALP (t)The fraction of the overall gene expression (fP) that is captured by PALP (t) is:fP=SP(1,1)2�g=1tSP(g,g)2�To evaluate whether PALP (t) can represent significant information of the pathway of interest, referred as the significance analysis of PALP (t) in this study, we perform an additional analysis. This analysis indicates whether there is significant expression pattern shared by individual genes within a pathway 14. This is performed by evaluating the significance of the fP value. First, 10,000 random gene sets of the same size of each pathway are generated from the microarray. Next, the fP values for the random data sets are evaluated and compared to the actual fP value. The p-value of fP is computed as the fraction of the fP of the randomly generated matrices that exceeded the actual fP . If the fP of the randomly generated matrices exceeds the actual fP by more than 5%, then the actual fP is attributed to a random variation in the microarray data (p-value < 0.05). Finally, the pathways are filtered based on the associated p-value of their fP value.Subsequently, PALP (t) (Eq. (2)) is applied to describe the pathway activity levels over time. Each entry of PALP (t) represents the pathway activity level of corresponding experimental condition (�P (k,t)includes replicate measurements at each time point). However, PALP (t) do not indicate any up-or down-regulation in pathway behaviour, instead PALP (t) evaluates the relative change across different experimental conditions. The sign PALP (t) can be chosen based on the pattern the genes that have the highest contribution to PALP (t) (PALP (t)a-PALP (t)) 13.Clustering Analysis of Pathway Activity LevelsTo cluster the statistically significant pathway activity levels, we applied an unsupervised clustering approach proposed by Nguyen et al. 19. This approach was applied to detect the significant clusters of co-expressed genes. In this study, we use pathway activity levels instead of gene expression levels.First, ANOVA is used as a part of the clustering algorithm of the pathway activity levels, where three replicates of each measurement are averaged 20. Therefore, we applied ANOVA (p-value < 0.01) to remove the pathway activity levels that are not statistically changing across time points prior to the clustering calculation. ANOVA analysis ensures that the observed changes in pathway activity levels occur over time. Following, repeated measurements are averaged for clustering 20. Subsequently, the optimum number of clusters are decided after considering several clustering methods (hclust, diana, kmeans, pam, som, mclust), metrics (Euclidian, Pearson correlation, and Manhattan) and an agreement matrix that quantifies the frequency which two pathways belong to the same cluster based on the pathway activity levels. Then a subset of pathways is selected to ensure that no pathway is present with an ambiguous cluster assignment with any other pathway in the analysis with a confidence level �. The � is the threshold to say whether the agreement level of two pathways belong to one (�). or two clusters (1 -�) is consistent or not. The last step is dividing the selected subset into a number of patterns based on the agreement matrix. The details of the algorithm can be found in 19. In this analysis we use � = 0.65.Synthetic DataA hypothetical pathway that consists of 45 gene expressions across T = 54 samples (3 replicates at 18 time points) is constructed following previously described methods. The gene expression values within the synthetic pathway, gi, are generated based on a widely accepted model of periodic gene expressiongi=��cos(ɷt+�)+�t�Where � is a positive constant, � � (0, �), � uniformly distributed in (-�, �] where �t is a sequence of uncorrelated random variables with mean 0 and variance �2 , independent of �. We assume � = 0 for all simulated profiles. In order to simulate different signal to noise ratios we also assume the amplitude for baseline variation constant, but add different noise component � for individual profiles. The � value for each fraction was taken as a random number �t �[0,50�i], i = 0,1,2,...100. When the noise level, i, is zero, all 45 genes have the same circadian pattern. As we increase the noise level, the profiles of the individual gene expressions deviate from the circadian pattern and converge to random variation.To quantify the effect of the noise level on the individual genes within the synthetic pathway, 1000 replicates of the synthetic pathway are generated at different noise levels. For each generated replicate, the fraction of the circadian genes within the synthetic pathway is evaluated and then compared to a given percentage value, i.e. 50%. If the actual the fraction of the circadian genes within the synthetic pathway is smaller than the 0.5, the event that 50% of the genes within the synthetic pathway are circadian is attributed to a random variable. The ratio of the total number of the event that 50% of the genes within the synthetic pathway are circadian to 1000 identifies the p-value. In addition to p-value for the event that 50% of the genes within the synthetic pathway are circadian, p-values for the event that 10% and 90% of the genes within the synthetic pathway are circadian at different noise level.We evaluate the PALP (t) of the synthetic data as the noise level is increased and a non-linear curve fitting algorithm is used to define the parameters of the sinusoidal model that would fit best to the pathway activity levels over time. The procedure for the determination of circadian pattern of pathway activity levels is similar to the determination of circadian pattern of gene expression levels. The synthetic pathway is identified as exhibiting a circadian pattern if the correlation between PALP (t) and the fitted sinusoidal model is equal to or greater than 0.8.ResultsSynthetic DataTo test the hypothesis that pathway activity analysis can identify changes that emerge at the pathway level that cannot be identified at the individual gene expression level, a synthetic pathway consisting of 45 genes was constructed and data representative of circadian pattern is generated at different noise levels. Subsequently we compared the significance of the event when 90, 50 and 10% of the genes within the synthetic pathway are circadian. These results are compared with the significance of the synthetic pathway showing circadian pattern in its pathway activity level in Figure 1. For either method, a significance value close to unity indicates that the event is highly likely. A typical threshold used to consider the significance of an event is 0.95. The purpose of this analysis is to evaluate the effect of noise level on the number of genes showing circadian pattern within the pathway.From Figure 1, we observe that at low noise levels (0 < i < 6) we are confident that at least 90% of the genes within the synthetic pathway are circadian. However, the confidence level of detecting 90% of the genes is circadian decreases sharply as we increase the noise level. At this noise level, the underlying circadian pattern can be identified via both evaluating the circadian genes and pathway activity levels. At a noise level of 17, we can confidently conclude that only 50% of the genes are circadian. At higher noise levels, i.e. i = 30, we cannot even conclude that 10% of the genes are circadian (p-value > 0.05). Thus gene expression alone will not be able to provide information about the significant circadian pattern at this noise level. However, pathway activity analysis predicts with high confidence level (p-value < 0.0001) that there is an underlying circadian pattern within the synthetic pathway at this noise level (i = 30). Therefore, pathway activity levels are more robust than the gene expression levels in identifying underlying expression pattern within a pathway.Nevertheless, a critical issue arises when we consider whether the variation captured by PALP (t) can represent the overall gene expression within a pathway. While we can be confident that a circadian pattern does exist, we cannot be confident that this pattern is real or due to random variations. To address this issue of random noise in the data vs. real gene expression changes, we evaluated the significance of the PALP (t) (presented in Figure 2 at different noise levels). Even though PALP (t) might predict confidently a circadian pattern, that event could be the results of random variability in the data, as quantified by the significance of PALP (t). For example, at � = 10, the significance of the synthetic pathway being circadian is high; however, the significance of PALP (t) is considerably lower. This result indicates that the observed pattern cannot be solely attributed to the underlying structure of the data. Therefore, determining significance level PALP (t) is necessary for a reliable representation of circadian pathways.Circadian Signatures of Pathways in Rat LiverWe analyzed a rich time series of transcriptional profiling in rat liver where the rats were maintained in 12:12 hours light/dark cycle and exposed to the least possible environmental disturbances to minimize stress. We evaluated pathway activity level analysis on the microarray data and following applied a clustering analysis of the pathway activity levels.As a result of the significance analysis fP 486 of the 638 defined pathways in MSigDB are considered for further analysis. Having eliminated the pathway activity levels that do not exhibit a significant change over time (ANOVA, p-value < 0.01), the clustering analysis yielded five significant patterns of pathway activity levels (Figure 3). We follow an unsupervised approach and identify the emergent pathway activity level patterns that appeared to have sinusoidal circadian patterns. The significant clusters represent the most populated pathway activity levels patterns within the data, whereas the rest of the data can be associated with random deviations. To quantify the characteristics of the circadian patterns, we perform the approximation of the centroid of each cluster to a sinusoidal function. The correlation between the centroid of each cluster and the associated fitted sinusoidal model exhibit high correlation (correlation = > 0.96, given on top of each graph in Figure 3). The outline of this analysis is depicted in Figure 4.The peak and nadir points are referred as the turning points. Cluster 1, Cluster 2 have their turning points around the middle of the light period (~6th-8th hours of the 24 hour cycle) and around the middle of the dark period (~18th and 20th hours 24 hour cycle). Cluster3, Cluster 4 and Cluster 5 have their turning points around the transition between the light and the dark period (~10th-13th hours of the 24 hour cycle) and their the turning points around the beginning of the light period and at the end of the dark period (~1st -2nd hours and ~20th and 22nd of the 24 hour cycle).Evaluating pathway activity levels resulted cases where two pathways have similar fraction of overall gene expression captured by PALP (t), fP values, however the associated p-values, vary significantly. In example, fP MAPK Pathway, Nicotinate and nicotinamide metabolism and glycine, serine and threonine metabolism pathway are 0.23, 0.21 and 0.22 respectively (top panel of Figure 5). On the other hand, their associated p-values are rather different; 0.66, 0.12 and 0, respectively (top panel of Figure 5). Depending on the size of the pathways, which is number of the genes within a pathway, fP value can be obtained from random variations. Therefore, fP value itself is not an objective feature to identify whether the information captured overall gene expression by PALP (t)is significant. The significance analysis of PALP (t) enables us to filter out pathways that exhibit circadian rhythms by chance. For example, MAPK pathway and Nicotinate and nicotinamide metabolism may be identified as exhibiting circadian pattern without the significance analysis of PALP (t) because PALP (t) of MAPK Pathway and Nicotinate and nicotinamide metabolism exhibit high correlation with the fitted sinusoidal model (bottom left and bottom middle panels in Figure 5).Glycine, serine and threonine metabolism exhibit both significant PALP (t) and high correlation with the fitted sinusoidal model (top right and bottom right panels in Figure 5). To study the effect of individual gene expression on the pathway activity level, we depict the relationship between the weights and the correlation of the individual genes (the correlation between gene expression levels and the fitted sinusoidal model that represent the circadian pattern) in glycine, serine and threonine metabolism pathway Figure 6. The weight of a gene characterizes its contribution to the pathway activity level compared to the rest of the genes in the pathway.It can be seen from Figure 6, that Gldc, Cth, Chka, Chkb, Cbs, Bhmt and Shtm1 exhibit circadian patterns (correlation > 0.8) and also their weights are among the highest (weight > | -0.25|). In addition, the genes, which correlation is slightly under the threshold (correlation ~>�0.7) such as Gatm, Shtm2 and Alas1, have comparably higher absolute weights (weight ~> | -0.25|). The positive and negative values of weights indicate the direction of the gene expression when compared to the pathway activity level. In example, the genes that have negative weights have their peak in the early light period and their nadir in the early dark period (e.g. Chka, Cth), whereas the genes that have positive values have their nadir in the early light period and peak in the early dark period (e.g. Shmt1) (Figure 7.). The pathway activity levels of glycine, serine and threonine metabolism (bottom right panel in Figure 5) follow the genes that have the positive weight value (e.g. Chka, Cth) and have its turning point in the early light period. The sign (positive or negative) of the weights can be chosen to represent pathway activity level as pathway activity levels indicate the overall orchestrated significant change in the gene expression within a pathway. Furthermore, we observe that there are genes, which correlation is slightly under the threshold (correlation ~> 0.7) but they have low absolute weights (weight ~< 0) such as Atp6voc and Sardh. The expression pattern of these genes, (as an example we depicted the expression pattern of Atp6voc in Figure 7) does not coincide with the rest of the genes that have higher absolute weights, therefore do not contribute to the pathway activity level as much and has low weights.By applying SVD, a number of possible correlated variables (gene expressions) are mapped onto a smaller number of uncorrelated variables (the rows of V2p(t,t) in Eq. (1). Pathway activity is denoted as the most significant data pattern which corresponds to the first row of V2p(t,t) (Eq.(2))as the elements of SP (k,t) are sorted from the highest to the lowest (Additional File 1). The latter rows correspond to the other patterns which significances are determined with the associated eigenvalues. The matrix V2p(t,t)is orthonormal matrix; therefore the rows represent different data patterns. The two sets of circadian patterns in glycine, serine and threonine metabolism (Figure 7) are retrieved via the first two rows of V2p(t,t). V2p(t,1) and V2p(t,2) have high correlation with fitted sinusoidal model (Additional File 2.). The p-value of V2p(t,1) is statistically significant whereas the p-value of V2p(t,2) is not statistically significant.Table 1 provides the detailed list of identified pathways in each cluster. In total, there are 78 pathways in five clusters. The list of genes in these pathways, associated gene expressions, the weights, the correlation between fitted sinusoidal model and the individual gene expressions can be found in Additional File 3. The identification of the circadian signatures at the pathway level identified biologically relevant processes. As such, gene expression, metabolite concentration and enzyme activity in energy metabolism (e.g. glycolysis and gluconeogenesis), amino acid metabolism (e.g. lysine degradation, urea cycle) 2324, lipid metabolism (e.g. fatty acid biosynthesis) 25 and DNA replication and protein synthesis (e.g. DNA replication reactome, Purine metabolism) 26 exhibited having circadian dynamics in mammals liver.In addition, we evaluated the enrichment of the pathways with the genes that exhibited circadian patterns in 9. MSigDB database 18 offers an annotation tool that explore gene set annotations to gain further insight into the biology behind a gene set in question. The end result is a p-value indicating the significance of the overlap of the genes with a pathway http://www.broadinstitute.org/gsea/msigdb/annotate.jsp.The genes that exhibit circadian dynamics in 9 have been mapped to 34 pathways (Additional File 4), nine of which have significant p-value < 0.05.To further explain the biological significance of the pathway activity level analysis, we studied the coordination between different pathways that is another level of organization in cellular processes, especially in cases where the product of one pathway is the substrate of another pathway. One classic example is the production of bile acids and it needs cholesterol as its starting material. Previous studies have shown that the pathways for steroid and bile acid biosynthesis are coordinated and coupled with cholesterol biosynthesis pathway for maximizing the efficiency of these processes. It has been established that bile acid levels are tightly controlled to ensure appropriate cholesterol catabolism, and promote optimal solubilization and absorption of fat and other essential nutrients 2527. Figure 8 shows the fitted sinusoidal models of PAL curves for cholesterol and bile acids biosynthesis. From the Figure 8, we could see that both pathways shows circadian rhythmicity with the phase of oscillations for cholesterol biosynthesis with a peak reaching at 15 hours after lights on, but the bile acid biosynthesis pathway shows a slight time lag in its oscillation with the peak occurring at 17 hours after lights on. In the figure, the PAL curves reach its peak during the mid-dark period and nadir during the mid-light period. As mentioned previously, the peak and nadir of PAL curves represent the maximum variation in the temporal gene expression in the pathway and the exact reverse of the PAL curve is mathematically same as the PAL curve itself (PAL-PAL). But from the literature, we know that these pathways peak during the dark period when the animals are actively feeding. Furthermore, the circadian oscillations in expression of many of the genes involved in the pathway (including the rate limiting genes like HMGCR for cholesterol biosynthesis 16 and CYP7A1 for bile acid biosynthesis 28 peaks during the dark/active period in the 24 hours light/dark cycle. So to deduce the biological significance of the PAL curve, along with the PAL curve pattern one should take into account of the oscillation patterns of the individual gene expression (including the rate limiting genes) along with any existing knowledge about the biological function and regulation of a given pathway. Additional file 5 and 6 provides the expression of individual genes in these pathways. Similar coupling of pathways are observed such as folate biosynthesis and one carbon pool by folate are coupled with purine and pyrimidine metabolism 29.DiscussionThe goal of this study is to characterize the dynamic evaluation of pathways based on transcriptional profiling. Pathway activity level formulation enabled us to identify circadian signatures of pathways by reducing the overall gene expression level to a single response. We improved the former formulation of the pathway activity level analysis with an additional significance analysis that enhanced our ability to detect relevant circadian changes and reduce the false positives.Synthetic data was used to demonstrate that pathway activity levels formulation are more robust than the individual gene expression levels in identifying underlying circadian expression pattern within a pathway. It was shown that pathway activity levels can capture the orchestrated change of all the gene expression within a pathway, whereas analysis at the individual gene expression levels could miss moderate but steady changes in the gene expression levels within a pathway. In addition, synthetic data is used to illustrate that the significance analysis of pathway activity levels is necessary to evaluate whether the identified circadian pattern is significant. Even though pathway activity levels identify a circadian pattern, the data captured by the pathway activity levels may not be significant and can be associated with random variations in the data.In addition, we evaluated pathway activity levels based on a rich time series of transcriptional profiling in rat liver 9 where the rats were maintained in 12:12 light/dark cycle and exposed to the least possible environmental disturbances to minimize stress. Unlike the synthetic data, we did not know the underlying patterns in the microarray data. As a result of the clustering analysis, the most populated patterns of pathway activity levels exhibited circadian rhythms (Figure 3). The over-representation of specific patterns in the data cannot be explained by random events. Therefore, we can conclude that pathway activity level can identify the underlying circadian pattern in the data.The five main clusters shown in Figure 3 represent the presented curves and the exact reverse curves; PAL = (-) PAL. The turning points can characterize both the peak and the nadir points in biochemical processes. In Figure 3, the signs of PALs are chosen so that PALs have the similar patterns for a better representation and clustering purposes. The sign of PAL can be chosen based on the pattern the genes that have the highest contribution to PAL. For example, we represent pathway activity levels of cholesterol biosynthesis and bile acid synthesis peaking in dark period (Figure 8). From the literature; we know that these pathways peak during the dark period when the animals are actively feeding.Moreover, the list of the genes that exhibit circadian dynamics were mapped to 34 pathways. Our unsupervised approach identified the entire 34 mapped pathway, whereas nine of mapped pathway exhibited statistically significant enrichment. Additional biologically relevant pathways were identified by pathway activity level analysis such as pathways related to cell cycle, DNA replication and apoptosis exhibited having circadian dynamics in mammals 2630. Similar to synthetic data, analysis of biological data emphasizes studying at the individual gene expression levels could miss changes at the pathway level.Characterizing the circadian regulation at the pathway level is an important piece of information that may help reveal the complex relationships such as understanding the liver functioning. The biological relevance of pathway activity level formulation to analyze circadian rhythms is well illustrated by analyzing coupled pathways. As shown in Figure 8, PAL analysis suggests that bile acid biosynthesis pathways are intrinsically coupled with cholesterol biosynthesis pathway, which is the case as reported by previous studies. Furthermore, this is physiologically important as cholesterol is an important substrate for the biosynthesis of both bile acids. Bile acids are involved in the digestion of dietary lipids and higher levels of bile acid biosynthesis occur during the dark period which represents the active feeds period in rats.Moreover, we observe series of pathways related to protein synthesis and degradation having circadian patterns. Studies examining the gene expression and enzyme activities related to amino acid metabolism showed persistent circadian rhythms 17. These studies indicate that amino acid metabolism components tend to correlate with food intake. Though no conclusive evidence is available, transport and metabolic substrates of amino acids have shown clock-regulated changes.This current analysis is limited, as any pathway method, by currently available pathway knowledge. For example, there are two genes, SHMT1 and SHMT2, which have exactly opposite circadian oscillations in gene expression and hence opposite weights. SHMT1 is a cytosolic enzyme and SHMT2 is a mitochondrial enzyme. Though they catalyze the same reaction, the cellular purposes of these enzymes are different. In addition, several genes not linked to known pathways are not considered in pathway analysis. As more specific pathway databases such as tissue specific pathway databases or cellular compartment specific pathway databases are created and the pathway knowledge databases are improved, the power of this pathway analysis method will increase. Another limitation of this study is that it looks the dynamics of the pathway only at the�mRNA levels. But it is a known fact that many biological processes are also regulated at the levels of translation of proteins (like microRNA regulation), activation state (phosphorylation, functionalization, etc), degradation and interaction with other proteins. But again this is just the limitation of the dataset available and we are confident that the methodology can be applied to any proteomics, microRNA arrays dataset, etc in the same way as we applied for our dataset.ConclusionsIn summary, rather than assessing the importance of a single gene beforehand and map these genes onto pathways, we instead examined the orchestrated change within a pathway. Pathway activity level analysis could reveal the underlying circadian dynamics in the microarray data with an unsupervised approach and biologically relevant results were obtained. We believe that our analysis of circadian pathways based on transcriptional profiling can contribute to filling the gaps between circadian regulation and biochemical activity. While transcriptional profiling is a valuable tool for unrevealing potential connections between the circadian clock and biochemical activity 31, complementing the transcriptional studies with proteomic and metabolomics analyses will provide new insights to the circadian phenomenon.Authors� contributionsMAO and SS performed the analysis. RRA, DCD and WJJ assisted in data interpretation. IPA supervised the study. All authors read and approved the final manuscript.
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