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A grammar-based distance metric enables fast
and accurate clustering of large sets of 16S
sequences
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Abstract

Background: We propose a sequence clustering algorithm and compare the partition quality and execution time
of the proposed algorithm with those of a popular existing algorithm. The proposed clustering algorithm uses a
grammar-based distance metric to determine partitioning for a set of biological sequences. The algorithm performs
clustering in which new sequences are compared with cluster-representative sequences to determine membership.
If comparison fails to identify a suitable cluster, a new cluster is created.

Results: The performance of the proposed algorithm is validated via comparison to the popular DNA/RNA
sequence clustering approach, CD-HIT-EST, and to the recently developed algorithm, UCLUST, using two different
sets of 16S rDNA sequences from 2,255 genera. The proposed algorithm maintains a comparable CPU execution
time with that of CD-HIT-EST which is much slower than UCLUST, and has successfully generated clusters with
higher statistical accuracy than both CD-HIT-EST and UCLUST. The validation results are especially striking for large
datasets.

Conclusions: We introduce a fast and accurate clustering algorithm that relies on a grammar-based sequence
distance. Its statistical clustering quality is validated by clustering large datasets containing 16S rDNA sequences.

Background
The amount of biological information being gathered is
growing faster than the rate at which it can be analyzed.
Data clustering, which compresses the problem space by
reducing redundancy, is one viable tool for managing
the explosive growth of data. In general, clustering algo-
rithms are designed to operate on a large set of related
values, eventually generating a smaller set of elements
that represent groups of similar data points. A central
data element may then be used as the sole representa-
tive of a group.
Significant clustering work relating to bioinformatics

may be traced to the late 1990 s when methods for
quick generation of nonredundant (NR) protein data-
bases were developed. These combined identical or
nearly identical protein sequences into single entries
[1-3]. The primary benefits of these methods include

faster searches of the NR protein databases and reduced
statistical bias in the query results [1]. Similarly, compu-
ter programs such as those in ICAtools [4] were devel-
oped for compressing DNA databases by removing
redundant sequences found via clustering resulting in
faster database queries. Note that the use of the term
“clustering” in these applications differs from another
use often found in the literature where clustering refers
to generating a phylogenetic distance matrix, such as in
[5]. The operation of clustering used in this work identi-
fies groups of sequences related by phylogeny; and it
additionally applies to redundancy removal by identify-
ing a sequence that suitably represents similar
sequences.
Recently, DNA/RNA clustering has attracted attention

for a variety of reasons. The drive to lower the expense
of genome sequencing has led to the development of
high-throughput sequencing technologies capable of
generating millions of sequence fragments simulta-
neously. A clustering preprocessing step can be used to
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remove a great amount of fragment redundancy which,
in turn, allows for quicker fragment reassembly.
One of the more popular DNA/RNA clustering algo-

rithms is CD-HIT-EST [6] which was based on the pro-
tein clustering methods of [2,3] and was developed for
clustering DNA/RNA database data such as non-intron-
containing expressed sequence tags (ESTs).
A major application of CD-HIT has been for cluster-

ing large data sets from microbiota analysis (e.g. [7]),
often as a preprocessing step to create sets of highly
related sequences representing operational taxonomic
units (OTUs). These OTUs are subsequently used as a
basis for estimating species diversity between treatment
groups or quantitative relationships of taxa between
treatment groups. Alternatively, representative
sequences from the OTUs are used for phylogeny-based
analyses.
A recent effort in [8] to develop software tools which

reduce the time required by BLAST [9] to search large
biological databases has resulted in a set of programs,
including UBLAST and USEARCH, that reduce the
search time by orders of magnitude. As part of the
work, an additional clustering program called UCLUST
was created which utilizes the heuristic algorithm
provided by USEARCH. UCLUST generates results
that dramatically improve upon the time required by
CD-HIT.
This work presents GramCluster, a fast and accurate

algorithm for clustering large data sets of 16S rDNA
sequences based on the inherent grammar of DNA and
RNA sequences. Lempel-Ziv parsing [10] is used to esti-
mate the grammar of each sequence to provide a dis-
tance metric among sequences. The implementation of
this algorithm allows for fast and accurate clustering of
biological information. The following sections describe
the algorithm and present results, including compari-
sons with the CD-HIT-EST algorithm and the recently
developed UCLUST algorithm.

Results and Discussion
Grammar
Necessary concepts for understanding how a grammar
model is specified are briefly reviewed in this section.
An alphabet, Σ, is a finite, nonempty set of symbols
from which finite-length sequences, or strings, are
formed. Strings are constructed via the binary operation
of concatenation which begins with a copy of the left
string and appends a copy of the right string. A lan-
guage, L, is then defined as a subset of strings selected
from the set of all strings over an alphabet, and a pro-
blem is defined as the question of deciding whether a
given string is a member of some particular language.
That is, given a string, w Î Σ*, and L, a language over Σ,
decide if w Î L.

As L may be infinite, it is useful to have a compact
description of the strings in L. Such an abstract model
is called a grammar, G. Typically, a grammar is specified
by the 4-tuple G = (V, T, P, S), where V is the set of
variables and T is the set of terminals which are sym-
bols that form the strings of L. P is the set of produc-
tions, each of which represent the recursive definition of
L; and S Î V is the start symbol, which is the variable
that defines L. Each production consists of a head vari-
able followed by the production operator ® and a body
string of zero or more terminals and variables. Each
production represents one way to form strings in L
from the head variable.
Given G = (V, T, P, S), the language, L, is defined by

L G w w T S w( ) { | , }.* *= ∈ ⇒  and  

That is, L(G) is the set of all strings derived from S.
It was observed in [11], that a grammar, G, used to

model a string can be converted to an LZ77 representa-
tion in a simple way. The term LZ77 refers to Lempel-
Ziv dictionary-based lossless compression detailed in
[10] and [12]. Subsequently, an algorithm was presented
in [13] to use an inverted process to map an LZ77-com-
pressed sequence into a grammar. While the inverted
process is more involved, it demonstrates the fact that
Lempel-Ziv compression can be thought of as inferring
a grammar from the sequence it compresses. The origi-
nal concept behind abstract grammars is that a gram-
mar, G, is meant to completely describe the underlying
structure of a corpus of sequences. Because most natu-
rally occurring sequences contain repetition and redun-
dancy, grammars are often able to describe sequences
efficiently.

Algorithm
A general overview of the GramCluster algorithm is
shown in Figure 1. The set of sequences, S, is regarded
as input to the algorithm with S = {s1,...,sN}, where si is
the ith sequence and i Î {1,..., N}. The goal of the algo-
rithm is to partition S where each sequence is grouped
with similar sequences from S such that all sequences
within each resulting cluster are more similar to each
other than sequences from other clusters. The final par-
tition is represented by the set of clusters, C = {c1,...,
cM}, where cj is the jth cluster and j Î {1,..., M}. The
algorithm initially generates a suffix tree, ti, and gram-
mar dictionary, di, associated with each sequence, si. For
each sequence, si, these data structures are used to
determine if an existing cluster contains sufficiently
similar sequences to si or if a new cluster needs to be
created. If a cluster, cj Î C, already exists with similar
sequences, the sequence si is added to cj. However, if no
cluster contains similar sequences, a new cluster
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containing only si is added to C. This clustering con-
tinues for all sequences in S. The algorithm is described
in more detail below with reference to the various
blocks in Figure 1.
Dictionary Creation
One of the core processes of the clustering algorithm is
the formation of a distance estimate between an unpro-
cessed sequence, si, and each cluster, cj, already in the
partition, C. To this end, one sequence, called the repre-
sentative sequence, is used to represent all other
sequences within each cluster. The distance between si
and s cr jj

∈ , where sr j represents cj, is used to deter-
mine if si should be added to cj.
Each sequence, si, is compared with, at most, the set

of representative sequences, { | }s s c Cr r jj j
represents ∈ ,

to discover the correct cluster for si.
The distance metric relies on the structural rules

necessarily present in all information-containing
sequences. GramCluster uses the grammar estimation
method based on Lempel-Ziv (LZ) parsing [10,12,14] as
used in [15] for language-phylogeny inference, in [16]
for phylogeny reconstruction, and in [17] to construct a
guide tree for multiple sequence alignment. A similar
grammar-based distance is also the focus of [18] which
analyzes the quality of the distance metric as a function
of the length of the sequences. The primary aspects of
LZ dictionary creation are shown in Figure 2 where a
set of grammar rules for each sequence is calculated.
Initially, the dictionary, di

1 = ∅ , is empty, a fragment, f1

= si(1), is set to the first residue of the corresponding
sequence, and only the first element, si(1), is visible to
the algorithm. At the kth iteration of the procedure, the
kth residue is appended to the fragment resulting from
the (k - 1)th step; and the visible sequence is checked.
If fk ∉ si(1,...,k - 1), then fk is considered a new rule and

so added to the dictionary, d d fi
k

i
k k= ∪−1 { } ; and the

fragment is reset, f k = ∅ . However, if fk Î si(1,...,k - 1),
then the current dictionary contains enough rules to
reproduce the current fragment, i.e., d di

k
i
k= −1 . In

either case, the iteration completes by appending the
kth residue to the visible sequence.
This procedure continues until the visible sequence is

equal to the entire sequence, at which time the size of
the dictionary, |di| is determined for use in the metric
calculation. The correlation of the LZ-based distance
with phylogenetic distance was exploited in [16] to
obtain phylogenies for a set of mammalian species using
complete mitochondrial DNA and for the superfamily
Cavioidea using exon#10 of the growth hormone recep-
tor (GHR) gene, the transthyretin (TTH) gene, and the
12 S rRNA gene. In [19], the same distance metric was
used to obtain phylogenies for fungal species using the
cytochrome b gene and internal transcribed spacer
regions of the rDNA gene complex.
Suffix Tree Construction
As shown in Figure 1 the algorithm also constructs a suf-
fix tree for the sequence. Suffix trees are data structures
designed to contain all L suffix substrings of a length-L
sequence [20-22]. For example, a suffix tree for the
sequence “gagacat” is schematically shown in Figure 3.
All seven suffixes {gagacat, agacat, gacat, acat, cat, at, t}
are found by tracing a unique path from the root node to
one of the seven leaf nodes along solid lines. One valu-
able use of suffix trees is searching for substrings which
can be thought of as the preffix of a suffix. By using a suf-
fix tree, a length-L sequence can be completely scanned
for a length-F fragment in  (F) time as opposed to 
(L) for a brute force search. Also depicted in Figure 3 are
the dashed-line suffix links which are a fundamental fea-
ture for linear-time construction of the suffix tree [22].

Suffix Tree
Construction

Read each 
Sequence

Add to 
Cluster

Write 
Output 

Information

Dictionary
Creation

si

|di|

ti

C

Figure 1 Algorithm overview. The algorithm operates on each sequence, si, which is parsed into a suffix tree, ti, and dictionary, di, for rapid
distance comparison with other sequences. Each sequence is either added to an existing cluster, cj Î C, or becomes the initial representative
sequence in a new cluster, ck.
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A sequence, si, can be converted into a suffix tree, ti,
in linear time and then searched for substrings in linear
time based on the fragment length. As will be shown,
suffix tree sequence representation is important for
reducing the time required for GramCluster to complete
all necessary grammar-based comparisons.

Clustering
The final component of the algorithm depicted in Figure
1 is represented by the block labeled, “Add to Cluster.”
The procedure for adding a sequence to a cluster is
shown in greater detail in Figure 4. The algorithm
checks each cluster, cj Î C, until a cluster is found
where the distance between the representative sequence,
sr j and si,D s sj i r j

= dist( , ) is less than a user-defined
threshold, T. Once this condition is met, the cluster is
updated, cj = cj ∪ {si}; and processing in this block ter-
minates. If no clusters meet the condition of D < T, a
new cluster is created with si as its first member.
The following sections describe the cluster data struc-

ture, the representative sequence selection method, and
the grammar-based distance calculation.
Cluster Data Structure
In order to follow the cluster classification process, it is
helpful to understand the data structure used to repre-
sent each cluster. In particular, every cluster uses a list
of suffix trees, ti, and dictionary sizes, |di|, to identify its
set of sequences. The remaining components contained
in the data structure are used to determine and specify
the representative sequence, sr j , of the cluster, cj.
A good selection for sr j is a sequence that appears
grammatically similar to all other sequences within the
cluster. This implies the need to estimate the grammar-
based distance between all sequences of the cluster, a
computationally expensive task. To avoid this cost,
GramCluster selects only a few specific sequences in the
cluster, that we will call “basis sequences,” to which all
others are compared. The representative sequence, sr j ,
can be determined by considering the sets of relative
distances between all sequences and each basis
sequence. The centroid of the cluster is then defined as
the vector containing the mean values of each set of
relative distances. The sequence with relative distances
nearest to the centroid is selected as sr j .
To see why this method is effective, consider that

clustering is often performed in vector spaces where
each element being classified is specified by a vector.
The points spatially near each other are placed into the
same cluster, and the representative is typically selected
as the point that is closest to the center of the cluster.
This idea is adapted in GramCluster, with an example
depicted in Figure 5. The example in the figure contains
forty sequences plotted in a two-dimensional space.
Each dimension represents the grammar-based distance
between the plotted sequence point and a basis
sequence. The data set used in this example contained
forty 16S rDNA sequences each from four genera (Acet-
obacter, Achromobacter, Borrelia, Flavobacterium). Of
the two initially selected basis sequences, one came
from Acetobacter and the second from Flavobacterium.
Then, the pair of distances between each sequence and

...

0

si(1):

f 1:

|di
1|:

...si(k):

f k:

n|di
k|:

visible

(a) Step k = 1 (b) Start of step k

...si(k+1):

f k+1:

n|di
k+1|:

visible

...si(k+1):

f k+1:

n+1|di
k+1|:

visible

(c) Start of k + 1 (d) Start of k + 1
if fk ∈ si(1, ..., k − 1) if fk /∈ si(1, ..., k − 1)

Figure 2 Dictionary creation steps. Determining the order of the
LZ dictionary, |di|, for sequence si. (a) The initial step in which the
initial fragment, f1, is set to the first letter, si(1), of the sequence.
(b) The start of the kth step in which the kth letter, si(k), is
appended to the current fragment, fk. After the first k - 1 letters of
si are scanned for the occurrence of the fragment, fk, the two
possible outcomes are (c) the fragment is reproducible with
combinations of existing rules, or (d) the fragment is unique up to
this point in the sequence, and so a new grammar rule is added to
the dictionary and the fragment is reset.

a

cat ga

t

gacat catgacat catt

Figure 3 Example suffix tree diagram. Completed suffix tree
diagram of the string “gagacat.” Tracing a path from root to leaf
along a solid line results in a suffix of the string. The dashed lines
indicate suffix links that are useful during the creation of the suffix
tree.
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Clusters

C

Check all 
Sequences

Check 
Centroid

Centroid 
available?

cj

Yes

No

D < T ?

D

min{D}|di| , ti

Check cj+1

Yes Add si to 
cluster

No

j < |C| ?
Yes

Create cj+1
No

C

Figure 4 Add to cluster. A block diagram detailing the process by which sequence si is added to a cluster, cj Î C. A distance, D, is generated
between si and the representative of cj. If D is below a user-specified threshold, T, then si is added to cj, otherwise the next cluster, cj+1, is
checked. If no cluster is identified as suitable for si, a new cluster containing si is created and added to C.

Figure 5 Grammar-based cluster formations. Forty sequences being processed via a vector quantizer. Each of the four genera is represented
by ten sequences. Every sequence is grammatically compared to the same two sequences from within the set. The resulting pair of distances
form two-dimensional vectors in a space. When considering the clusters in this space, the representative sequence of the cluster should be the
sequence that is nearest the cluster center.
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the basis sequences was computed and plotted. As can
be seen from the plot, the sequences group into clusters
which correspond to their genus. Note that the basis
sequences are not orthogonal; however, use is made of
the fact that the grammar-based distances tend to obey
the transitive property such that if

D s s

D s s
b a b

c a c

=
=

dist

dist

( , )

( , )

and if Db is close to Dc, then sb and sc tend to be gram-
matically similar to each other. The example in Figure 5
demonstrates this by the use of basis sequences from
Acetobacter (genus one) and Flavobacterium (genus
four). One would expect that comparing all sequences to
one sequence would provide separation between the
sequences from the same genus as the basis sequence
and the rest. However, sequences from the other genera
also form into clusters as a result of sequences being
compared to a single basis sequence. In our example, all
forty sequences are compared to just two sequences; and
four clear clusters appear. The method presented here
for building vectors of distances relative to basis
sequences is similar to the concept of embedding pre-
sented in [5]. The work of [5] details an algorithm called
mBed that operates on a set of sequences to generate a
distance matrix representing a phylogenetic guide tree, a
process that is closely related to the data clustering pro-
blem presented here. The mBed algorithm selects a sub-
set of t seed reference sequences that are not close
together relative to a distance metric. Then each
sequence has a t-dimensional vector associated with it
where each coordinate value is the distance between the
sequence and the respective reference sequence. The dis-
tance used in [5] was selected to be the k-tuple distance
measure of [23] and implemented in ClustalW [24]. The
basis sequence concept used in this work is similar, with
the grammar-based distance metric replacing the k-tuple
distance measure being the primary difference. Addition-
ally, a single reference subset is used in [5] to build all
vectors. The algorithm presented here creates vectors for
each sequence contained in a cluster relative to basis
sequences also sampled from the same cluster.
Representative Sequence Selection
As shown in Figure 4 the clustering process begins by
comparing sequence si to the representative sequence of
cluster cj Î C. For clusters containing many sequences,
a representative sequence is determined using the basis
sequence method described above. In this case, only the
representative sequence, sr j , is compared to si

D s si r j
= dist( , ).

However, the progressive addition of sequences to
clusters means there are clusters containing only a few
sequences. These clusters do not contain a large enough
sample set to yield a reliable representative. Thus, until
a cluster is large enough, all sequences are considered
representative and compared to si

D s s s ck i k k j= ∀ ∈dist  ( , ) .

The minimum distance, min{ }
k kD , is used as the clas-

sification metric.
Grammar-Based Distance Calculation
The distance metric used in GramCluster is a modified
form of the grammar-based distance metric introduced
in [16,18] and used in [17].
The original distance metric is computed by concate-

nating the two sequences being compared into a single
sequence and then performing the operations detailed in
Figure 2. Formally, consider the process of comparing

sequences sm and sn. Initially, the dictionary, d dm n m,
1 = ,

is set to that of sequence sm, a fragment, f1 = sn(1), is
set to the first residue of the nth sequence, and the visi-
ble sequence is all of sm.
The algorithm operates as described previously, result-

ing in a new dictionary size, |dm,n|. When complete,
more grammatically similar sequences will have a new
dictionary size with fewer entries as compared to
sequences that are less grammatically similar. Therefore,
the size of the new dictionary, |dm,n|, will be close to
the size of the original dictionary, |dm|. The distance
between the sequences is estimated using the dictionary
sizes, in particular
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⎩
⎪
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(1)

This particular metric accounts for differences in
sequence lengths and normalizes accordingly. Smaller
values of D indicate a stronger similarity. Intuitively,
sequences with a similar grammar should be clustered
with each other.
While this grammar-based distance metric works well,

it requires that the extended sequence be rescanned for
every residue in the second sequence. This means that
sm will be rescanned completely for every character in
sn. This process is repeated as many times as the num-
ber of sequences compared to sm. As a result, approxi-
mately 75% of the computation is devoted to string
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searching and concatenation. To improve the execution
time, we introduce two significant modifications
described below.
Fragment Markers
The original distance calculation would simply repeat
the process depicted in Figure 2 on the concatenation of
two sequences being compared. Thus, for the kth char-
acter in the second sequence, the first sequence is com-
pletely scanned along with the initial k - 1 portion of
the second sequence. However, this is quite unnecessary
since many fragments formed from the second sequence
were already found in the second sequence during the
initial scan. Formally, consider sequences sm and sn
which have already had their own dictionaries created in
a previous step. Now suppose the concatenated
sequence sm·n is being processed for the kth character in
sn, at which point there is a nonempty fragment, fk. The
process begins with the fragment completely composed
of consecutive letters from sn, which means that this
fragment has already been created once before when sn
was processed by itself. As long as fk was previously
found within sn(1,..., k - 1), there will be no new infor-
mation gained by scanning sm·n(1,..., |sm| + k - 1),
because it is certain to be there since sn(1,..., k - 1) ⊂
sm·n(1,..., |sm| + k - 1). So, there is no need to scan for
fragments that have been previously found during any
distance calculation. The inverse statement is also true:
fragments not previously found do need to be scanned
for during a distance calculation. This is implemented
as shown in Figure 6 in which fragment f k ∉ = si(1,..., k
- 1), so k is added to a list of marked fragment indices.
The same distance metric given by (1) is used, but there

is no longer a need to perform string concatenation; and
only the first string is scanned for the marked fragments
from the second string. Formally, consider the process
of comparing sequences sm and sn. Initially, the dictionary,
d dm n m,

1 = , is set to that of sequence sm, a
fragment, f marked(1), is set to the first marked substring of
the nth sequence, and the visible sequence is always just
sm. The algorithm simply scans sm for an occurrence of
the fragment and adds one to the dictionary if the frag-
ment is not found. Either way, the fragment is updated to
the next marked substring of sn; and sm is scanned again.
This continues for all marked fragments from sn resulting
in a new dictionary size, | dm,n|. This fragment marking
process significantly reduces the total number of substring
searches performed, as well as the character concatena-
tions that would be otherwise required.
The second optimization involves a time-efficient

method of searching a string for a substring of charac-
ters, a very relevant problem for suffix trees.
Suffix Tree Searches
As stated previously, a length-L sequence stored in a
suffix tree data structure can be completely scanned for

a length-F fragment in  (F) time. To see why this is
true, consider the simple example depicted in Figure 3.
Every suffix is represented in the data structure as a
unique path beginning at the root node and traversing
along a solid line to a leaf node. Any substring occur-
ring in this string has to be the start of a suffix, so
searching for a substring amounts to finding a suffix
that begins with the substring. Consider searching
“gagacat” for the substring fragment “gac” which is pre-
sent in the string. The first step is to find a branch
beginning with “g” leaving the root, which is found as
the third entry in the data structure.
Following the branch to the internal node indicates

that all suffixes in this tree that begin with “g” are
always followed by an “a,” which is also true of the frag-
ment. At the internal node, the next step is to search
for any branch that begins with “c,” which is found as
the second entry in the data structure, concluding the
search. Next, consider searching for the substring frag-
ment “gact,” which follows the previous search to the
internal node and includes identifying the branch begin-
ning with “c.” The final step is looking at the subsequent
character along the branch, which is “a,” and does not
match. This search finishes having determined that
“gact” is not a substring of “gagacat.” The use of the suf-
fix tree in this context means that the time necessary for
identifying whether previously marked fragments from
sequence sn are present in sequence sm is  (F ).

Algorithm Complexity
The algorithm complexity of GramCluster may be bro-
ken into three pieces, beginning with the generation of
each sequence grammar dictionary, di for i Î {1, ..., N},
where N is the number of sequences. Suppose the aver-
age sequence length is L, then each di results in com-
plexity  (L), so all dictionaries are generated with
complexity  (LN). Next, each suffix tree, ti, has a
complexity  (L2), so all sequences are converted into
trees with complexity  (L2N). Finally, suppose the
average number of clusters is M. As an upper bound, all
clusters are scanned until each sequence is classified
and each scanning process has complexity  (L). The
result is a total scanning complexity of  (LMN). Thus,
the entire time complexity for GramCluster is  (LN +
L2N + LMN), which simplifies to  (L2N + LMN).
Regarding the memory complexity of GramCluster

and continuing with N as the number of sequences, sup-
pose the average sequence header length in the FASTA
file is H. Because every header line is stored for subse-
quent file output, this memory complexity is  (HN).
As before, if the average sequence length is L, then each
sequence is stored in  (L). The worst-case memory
usage for the clusters themselves occurs if every cluster
created has an incomplete set of basis sequences. In this
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case, each cluster has a memory complexity of  (C + B
+ BC + LC) where C is the number of sequences held
within the cluster and B is the number of basis
sequences per cluster. Because there are N sequences
stored in memory during this worst-case scenario, a
final upper bound on the memory complexity is  ((H
+ B + L)N) in which the most significant component
has a memory complexity of  (LN).

Testing
We performed several clustering experiments to validate
the proposed algorithm, GramCluster version 1.3 (see
Additional File 1). The training procedures for obtaining
the default parameters are described in the Methods
section. In particular, we used GramCluster to cluster
sets of 16S rDNA sequences. As detailed in the Methods
section, the resulting clusters were analyzed for correct-
ness whereby the genus of each sequence was compared
to that of all other sequences in the data set. Correct
classification is considered when sequences belonging to
the same genus fall into the same cluster. Likewise,
incorrect classification occurs when sequences belonging
to different genera are placed into the same cluster.
Each output set was analyzed using several statistical
quality metrics described in the Methods section. For
comparison, CD-HIT-EST (no version given, archive
created on 4/27/2009) [6] and UCLUST version 3.0.617
[8] were also used to cluster the same 16S rDNA
sequences and analyzed using the same quality metrics.
Experiments with Moderate-Sized Data Set
The proposed algorithm was evaluated using the Folkes
and Mallows Index, the Jaccard Coefficient, and Rand
Statistic measures [25], along with in-cluster classifica-
tion and sequence differentiation percentages, all defined
in the Methods section. The results for GramCluster,
CD-HIT-EST, and UCLUST are presented in Figure 7.
Results indicate that CD-HIT-EST achieved 17.5% in-

cluster classification and 99.7% sequence differentiation
out of the 2,050 total clusters determined. That is, for
sequences that were supposed to be in the same cluster,
CD-HIT-EST placed them together 17.5% of the time;
and for sequences that were not supposed to be in the

same cluster, it correctly kept them in different clusters
99.7% of the time. Improved results for UCLUST show
30.4% and 99.8% in-cluster classification and sequence
differentiation out of the 1,680 total clusters determined.
By comparison, GramCluster achieved 84.5% in-cluster
classification and 99.0% sequence differentiation out of
the 2,447 total clusters identified. Clearly, GramCluster
provides a significant improvement in clustering
sequences correctly. This improvement can be further
observed using common statistical measures for evaluat-
ing the performance of clustering algorithms [25]
described in the Methods section. These measures are
shown for GramCluster, CD-HIT-EST, and UCLUST
operating on a set of 74,709 16S rDNA genes obtained
from 2,255 different genera. The Jaccard Coefficient and
Folkes and Mallows Index exceed those of CD-HIT-EST
four-fold and over two-fold, respectively. The CPU
execution time of GramCluster (1342 seconds) is on the
same order as that of CD-HIT-EST (8277 seconds),
which is considered ultra-fast [26]. The UCLUST CPU
execution time (89 seconds) is much faster than
GramCluster, however its quality metrics fall signifi-
cantly short of those provided by GramCluster.
Experiments with Large Data Set
In order to simulate the application of clustering a large
set of unknown fragments that typically result from 454
pyrosequencing, the previous FASTA file was modified
such that every sequence was reduced to only the first
200 bases and then repeated 14 times for a total of
1,045,926 sequences from 2,255 genera. Figure 8 con-
tains data covering the same categories as in the pre-
vious experiment. CD-HIT-EST achieved only 3.3% in-
cluster classification and 99.9% sequence differentiation
of the 11,758 clusters found. So, for sequences that were
supposed to be in the same cluster, CD-HIT-EST placed
them together 3.3% of the time; and for sequences that
were not supposed to be in the same cluster, it correctly
kept them in different clusters 99.98% of the time. As in
the previous experiment, results for UCLUST show 5.1%
and 99.9% in-cluster classification and sequence differ-
entiation out of the 10,686 total clusters determined. By
comparison, GramCluster achieved 21.5% and 99.9% out

...si(k):

f k:

...si(k+1):

f k+1:

marked

not found

Figure 6 Fragment markers. One of the implementation optimizations is marking locations in the sequences where fragments are not found
in the visible sequence. Doing so eliminates the need to rescan sequences during the distance calculation for fragments that are already known
to be found within the original sequence.
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of the 5,917 clusters identified. GramCluster continues
to show a significant improvement in terms of clustering
sequences correctly with each other. This improvement
can be seen further with the higher statistical measures,
especially in the Jaccard Coefficient and Folkes and Mal-
lows Index which are over six and two times those of
CD-HIT-EST. Perhaps most interestingly, GramCluster
identified a more accurate number of clusters at 5,917,
even though the length of the sequences was signifi-
cantly reduced, while both CD-HIT-EST and UCLUST
reported identifying over 10,000 clusters.
We also tested BlastClust [9] on 16S sequences. The

program was too slow for classifying the original set of
74,709 sequences so we tested it using only 10% of the
sequences. The results are shown in Figure 9. As can be
seen, the results of CD-HIT-EST, UCLUST, and
GramCluster all tend to match those of Figure 7. As can
be seen in Figure 9 BlastClust resulted in lower statistical
metric scores in all categories, a high number of clusters
compared to the number of genera. It is clear that the
exclusion of BlastClust from the other experiments due
to its inability to operate on the size of the input data set
has not diminished the results.

Varying Command Line Options
Next, we consider the effect of varying the command line
options primarily responsible for affecting the resulting
data set partition. We ran two additional clustering experi-
ments on the original set of sequences with GramCluster
and UCLUST. The GramCluster experiments had both
grammar-based distance thresholds altered from the
default setting of 0.13 to 0.15 and 0.11. Similarly, the
UCLUST experiments had the identity threshold altered
from the default setting of 90% to 85% and 95%.
Figure 10 contains data covering the same categories as

in the previous experiments. As the grammar-based dis-
tance threshold increased, sequences that were increas-
ingly dissimilar were clustered together resulting in fewer
clusters and poorer metrics. This same trend occurred
with UCLUST as the identity threshold was relaxed by
reducing it. Likewise, when the grammar-based distance
threshold was reduced, sequences with an appropriately
smaller distance clustered together. Similar behavior
occurred when the UCLUST identity threshold was
increased. In general, the default parameters for both
programs seem to provide the best clustering of genus
based on overall comparison of the metrics in Figure 10.

Figure 7 Cluster metrics on moderate-sized data set. Cluster metrics for each algorithm operating on 74,709 16S rDNA sequences from 2,255
different genera.
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Figure 8 Cluster metrics on large data set. Cluster metrics for each algorithm operating on 1,045,926 16S rDNA sequences from 2,255
different genera.

Figure 9 Cluster metrics on small data set. Cluster metrics for each algorithm operating on 7,470 16S rDNA sequences from 898 different
genera.
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Experiments Clustering on Species
The final experiment operated on the original set of
sequences, but the partitioning was based on the
sequence species instead of their genus.
Figure 11 contains data covering the same categories

as in the previous experiments. In order to achieve the
metrics in Figure 11 based on sequence species, it was
necessary to modify the threshold of each clustering
program. The UCLUST and CD-HIT-EST percent iden-
tity parameter was adjusted upward to require a higher
sequence similarity before clustering sequences together.
The best overall metric scores based on sequence spe-
cies occurred at 97% identity for each algorithm. In con-
trast, the grammar-based distance thresholds in
GramCluster had to be lowered to restrict the distance
between sequences before classifying them together. The
threshold of 0.03 caused the best overall metrics due to
sequence species. The results presented in Figure 11
show a similar trend to those of the first experiment in
Figure 7. The results from all experiments show viable
promise of the proposed algorithm, especially when
clustering numerous sequences such as in datasets pro-
duced by high-throughput sequencing applications.

Conclusions
The primary goal of this work was to introduce a compu-
tationally efficient clustering algorithm which can be used

for clustering large datasets with high accuracy. The algo-
rithm introduced was validated against a specific class of
datasets containing 16S rDNA sequences but was designed
to cluster any set of RNA, DNA, or protein sequences.
The grammar-based distance work introduced in [16,18]
and previously used in [17] was modified to generate an
estimation of the proper classification in which sequences
are to be grouped. Results from clusters generated were
presented in an attempt to study the overall quality of the
resultant classifications as well as the computation time
necessary to achieve the outputs. Accurate clustering of
large numbers of biological sequences in an efficient
amount of time is an important and challenging problem
with a wide spectrum of applications. In this work, we
adapted existing ideas in a novel way and introduced sig-
nificant improvements. The proposed algorithm achieved
higher-quality clusters compared to existing methods
while operating at similar, high-speed execution times.

Methods
Experiments
All results presented in the Testing section were gener-
ated by compiling and executing the respective cluster-
ing programs on the same computer, specifically an
Apple MacBook Pro with an Intel Core 2 Duo operating
at 2.53 GHz with 4 Gb of system memory and a 3 Mb
L2 cache. In the case of UCLUST, the binary was

Figure 10 Cluster metrics by varying thresholds. Cluster metrics for GramCluster and UCLUST operating on 74,709 16S rDNA sequences from
2,255 different genera. The grammar-based distance thresholds were both set to 0.11, 0.13, and 0.15 for GramCluster. The identity threshold was
set to 85%, 90%, and 95% for UCLUST.
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downloaded from the author’s website. The experiments
were conducted using various versions of FASTA files
containing 74,709 16S rDNA sequences from 7,043 dif-
ferent species of 2,255 genera obtained from the Riboso-
mal Database Project http://rdp.cme.msu.edu. For
example, the second set of experiments involved a pro-
cessed version of the FASTA file to simulate the appli-
cation of clustering a large set of unknown fragments
that typically result from high-throughput sequencing
technologies, such as 454 pyrosequencing. In particular,
every sequence was reduced to only the first 200 bases;
and then the entire file was repeated 14 times for a total
of 1,045,926 sequences from 2,255 genera.
In each file, the header line of each sequence was

replaced by an integer number associated with that
sequence’s genus. In this way, the resulting clusters
could be validated for quality by comparing the header
integers with all other entries. In particular, we used
three statistical measures, identified in [25], to assess
the quality of resulting clusters, including the Rand
Statistic, the Jaccard Coefficient, and the Folkes and
Mallows Index. In all cases, a count was created based
on the pair-wise comparison of each element with all
other elements being clustered. When two elements
were compared, and they fell into one of four possible

categories: 1) the pair should be in the same cluster
and they are in the same cluster (SS), 2) the pair
should be in different clusters but they are in the same
cluster (DS), 3) the pair should be in the same cluster
but they are in different clusters (SD), and 4) the pair
should be in different clusters and they are in different
clusters (DD). The goal of a clustering algorithm is to
obtain maximal values for SS and DD and minimal
values for DS and SD. The three metrics all operate on
combinations of these counts in order to provide an
indication as to the quality of actual clustering versus
ideal clustering, as follows:

s SS DD SS DS SD DD

s SS SS DS SD

s SS SS DS

RS

JC

FMI

= + + + +
= + +

= +

( ) / ( )

/ ( )

/ ( )(SSS SD+ ).

Notice all metrics are bounded between 0 and 1, with
0 being a poor clustering score and 1 a perfect cluster-
ing score. Additionally, the in-cluster classification and
sequence differentiation percentages

s SS SS SD

s DD DS DD
in

diff

= +
= +

/ ( )

/ ( )

Figure 11 Cluster metrics by species. Cluster metrics for each algorithm operating on 29,566 16S rDNA sequences from 5,472 different
species.
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are provided. Given all sequence pair comparisons, the
total number that implies a pair of sequences belong to
the same genus is (SS + SD). Of that total, only SS pairs
were actually classified into the same cluster. Thus, the
in-cluster classification is the percent of sequence-to-
sequence pairs that have correctly clustered sequences
together out of all that should be clustered together.
Similarly, the total number of sequence pair compari-
sons that imply two sequences do not belong to the
same genus is (DS + DD). Out of the total, only DD
pairs were correctly separated into different clusters.
The sequence differentiation used here was the percent
of sequence pair comparisons that have correctly classi-
fied sequences apart out of the total that should not be
clustered together.
We repeated the first two experiments in the Testing

section using two different random permutations of the
FASTA file (results not shown). All programs produced
very similar results, thereby demonstrating that the order
in which sequences are input to the algorithms does not
affect the resulting clusters. In order to identify the best
set of default parameters for the GramCluster implemen-
tation, we used two different training methods. In the
first method, we randomly selected 10% of the sequences
for training while the remaining 90% were used for test-
ing. In the second method, we randomly divided the gen-
era into two sets, one containing about 10% of the
sequences and the other containing 90% of the
sequences. The smaller set was again used as a training
set to obtain the parameters for the algorithm. The
default parameters ended up being the same as those
found in the first training experiment. In particular, a
grammar-based threshold of 0.13 was found to produce
the best overall clustering metrics based on genera.
We applied the same training methods to identify the

best thresholds for GramCluster when clustering based
on species. In this case, the best overall clustering
metrics based on species occurred when the grammar-
based threshold of 0.03 was applied.

Command Line Options
The following list details the user-definable command
line options available in the current GramCluster
implementation.
1. -B <value> Specify the full basis amount. The value

specified in this option represents the number of noni-
dentical sequences added to a cluster before a centroid
sequence is determined. If this option is not specified,
the default value is 4 sequences.
2. -b <value> Specify the grammar distance identical

threshold. The value specified in this option represents
the grammar-based distance threshold for two sequences
to be consider grammatically identical. When a new
sequence is added to a cluster, it has a distance less than

one of the thresholds (specified by -C or -G). In the event
that two sequences are very similar (or identical), this
threshold prevents the new sequence from becoming a
basis sequence. If this option is not specified, the default
value is 0.01.
3. -C <value> Specify the grammar distance-to-centroid

maximum threshold. The value specified in this option
represents the grammar-based distance threshold to the
centroid sequence. If a distance calculated between a new
sequence and the centroid sequence is less than this
value, then the new sequence is added to the cluster. If
this option is not specified, the default value is 0.13.
4. -G <value> Specify the grammar distance maximum

threshold. The value specified in this option represents
the grammar-based distance threshold to all basis
sequences for clusters that do not have a centroid
already determined. If a distance calculated between a
new sequence and any basis sequence is less than this
value, then the new sequence is added to the cluster. If
this option is not specified, the default value is 0.13.
5. -c Turn on complete cluster searching. This causes

the algorithm to scan every cluster for the lowest distance
before adding it. The default is greedy cluster searching,
which causes sequences to be added to the first cluster
presenting a distance lower than the specified thresholds.
6. -R Turn on reverse complement checking. This

causes GramCluster to check both the input sequence
as well as its reverse complement against each cluster
representative. The lowest resulting distance is used for
classification.
Note that the -C and -G options specify thresholds that

function similar to the identity percentage thresholds
used by other clustering programs, such as CD-HIT-EST
and UCLUST. However, the thresholds function just the
opposite, whereby sequences are only added if their
grammar-based distance is calculated as a value below
the threshold value. In contrast, the identity percent
thresholds of CD-HIT-EST and UCLUST require
sequences to have a metric score higher than the thresh-
old before they are added to the respective cluster.

Availability
The source code for the current version of GramCluster
may be downloaded from http://bioinfo.unl.edu/.

Additional material

Additional file 1: An executable may be generated by unzipping
this file and using an ANSI C compiler to build the code.
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