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Abstract

Background: Codon bias is believed to play an important role in the control of gene expression. In Escherichia coli,
some rare codons, which can limit the expression level of exogenous protein, have been defined by gene
engineering operations. Previous studies have confirmed the existence of codon pair’s preference in many
genomes, but the underlying cause of this bias has not been well established. Here we focus on the patterns of
rarely-used synonymous codons. A novel method was introduced to identify the rare codons merely by codon pair
bias in Escherichia coli.

Results: In Escherichia coli, we defined the “rare codon pairs” by calculating the frequency of occurrence of all
codon pairs in coding sequences. Rare codons which are disliked in genes could make great contributions to
forming rare codon pairs. Meanwhile our investigation showed that many of these rare codon pairs contain
termination codons and the recognized sites of restriction enzymes. Furthermore, a new index (Frare) was
developed. Through comparison with the classical indices we found a significant negative correlation between Frare
and the indices which depend on reference datasets.

Conclusions: Our approach suggests that we can identify rare codons by studying the context in which a codon
lies. Also, the frequency of rare codons (Frare) could be a useful index of codon bias regardless of the lack of
expression abundance information.

Background
Codon usage bias has attracted attention for several dec-
ades. Since the 1970s, the unequal use of synonymous
codons has been confirmed in many organisms. To date,
the codon usage patterns in many organisms have been
interpreted for diverse reasons. For instance, there have
been some different influence factors proposed by
researchers: the abundance of isoacceptor tRNA[1,2],
amino acid composition[3], mRNA secondary structure
[4], the efficiency of translation initiation[5], GC content
[6], gene length[7,8], protein structure[9] and so on.
Although there is still no final verdict on the formation
mechanism, codon bias has been widely used to estimate
and compare the expression level of endogenous genes,

change the efficiency of expression of exogenous genes
[10-12], identify horizontal transfer genes from other
organism[13], judge the relationship of evolution[14],
and confirm the coding sequences.
From early investigations in Escherichia coli[1], it was

found that usage of preferred codons in genes was posi-
tively correlated with their respective major isoacceptor
tRNA levels, and this was explained as an adaptation of
highly expressed genes to translational efficiency. Since
then, extensive studies on codon usage bias have been
performed in other organisms such as S. cerevisiae
[1,15,16], Drosophila[17] and C. elegans[18]; and the
results of this research have supported the dominant
theory above. One long accepted principle of this theory
is that highly expressed gene must show high codon
usage bias. However, with the development of high
throughput technology for gene sequencing and expres-
sion level detection, doubts over this theory have
increased gradually[1,19-26].
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In order to describe and measure the degree of codon
bias, a series of indices have been developed and applied
to codon bias analysis over the past thirty years. A sur-
vey of the literature indicated that in some prokaryotes,
many indices exhibit a positive correlation with the gene
expression level, such as CAI (Codon Adaptation Index)
[27], CBI (Codon Bias Index)[28], and Fop (Frequency
of optimal Codons)[1]. However, in some eukaryotes,
especially for higher eukaryotes, the correlation between
codon bias and expression level is extremely weak[1,29].
Therefore the balance between translational selection
and mutational bias has been used to account for the
codon bias observed in these organisms. These paradox-
ical results remind us there must be a more complicated
mechanism for forming codon bias in different species
beyond what this correlation suggests.
In recent years, codon pair preference has also become

a popular topic in the field of codon bias when attention
is turned to the context in which a codon lies. The exis-
tence of codon pair preference has been confirmed by
many investigations in several organisms[30-36]. The
exploration of the mechanism for driving the formation
of codon bias attracts more attention on the level of pro-
tein. For example, whether translation optimization
might be a primary selective pressure or translation appa-
ratus could inflict selective pressure[36]. Seldom
researchers care about the level of DNA or mRNA.
Escherichia coli are frequently used as host cells in the

study of expressing exogenous proteins efficiently.
According to previous gene engineering operations,
many genes of eukaryotes can not be expressed
smoothly in Escherichia coli; and one effective method
to improve the expression level or to avoid the frame
shift mutation is to replace the usage of “rare codons”
with synonymous codons. To search for clues for expla-
nation, the stability of genes, on the level of DNA or
mRNA, should be taken into consideration so as to play
a role in determining gene expression [37-43].
In this paper, we introduced a novel computational

method to identify rare codons of Escherichia coli.
Moreover, as a new index based on this method, Frare
was developed to measure codon bias objectively.

Results
The analysis of codon usage pattern by CodonW
From the analysis of genes in Escherichia coli by
CodonW, we derived the codon usage patterns and the
ranked results of synonymous codons (Additional file 1).
In addition, extreme similarity between essential genes
(see method section)[44-46] and whole genes in Escheri-
chia coli was found, which implies that there should be
a basic “rule” for codon usage patterns in Escherichia
coli (table 1). If expression efficiency on the protein
level cannot serve effectively as the “rule”[1,19-26], per-
haps further research should focus on the contribution
of selective pressure to the stability of genes.
Identification of rare codons of Escherichia coli based on
codon pairs preference
1. We calculated the occurrence frequency of each kind
of different six-nucleotide strings in 4289 sequences of
Escherichia coli k12 in two ways (see method section).
Using the criterion derived from statistical analysis, the
“rare codon pairs” and “normal codon pairs” were
defined. As a result, we obtained 1160 “rare codon
pairs” and 2890 “normal codon pairs” (Additional file 1).
2. Thirteen rare codons (GGA, CTC, TAG, CTA, ACA,
GAC, AGG, AGA, CCC, GGG, GAG, ACT, and ATA)
were identified by the statistical test method for hyper-
geometric distribution, which was used to evaluate the
contribution of the sixty-four codons to the rare codon
pairs(Additional file 1). It is exciting to find that these
“rare codons” were the very codons which have been
regarded as limiting factors of exogenous gene expres-
sion by experimental verification over a long period of
time[44,47-58].
Frare (the frequency of rare codons) was developed as a
novel index of codon bias
1. We can calculate the Frare value of genes based on the
rare codons identified by the method mentioned above.
The strong inverse correlation between Frare and CAI
suggests that experiments for deriving expression infor-
mation are dispensable for quantification of codon bias.
2. Using the rank sum test(table 2), it was noted that the
Frare values of essential genes were lower than those of
nonessential genes. We can thus conclude that the

Table 1 Nonparametric correlation analysis (Spearman’s rank correlation) of codon usage patterns between essential
genes and whole genes in Escherichia coli

Whole_ecoli Ecoli234_essential

Whole_ecoli Correlation Coefficient 1.000 .845**

Sig.(2-tailed) . .000

N 64 64

Ecoli234_essential Correlation Coefficient .845** 1.000

Sig.(2-tailed) .000 .

N 64 64

**. Correlation is significant at the 0.01 level (2-tailed)
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essential genes avoid the use of rare codons because the
essential genes are indispensable for sustaining cellular life.
Exploring the factors related to stability of genes in rare
codon pairs
1. Some relationship between the rare codon pairs and
stability of gene could be found from the references and
database (The Restriction Enzyme Database http://
rebase.neb.com/rebase/rebase.html) searching. There are
nonsense codons (TAA, TAG, TGA) and recognition
sites of restriction enzymes or methylases in some rare
codon pairs. For instance, many of the rare codon pairs
in the “rare group” are involved in affecting the stability
of gene (Additional file 1: 94 rare six-nucleotide strings
have been found containing recognition sites of restric-
tion enzymes and 202 rare six-nucleotide strings have
been found containing nonsense codon. Moreover, the
investigation will continue).
2. We noticed that there are also some rare six-nucleo-
tide strings present in the “normal groups”. The com-
mon characteristic of these strings is that they contain
“nonsense codons” (TAG, TGA, TAA) which is proved
to be an important element of mRNA’s instability[43].
Additionally, we have found the appearance of “TAG” in
rare codon list and it can support that “TAG” is the
most inefficient stop codon in Escherichia coli.

Discussion
Compared with the results of experiments, we suggest
that it is feasible to identify rare codons of Escherichia
coli based on codon pair’s preference. From the identifi-
cation consequence, not all seldom used synonymous
codons are “rare codons” that can limit the expression
level of heterologous genes.
In recent years, there has been some debate over the

significant difference of the codon usage patterns exist-
ing in different kinds of genes in the same species
[44,59,60]. In our study, the codon usage patterns of
essential genes were selected to compare with those of
the whole genes in Escherichia coli. These essential
genes are very important for maintenance of the basal
cellular function, so they are likely to be common for all
cells and not be horizontal transfer genes from other
organism. Therefore, the extreme similarity of codon
usage patterns between essential genes and whole genes
in Escherichia coli, would suggest the existence of a
common rule that can control the pattern.

The expression level may be affected and controlled
by many factors. Thus it seems unimaginable that the
expression level in dynamic change could control the
codon usage pattern. Furthermore, to our knowledge,
the abundance of isoacceptor tRNA, which could be a
powerful evidence to support the classical theory of
Ikemura[1], cannot be precisely measured until now.
Instead, we focused on the relationship between codon
usage and gene stability. This relationship is important
for the connection between gene and protein in the
translation control system of Escherichia coli.
In the study of codon bias, CAI[27,61-64], CBI [65]

and Fop[1] were commonly used for analysis. Although
these indices have been revised [21] several times, it is
still necessary for researchers to obtain a reference
dataset containing gene expression abundance data in
calculating them. In addition, though the high correla-
tion between gene expression abundance and codon
bias index has been found in prokaryotes[1,19,66] and
some eukaryotes[17,67], there isn’t enough evidence to
support it in Homo sapiens[3] and other eukaryotes.
Frare value, which didn’t depend on the reference data-
set, was developed in this study to compare and scale
the codon usage pattern basis on the identified rare
codons. The strong inverse correlation between Frare
and CAI indicates that the usage of rare codons affects
the process and consequence of translation.
The essential genes are expected to be stable because

of their function as foundations of life. Thereby essen-
tial genes dislike rare codons and possess lower Frare
values. As we know, many genes of Homo sapiens
introduced in Escherichia coli directly cannot express
well. We argue that this might be the result of mass
occurrence of rare codons of Escherichia coli, which
can induce instability to these genes. From this, we
foresee that in order to improve the expression level in
the operation of heterologous gene expression, we
should modify and replace the identified rare codons
to avoid the appearance of rare strings. We could also
estimate the stability of exogenous genes by calculating
the Frare value using the rare codons of the host.

Conclusions
We introduced a novel computational method to identify
rare codons in Escherichia coli based upon the codon
pair’s preference. By comparing the thirteen identified rare

Table 2 Mann-Whitney Test

Information of sum of ranks Result of Mann-Whitney Test: Test Statistics a

group N Mean Rank Sum of Ranks Mann-Whitney U Frare_ess_nonessential 2374.50

1 234 127.65 29869.50 Wilcoxon W 29869.50

2 4055 2261.41 9170035.50 Z -25.630

Total 4289 Asymp.Sig. (2-tailed) .000

a. Grouping Variable: group
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codons with the results of published experiments, we have
proved that our method would be helpful to the study of
heterologous gene expression operation. For description of
the codon usage pattern by considering the rare codons,
Frare was developed as a new index without requiring
expression level information.

Methods
Gene sequences of Escherichia coli
1. 4289 gene sequences of Escherichia coli K12-MG1655
Gene sequences of Escherichia coli K12-MG1655 were

downloaded from http://cmr.tigr.org/tigr-scripts/CMR/
shared/MakeFrontPages.cgi?page=batchdownload.
2. 234 essential gene sequences Escherichia coli
Essential genes are genes that are indispensable to

support cellular life. These genes constitute a minimal
gene set required for a living cell. The functions
encoded by essential genes are considered a foundation
of life and therefore are likely to be common to all cells
[45,46].
Information of essential genes in Escherichia coli were

download from PEC (The Profiling of Escherichia coli
chromosome) database http://www.shigen.nig.ac.jp/ecoli/
pec/index.jsp, then a Perl program was made to obtain
the sequences of essential genes from the 4289 whole
gene sequences. At last, 234 essential gene sequences
were obtained.
Tools for analysis
Perl programs
A series of programs were written using the Perl lan-
guage(ActiveState Perl, v5.8.4) and run in DOS. These
programs were used to obtain the gene sequences and
to do statistical analysis after completing search pro-
cesses of the codon pairs. All programs written as part
of this study are freely available on request from the
author.
CodonW
The analysis of codon usage patterns were performed
using the software CodonW (downloaded from http://
sourceforge.net/project/showfiles.php?group_id=
129506&package_id=141931&release_id=307994.)
BioEdit
All the gene sequences were loaded into BioEdit (Ver-
sion 7.0.0) and translated into protein sequences respec-
tively according to the general codon table.
Other tools
The output files generated by CodonW and some Perl
programs were loaded into Excel (Microsoft) for display
and further analysis. Also, some statistical tests were
done using SPSS(SPSS 13.0 for windows) and MATLAB
(Version 7.0.0.19920) to determine the significance of
the analysis results.

Analysis of codon usage patterns
To obtain the patterns of codon usage, the files contain-
ing fasta sequences of Escherichia coli were loaded into
CodonW (Additional file 1). In Escherichia coli, the
codon usage pattern of essential genes was compared
with that of whole genes by Spearman’s rank correlation
analysis. It was noteworthy that the codon usage pat-
terns of essential genes and whole genes are uniform as
shown by Nonparametric Correlations (table 1).
Identification of rare codons based on codon pairs
preference
Codon pairs searching and statistical test
1. There are a total of 4096 (64 × 64 = 4096) different
six-nucleotide strings made up of 2 codons. An array
containing these strings was made for search in gene
sequences of Escherichia coli.
2. Several Perl programs were made to search the 4096
strings in 4289 sequences of Escherichia coli k12; then,
the “rare strings” and “normal strings” were defined by
statistical analysis.
1) Searching the strings in accordance with open read-

ing frame
One string made up of two amino acids would corre-

spond to several six-nucleotide strings according to
synonymous codon’s encoding rule. So we first calcu-
lated the frequencies of all the six-nucleotide strings and
the corresponding two amino acid strings, by open read-
ing frame, within all gene sequences and protein
sequences respectively in Escherichia coli. Then the sta-
tistical test method for binomial cumulative distribution
was implemented to get a P1 value of each codon pair,
by which we can display the probability of the real fre-
quency if we assumed that codon usage was random
(we got P1 values of 4050 strings after excluding the
strings which are not adapted to analysis because they
only contain “ATG” or “TGG” or their corresponding
two amino acids strings don’t exist in protein
sequences).

P1    


C p qn

m m n m

m

k

0

p: the probability of a codon pair’s occurrence corre-
sponding to any given two amino acids string based on
encoding rule. p q psyn I syn J 

1
( ) ( ) ;  1-

k: the frequency of a codon pair according to open
reading frame;
m: 0 ≦ m ≧ k;
n: the frequency of the corresponding 2 amino acid

string encoded by the codon pair in protein sequence;
syn(i): the degeneracy of the amino acid coded by i.
2) Searching the strings in spite of open reading frame
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The actual occurrence frequency of all the six-nucleo-
tide strings in gene sequences was gotten by general
search in spite of open reading frame, and also P2 was
calculated by the same method for binomial cumulative
distribution above.

P2    


C p qn

m m n m

m

k

0

p: the probability of a six-nucleotide string’s occur-
rence because of possible composition of four types of
nucleotides. p q p 1

46 ;  1-
k: the frequency of a six-nucleotide strings by general

searching in 4289 sequences;
m: 0 ≦ m ≧ k;
n: n (Ni  5)

i
(Ni is the number of nucleotides in

gene i).
3) The criterion for dividing all codon pairs into “rare”

and “normal” groups
Through the analysis above, we got two P values (P1,

P2) for each codon pair, then a cutoff value P0 (P0 =
0.01/4096/4289 = 5.69225 × 10-10) was made to be the
criterion. For a codon pair, If P1 and P2 are both less
than P0 (P1 < P0 and P2 < P0), it will be defined as
“rare codon pair”. Otherwise, it will be thrown into the
“normal” group. As a result, we obtained 1160 “rare
codon pairs” and 2890 “normal codon pairs” (Addi-
tional file 1).
3. Lastly, the statistical test method for hypergeo-

metric distribution was used by MATLAB to find out
how the sixty-four codons contribute to the rare
strings. After the codons were ranked by Phyp value of
this test, we realized that some rare codons in the
front rank could make great contributions to rare
strings; so we identified them as “rare codons” (Addi-
tional file 1).

Phyp  
 


f x M K N

Cx
K CN x

M K

CN
M

( , , )

x: the frequency of a codon in “rare group”
N: N = 4 × N1 (N1: the number of codon pairs in

“rare group"; N2: the number of codon pairs in “normal
group”)
M: M = 4 × N1+4 × N2 (N1 and N2 have been multi-

plied by 4 because a six-nucleotide string will contain 4
triplets starting from different point when open reading
frame is ill-defined)
K: the frequency of a codon in “normal group”

A new index “Frare“ (frequency of rare codon) is helpful to
describe the codon usage pattern
Just as “Fop”[1] has been used to predict highly
expressed genes, Frare (the frequency of rare codon)
value was introduced to show the codon usage pattern
from a different standpoint. Here we defined Frare of
gene g as:

F (g)
1
Nrare   syn i n gi

i

( ) ( )

ni(g): the count of the codon i in the gene g;
N: the total number of codons in gene g;
syn(i): the degeneracy of the amino acid encoded by i
In the expressions above, the sum is taken over all the

rare codons. Through corresponding analysis we found
that there is strong negative correlation between Frare
and CAI (or CBI/Fop) in Escherichia coli (table 3).
We found that the Frare values of essential genes tend

to be less than those of nonessential genes (figure 1),
which means essential genes prefer to reject the “rare
codon” over other genes. Also the rank sum test (Mann-
Whitney Test) was applied to determine whether a sig-
nificant division of “essential genes” and “nonessential

Table 3 Correlation analysis between Frare value and classical codon bias indices

Frare_value CAI CBI Fop

Frare_value Correlation Coefficient 1.000 -.729** -.640** -.644**

Sig.(2-tailed) . .000 .000 .000

N 4289 4289 4289 4289

CAI Correlation Coefficient -.729** 1.000 .905** .933**

Sig.(2-tailed) .000 . .000 .000

N 4289 4289 4289 4289

CBI Correlation Coefficient -.640** .905** 1.000 .989**

Sig.(2-tailed) .000 .000 . .000

N 4289 4289 4289 4289

Fop Correlation Coefficient -.644** .933** .989** 1.000

Sig.(2-tailed) .000 .000 .000 .

N 4289 4289 4289 4289

**. Correlation is significant at the 0.01 level (2-tailed)
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genes” by Frare values exhibited (table 2). As a result, the
P values of rank sum test are small enough to make
sense of the division.

Additional file 1: The important dataset of this study has been
saved in an excel file. Sheet 1a: codon usage patterns. Sheet 2a:1160
rare codon pairs. Sheet 2b: 2890 normal codon pairs. Sheet 3a:
identification of rare codons. Sheet 4a: 94 codon pairs containing
recognition site. Sheet 4b: 202 codon pairs containing nonsense codon.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
61-S1.XLS ]
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