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Abstract

Background: Tag-based techniques, such as SAGE, are commonly used to sample the mRNA pool of an
organism’s transcriptome. Incomplete digestion during the tag formation process may allow for multiple tags to be
generated from a given mRNA transcript. The probability of forming a tag varies with its relative location. As a
result, the observed tag counts represent a biased sample of the actual transcript pool. In SAGE this bias can be
avoided by ignoring all but the 3’ most tag but will discard a large fraction of the observed data. Taking this bias
into account should allow more of the available data to be used leading to increased statistical power.

Results: Three new hierarchical models, which directly embed a model for the variation in tag formation
probability, are proposed and their associated Bayesian inference algorithms are developed. These models may be
applied to libraries at both the tag and aggregate level. Simulation experiments and analysis of real data are used
to contrast the accuracy of the various methods. The consequences of tag formation bias are discussed in the
context of testing differential expression. A description is given as to how these algorithms can be applied in that
context.

Conclusions: Several Bayesian inference algorithms that account for tag formation effects are compared with the
DPB algorithm providing clear evidence of superior performance. The accuracy of inferences when using a
particular non-informative prior is found to depend on the expression level of a given gene. The multivariate
nature of the approach easily allows both univariate and joint tests of differential expression. Calculations
demonstrate the potential for false positive and negative findings due to variation in tag formation probabilities
across samples when testing for differential expression.

Background
Tag-based transcriptome sequencing libraries consist of
a collection of short sequences of DNA called tags along
with tabulated counts of the number of times each tag is
observed in a sample. These observed tag counts repre-
sent a sample from a much larger pool of mRNA tags
in a tissue or organism. In the past, Serial Analysis of
Gene Expression (SAGE) was the most commonly used
technology for generating libraries of tag counts. SAGE
libraries have been used to address a number of biologi-
cal questions including: estimating transcriptome size,
and estimating the density of relative expression levels.
Most frequently, SAGE was used to assess differential

expression across cells from different tissues or strains,
or cells grown under different experimental conditions.
Next generation methods such as Digital Gene Expres-
sion (DGE) tag profiling [1] now provide a more effi-
cient method to generate tag libraries and are growing
in popularity. Libraries based on DGE are used to
address the same questions and provide much larger
numbers of tags leading to increased statistical power.
However, the close similarities between DGE and SAGE,
particularly the use of restriction enzymes, lead both
techniques to share the same inherent biases.
As has been repeatedly noted in both SAGE and DGE

studies e.g. [1-4], the mRNA from a single gene can lead
to the production of more than one type of tag within the
same library. Observing multiple tags from a single gene
complicates data analysis and has a number of potential
causes including alternative mRNA splicing and incom-
plete cDNA digestion. Incomplete digestion typically
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results in a number of different tags being formed from
the same mRNA transcript. Alternative splicing can lead
to multiple mRNA isoforms within a sample. When com-
bined with incomplete digestion, each of these isoforms
may give rise to a different tag or group of tags.
While it is intuitively sensible to analyze the preva-

lence of an mRNA by aggregating multiple tags derived
from it, such tags are often analyzed separately [5]. At
best, this approach diminishes the statistical power that
is available when testing differences in mRNA abun-
dances and reduces the accuracy of inferences based on
asymptotic statistical methods (chi-square tests). More
seriously, such comparisons can result in dramatic
biases leading to erroneous conclusions in testing differ-
ential expression due to varying levels of incomplete
digestion across libraries.
The current work extends an earlier analysis [6] based

on SAGE libraries generated using the yeast Saccharo-
myces cerevisiae [7]. Alternative splicing is generally rare
in microorganisms such as S. cerevisiae so that the tag
multiplicity observed in these libraries is primarily
attributed to incomplete cDNA digestion. The first
objective of the current work is to provide a methodol-
ogy that allows multiple tags, which arise due to incom-
plete digestion, to be combined and used to infer
expression levels of the underlying mRNA transcripts.
Aggregation is complicated by the fact that certain tags
are more likely to form than others due to processing
methods [4,6]. Unless the tag formation probabilities are
accounted for, inferences based on aggregate tag counts
may be highly biased.
Previously, we have addressed the problem of estima-

tion bias by directly modeling the variation in tag for-
mation and deriving bias corrected maximum likelihood
and posterior mode estimators of the composition of
the mRNA population [6]. However, a number of
assumptions and difficulties limit the application of
these techniques. We address these in the present study.
Three new hierarchical models for SAGE data are intro-
duced that directly correct for the bias by embedding a
model of tag formation within the probability distribu-
tion describing the data. Corresponding Gibbs sampling
algorithms suitable for model fitting and inference are
also derived. These methods are computationally effi-
cient and allow a more general class of prior distribu-
tions than earlier analytic approaches. The results are
also applicable for both aggregate and standard tag
counts. We use simulation studies and analysis of pub-
licly available data from S. cerevisiae [7] in order to con-
trast the accuracy of our sampling methods and analyze
the effects of priors. The approach we present should
serve as a building block for a more comprehensive
method that takes into account the effects of both
incomplete digestion and alternative splicing.

A second major objective of the current work is to
explore the general effects of tag formation bias on dif-
ferential expression. We carefully demonstrate that, in
the absence of proper adjustments, variation in tag for-
mation probability across experiments can lead to both
false positive and false negative conclusions regarding
the differential expression of a gene. A brief description
of the implementation of proposed algorithms in differ-
ential expression analysis is also provided. While the
approaches presented here require more work in proces-
sing and preparation than studies that focus on indivi-
dual tags, they may offer a significant advantage with
respect to statistical power in studies of differential
expression.
A number of statistical methodologies have been

developed to analyze SAGE libraries. For studies that
focus on relative expression levels, individual tags are
viewed as possible outcomes from a multinomial sam-
pling model [7,8]. [9] offered an improvement on this by
directly applying a Bayesian multinomial-mixture
Dirichlet model to the observed vector of tag counts
which improves accuracy in estimation of tag frequency.
Marginal analysis may be more useful in studies of tran-
scriptome size and was developed by [10] and [11,12].
Statistical methods to assess differential expression
across a number of samples were discussed by [13-16].
These analyses typically test the differential expression
of each tag across libraries independently; see [14].

The SAGE Methodology
The goal of a SAGE experiment [8] is to sample the
mRNA population within a group of cells. Broadly
speaking, the SAGE method generates a set of short
sequence-based cDNA tags from the mRNA population.
Initially, a pool of mRNA is extracted from a group of
cells. The unstable single stranded mRNA is reverse
transcribed into a double stranded DNA copy (cDNA)
using a modified primer that allows the cDNA to be
bound to a streptavidin bead. Using restriction enzymes,
the bead-bound portion of cDNA is cut into small ‘tags’
that are concatenated together into longer cDNA mole-
cules referred to as concatemers. These concatemers are
amplified using PCR and then sequenced. A cleavage
motif of the anchoring enzyme allows the start and stop
points of tags to be identified within a concatemer. Each
time a tag from a specific gene is observed in the
sequence data, it contributes a count to the library. The
DGE technology follows a similar procedure in the first
several steps. However, tags are neither concatenated
nor cloned but sequenced immediately.
In both technologies the restriction enzymes used to

create the tags cut at very specific sites within the
cDNA. For example, the restriction enzyme used by [8]
cleaves only at the four nucleotide motif CATG. Thus,
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tags can only be created at specific points within a
cDNA. Because the site where the cDNA is cut serves
as an ‘anchor’ between tags, the restriction enzyme used
is often referred to as the anchoring enzyme (AE). We
refer to the specific points in the cDNA cleaved by the
anchoring enzyme as AE sites.
While some genes will have no AE sites, many genes

have multiple sites at which the AE could cleave the
cDNA. Given that the AE is expected to act in a site-
independent manner, a single cDNA molecule can be
cut by the AE in multiple places. However, because only
the fragment of cDNA that is attached to a streptavidin
bead is retained during the experimental process, the
site closest to the bead (i.e. the 3’ most site) that is actu-
ally cleaved is the only site that can lead to an observa-
ble tag (see Figure 1). If the AE worked with 100%
efficiency, then each mRNA could only lead to one
observable tag. However, the cutting efficacy of the AE
is always less than 100%, sometimes referred to as
incomplete digestion, and as a result multiple tags may
be generated from the cDNA of a single gene. The criti-
cal point is that differences in the number of AE sites
between genes result in different probabilities of tag for-
mation. The most extreme cases are genes whose
mRNA transcript lacks any AE site. Such genes are
impossible to observe using the SAGE methodology. For
genes with AE sites, differences in digestion efficiencies
lead to differences in tag formation probabilities
between experiments.
A further complication is that many of these sites lead

to non-unique or ‘ambiguous’ tags that cannot be read-
ily assigned to a particular gene. Ambiguous tags are
‘uninformative’ using current technologies; tag-to-gene
mapping is discussed at length in [17]. The tags gener-
ated in the experiment analyzed below were 14 bp long
leading to a number of ambiguous tags. Experimental
advances, for example, ‘SuperSAGE’ techniques can lead
to tags up to 26 bp long [18,19] significantly diminishing
this problem.

Modeling Tag Formation Probabilities
The previous discussion leads us to postulate that genes
with larger numbers of AE sites have a increased prob-
ability of tag formation and further that there is large

variation in the probability of tag formation within a
gene. Below we present a quantitative model for tag for-
mation probabilities within a gene that is key to later
bias correction methods.
Because only cDNA that is attached to a streptavidin

bead is retained during the experimental process, tags
are created from the 3’ most AE site that is actually
cleaved (Figure 1). Let ki be the number of restriction
enzyme sites which may be cleaved by the AE on
mRNA generated from gene i, let p be the probability
the AE will cleave a site, and assume that cleavage prob-
ability is independent between sites and does not vary
between genes. If we label sites 1 through ki starting at
the 3’ most site (i.e. the site closest to the bead; see Fig-
ure 1), the probability of generating a tag through AE
cleavage at site j Î {1, ..., ki} follows a geometric distri-
bution, (1 - p)j-1p. This corresponds to the probability of
no cleaving in sites 1 to j - 1, and a cleaving at site j.
Note that this probability is independent of what hap-
pens at the AE sites 5’ from the jth site. The fact that
the expected distribution of tags varies with AE cleavage
probability p can be used to estimate p from the library
of tag counts; see [6].
It follows that the probability of generating any of the

possible tags from the ith category of mRNA follows a
geometric distribution

i
j

j

k
k

p p p
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1

(1)

where the sum is over all non-ambiguous tagging
sites. We refer to this quantity as the tag formation
probability.
For purposes of our analysis, we will assume that,

because each of the thousands of genes provides an
independent estimate, the value of p is known to a
very high precision. The variation in the tag formation
probability between genes stems from variation in the
number of AE sites as well as the number of ambigu-
ous tagging sites. Given p, the only uncertainty in the
estimate of ji results from ambiguous tags; this pro-
blem may be partially eliminated through techniques
that generate longer tags; see [19]. Hence, for metho-
dological purposes we reasonably assume the ji to be

Figure 1 Tag formation model. Plot showing cDNA cleavage sites for SAGE with associated probabilities of tag formation. Adopted from [[6],
Figure 1].
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known constants (see [6] for a more details on these
calculations). As a result, the tag pool represents a
biased sample of the mRNA population of interest
being a function of both the known distribution of tag
formation probabilities across the genome, and the dis-
tribution of these genes within the mRNA population
itself.
Traditionally, a gene’s frequency in the tag pool was

assumed to be an unbiased estimate of its frequency in
the mRNA population, the population of interest. This
equivalence only holds when all genes have the same
tag formation probability, a condition that is never met.
Consequently, genes with greater than average tag for-
mation probabilities will be over-represented while
those with lower than the average probability will be
under-represented. Equation (1) allows us to accurately
estimate this sampling bias and correct the inferences
made from tag libraries.
Before the tag counts are considered, we assume that

the data is processed to retain only informative tags, i.e.
all ambiguous or orphan tags are removed, as is standard
practice. Let the vector t = (t1, ..., tl) represent the aggre-
gated observed tag counts for individual genes. Here l is
the number of genes that contain at least one unambigu-
ous AE site and ti is the total number of observed tags
that can uniquely be attributed to an AE site in gene i.
(Note that standard dis-aggregated counts are simply a
special case of the aggregated counts given above with ji

representing a single element within the summation term
in Eq. (1).) It is natural to view this vector as a sample
from a multinomial distribution with l categories, t
~Multi (ttot, θ) where θ = (θ1, ..., θl), θi represents the fre-
quency of tags from gene i in the tag pool, and

t ttot ii

l  1
is the total count of all observed tags.

Because the variation in tag formation probabilities ji

distorts the abundances of observed tags, it is clear that
θi represents a biased estimate of the true proportion of
mRNA from gene i in the overall pool. Unfortunately,
this true proportion of mRNA, denoted mi, is clearly the
quantity of interest. [6] relates the biased proportion θi to
mi with the following simple expression:

 
i

mi i
m j jj


 (2)

where ji is the known tag formation probability based
on Eq. (1) and the proportions mi are positive and sum
to one. The bias corrected likelihood model is then,

L
t

t t t
mi i
m j jj

tot

l i

t i

m t|
, , ,

   






 













1 2 



(3)

Direct maximization of the likelihood with respect to
the parameters mi is straightforward due to the fact that
the likelihood function is maximized at the same loca-
tion irrespective of the way the model is parameterized.
Consider the observed sample proportion  i = ti/ttot.
The fact that the mi are positive and must sum to one
along with Eq. (2) force the maximum likelihood esti-
mates of ˆ { ˆ , ˆ , , ˆ }m  m m ml1 2  to satisfy the following
equality,
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While computation of the maximum likelihood esti-
mates (MLE’s) is relatively straightforward, constructing
confidence intervals for m is difficult. The existence of
the normalization term ∑jmjjj in the denominator of
the left hand side of Eq. (4) makes computation of Fish-
er’s information matrix taxing, particularly for the large
dimensional vectors encountered when working with
SAGE data (i.e. l is of the order 103 to 104). In addition,
because the number of categories is generally within an
order of magnitude of, or possibly even greater than, the
number of tags sampled, most categories have either
zero or only a few observations. These relatively small
counts call into question inferences such as chi-squared
tests which are based on asymptotic approximations.
As an alternative, we consider a Bayesian approach to

the problem. The constraints lead naturally to the
assumption of a Dirichlet prior on m,
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where ai is the parameter describing any prior infor-
mation we have on the value of mi. Combining this
prior distribution with the likelihood function given in
Eq. (3) leads to a posterior distribution proportional to
the product
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[6] introduces methods for the direct maximization of
this quantity and discusses the choice of a prior and its
consequences on the marginal inferences for individual
values of mi. However, a number of difficulties severely
limit the range of prior parameters that can be used; i.e.
those priors with appreciable weight relative to the
observed sample sizes. Given the bias in the observed
data, the Gibbs sampling based approaches for inference
based on the posterior of the mRNA proportions
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introduced here are more flexible, and require fewer
assumptions than analytic techniques. The methods are
also highly computationally efficient. While the assump-
tion of independent cleaving resulted in a geometric
model, it is important to note that alternative models of
tag formation can be substituted into the Bayesian algo-
rithms without making any further adjustments to the
model.

Shrinkage Estimation in Multivariate Models
Joint estimators of the relative proportions of individual
tags in SAGE experiments based on posterior means
from a conjugate Dirichlet-Multinomial model were
explored by [9] and have similar properties to the meth-
ods proposed here. In the case of flat priors (i.e. ai = 1
for all i), they note that while the posterior mean pro-
vide improved average accuracy with respect to sums of
squared errors across all categories, estimates of cate-
gories where large counts are observed were shrunk
excessively in order to boost the estimated probabilities
of cells with few or no counts. Due to the massive num-
ber of categories and the extreme imbalance in observed
frequencies (e.g. more than half of the categories have
zero counts in our data), the estimates for frequently
observed genes tend to consistently underestimate the
true proportions while the reverse is true of genes with
very low expression proportions. This observation high-
lights the main weakness of shrinkage estimators such
as the posterior mean. While they perform better on
average across categories, they may perform poorly on
particular categories that may be of primary interest. [9]
addresses this issue by proposing a mixture of Dirichlet-
Multinomial’s but does not discuss the issue of sampling
bias. Note that after aggregation, the large reduction in
the number of categories significantly reduces the side
effects of shrinkage leading to improved inferences.
These observations will be useful in analyzing the bias
corrected models proposed below.

Results and Discussion
Hierarchical Models and Gibbs Sampling
Three hierarchical approaches are proposed to model
aggregate tag counts while taking into account the tag
formation probability. The Dirichlet-Poisson-Binomial
model (DPB) extends the method of [10], who modeled
tag counts as independent random variables from a
Poisson-Gamma mixture to a multivariate setting that
models the joint distribution of tags. The Dirichlet-Mul-
tinomial-Binomial model (DMB) views the unobserved
true counts of mRNA in the population as being derived
from a multinomial distribution. The missing-data
model (MD) assumes that if the number of mRNA tran-
scripts that were not converted into tags due to incom-
plete digestion by the anchoring enzyme, denoted r,

were known then the data could be modeled as a stan-
dard Dirichlet-Multinomial model. By proposing a Pois-
son distribution for r, posterior inferences can be made.
Detailed descriptions for these algorithms are given in
the Methods section. Gibbs samplers based on these
algorithms all produce posterior samples of m, the vec-
tor of relative proportions of each gene in the mRNA
population. In addition, DPB produces samples repre-
senting N, the hypothetical total number of mRNA tran-
scripts in the population while MD produces posterior
samples of r, the number of unconverted transcripts.
These quantities may be relevant in studies of the num-
ber of unique transcripts.
A Dirchlet prior distribution was assumed for the pro-

portion vector m in all three algorithms. Two parameter
vectors  = (a1, ..., al) were tested. The flat prior sets
ai = 1 for all i while the tub prior sets ai = 1/l. The flat
prior effectively assumes that a hypothetical previous
experiment produced 1 tag for each category. As the
name suggests, the flat prior represents a uniform den-
sity over the parameter space. The tub prior assumes
that the prior information is equivalent to that of a sin-
gle tag. The density of this prior takes a bowl or tub
shape. The preponderance of mass along the edges
forces the estimates of mi to be small unless significant
counts are observed for that gene.
To analyze performance, we applied each algorithm to

data collected from the log-phase growth of S. cerevisiae
and analyzed by [7]. Here, l = 6, 178 is the number of
genes in the sample. For each of the three methods, we
compared posterior means from the Gibbs sampler to
unadjusted multinomial MLE’s, corrected MLE’s based
on Eq. (4), and the analytically derived joint posterior
mode given in [6]. In addition, 95% marginal posterior
intervals are also computed for each gene from the
Gibbs sampler output. Figure 2 presents results from
DPB analysis. Both estimates and intervals generated
using the flat prior are plotted versus rank for the 20
genes with largest tag counts. Equations (3) and (5) dic-
tate that the corrected MLE and the posterior mode
coincide perfectly in this case. Both posterior means and
posterior modes based on the DPB bias correction devi-
ate as much as 40% from the unadjusted MLE for many
of the most frequently tagged genes indicating the
importance of the correction. Posterior modes and
means follow nearly identical trends but with the modal
estimates being uniformly larger. Figure 3 summarizes
results when using the tub prior in the DPB case. Here
one can see the ithcorrected MLE and posterior mean
now coincide up to simulation precision (≈ 1%). As with
the flat prior, all estimators generated using the tub
prior deviate significantly from the unadjusted MLE’s.
Both Figures 2 and 3 show that modal estimates typi-

cally lie slightly above the 97.5% bound of the simulated
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marginal posterior distribution. The reader might won-
der why the multivariate mode and mean are so far
apart. The explanation lies in the fact that posterior dis-
tribution is spread across a a large parameter space con-
sisting of many thousands of dimensions. While the
posterior distribution has a skewed density with a very
slight slope, it is essentially flat over most of the para-
meter space. While the mode is located at the most
likely point, an extreme point where only a fraction of
the categories have non-zero tags, the mass spread
across the rest of the space pulls the mean away from
this point leading to the observed separation. This is
similar to the effect of skewness in a one dimensional
distribution which pulls the mean away from the mode.
Graphical displays based on the results of the DMB

and MD algorithms had very similar appearances and so
are not shown. However, meaningful differences in pos-
terior means generated by the methods and across the
two priors do exist and are discussed in the following
section.
In order to ensure that autocorrelation did not

adversely effect parameter estimates, convergence analy-
sis was performed. Posterior samples for the proportion
m3, which corresponds to the open reading frame
YAL003W, were investigated for all approaches. This

gene was observed in 32 of the 14,285 tags and was
selected randomly among the set of genes with medium
to large tag counts. Autocorrelations of both sequences
were tested at various lags. Results given in Table 1 sug-
gest that the flat prior may generate slightly larger cor-
relations than the tub but in both cases autocorrelations
are very low between samples with lags as small as 10.
Table 2 examines correlations between posterior sam-

ples at various lags for the population size N in the DPB
algorithm and the number of unconverted transcripts r
from the MD method. When using the flat prior, high
correlation among posterior simulations of N exist at all
tested lags leading to unreliable inferences. Interestingly,
the tub prior leads to negligible correlations among
samples at all measured lags. Using the MD method, the
autocorrelation in samples of r decreases to 0 after 50
simulations when using the flat prior. Samples are
uncorrelated at lags as small as 10 when using the tub
prior.
In terms of computational efficiency, with l = 6, 178, 5

million samples from the DPB algorithm required 21.7
and 19.3 minutes with the flat and tub priors respec-
tively. The DMB was slightly slower taking 30.7 and
25.2 minutes to run. Finally, the MD method completed
5 million samples in 20.2 and 19.3 minutes, respectively.
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Figure 2 Dirichlet-Poisson-Binomial estimates with the flat prior. Probability estimates and inferences for S. cerevisiae log-phase data based
on the DPB model with flat prior, ai = 1, for all genes. The 20 genes with the largest tag counts are arranged in decreasing rank order along
the x-axis. The observed tag proportions are marked in open circles, the bias corrected MLE in open triangles. The analytically computed
posterior mode when ai = 1 coincides exactly with the corrected MLE. Also included are the estimated posterior mean and upper and lower
marginal 95% Bayesian posterior bounds based on MCMC sampling.
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In order to avoid any effects due to autocorrelation
our real data experiments stored only the last of every
hundred samples for analysis. Inference for means was
based upon the final 1000 of these stored samples
drawn after an extensive burn-in period of 400,000
simulations. Because the vector m is usually the quantity
of interest, far fewer samples would be needed in prac-
tice. This would significantly reduce the computation
times for the algorithm.

A Simulation Study
Although all methods produce similar trends in their
estimates, quantitative differences do exist. It is also
important to quantify the effects of the prior

distributions on the analysis. Because the inferential
quality is often more relevant in scientific investigations
of relative and differential expression than point esti-
mates, we attempt to contrast inferential quality of the
three methods by examining marginal 95% posterior
intervals constructed for mi from simulated libraries.
The proportion of times the computed interval covers
the true known simulation proportion mi is then
recorded. Accuracy is assessed by how close the
observed coverage percentage is to the desired level of
95%. The average interval length of the 95% posterior
intervals was considered as a second criteria of
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Figure 3 Dirichlet-Poisson-Binomial estimates with the tub prior. Probability estimates and inferences for S. cerevisiae log-phase data based
on the DPB model with tub prior, ai = 1/l, for all genes. The 20 genes with the largest tag counts are arranged in decreasing rank order along
the x-axis. The observed tag proportions are marked with open circles, the bias corrected MLE in open triangles. In this case analytically derived
posterior modes deviate substantially from the corrected MLE while the estimated posterior mean is identical to it. Upper and lower marginal
95% Bayesian posterior bounds are also given.

Table 1 Autocorrelation in Gibbs samples of proportions.

DPB DMB MD

Lag (a = 1) (a = 1/l) (a = 1) (a = 1/l) (a = 1) (a = 1/l)

10 0.011 0.000 0.015 0.019 0.053 0.008

20 0.047 0.000 -0.025 0.013 -0.012 0.010

40 -0.001 -0.028 -0.019 0.013 -0.034 0.012

80 0.000 0.027 0.000 -0.007 0.011 -0.010

Autocorrelation estimates for three proposed algorithms across posterior
samples of the mRNA proportion at the the open reading frame YAL003W in
S. cerevisiae log-phase data.

Table 2 Autocorrelation in Gibbs samples of population
size.

DPB MD

N N r r

Lag (a = 1) (a = 1/l) (a = 1) (a = 1/l)

10 0.905 0.024 0.606 0.007

20 0.863 0.018 0.344 -0.012

40 0.783 -0.029 0.088 -0.034

80 0.666 0.027 -0.011 0.011

Autocorrelation estimates for mRNA population size N in the DPB algorithm
and number of unconverted transcripts r in the MD algorithm.
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inferential accuracy but no meaningful differences in
average interval length were observed among the three
methods.
Table 3 presents average coverage levels across a

range of mi values for library sizes l = 6, 178 and l = 1,
000. One clear conclusion is that under the simulation
protocol and the priors considered, the DPB method has
the best general performance across the range of mi

values for both priors. In contrast, the DMB and MD
methods, which have very similar performance with
almost identical coverage values across all categories
and priors, offer poor coverage for medium and large
categories under the flat prior. All methods provide
accurate coverage under the flat prior for the intermedi-
ate values of mi (i.e. .0000167 - 0.000912) which repre-
sent the bulk of the genes used in our simulations.
Below this range, all three methods have a tendency to
overestimate the true mi. This is due to the fact that the
magnitude of ai for the flat prior is on the same order
of magnitude as the observed tag counts and leads to
poor coverage performance. In contrast, all three meth-
ods tend to underestimate the true mi value in the
abundant categories. This shrinkage effect was discussed
earlier; see [9] for a detailed discussion.
Not surprisingly, shrinkage effects become more pro-

nounced as the number of genes l increases further
degrading the quality of the estimates. This shrinkage is
most acute for DMB and MD methods applied to larger
library sizes, which perform poorly for the segments
with the. As noted above, the flat prior works well
across a wide range of values but performs poorly in the
extremes. Figure 4 displays this effect for a subset of 13
genes. Alternatively the tub prior works well for the
majority of genes where the flat prior fails. For example,
the tub works well in large mi categories because it
shrinks the estimates very little. Its weakness; it adds

almost no mass to categories with small positive values
of mi and, if no counts are observed, intervals are pro-
duced with both endpoints near 0. Figures 5 and 6 pro-
vide detailed views from a sample of 30 simulated
libraries for a large and small mi gene. Focusing on the
left panel of Figure 5, the shrinkage effect is evidenced
by the fact that posterior mean estimates of mi systema-
tically underestimate its true value. This leads to upper
interval endpoints being systematically too small. The
tub prior on the right corrects this phenomenon well.
On the left of Figure 6 we see posterior mean estimates
of mi being drawn well above their actual values by the
reversing of the shrinkage for small mi categories. This
leads to reasonably accurate coverage. In the right panel
we see that tub prior fails miserably in this case. Inter-
vals for genes with 0 counts collapse close to zero sys-
tematically underestimating the true mi values.
Because these methods are very efficient to compute,

both methods can be applied to analyze a single library
with the tub prior being relied upon for larger count
categories while the flat prior is used for the remaining
categories.

Differential Expression in SAGE between Libraries
Tag based transcriptome sequencing such as SAGE is
most commonly used to identify differential expression
of genes across groups of libraries. It is important to
point out the consequences of differences in tag forma-
tion probabilities in such studies along with the advan-
tages of the proposed methods in this context.
Because the anchoring enzyme AE cutting probability

p is experiment dependent [6], it is sensible for the
tag formation mechanism to be taken into account
when evaluating differential expression across experi-
ments. Indeed, this should lead to increased power
and accuracy in such studies. To briefly explore the

Table 3 Simulated coverage probabilities for proposed methods.

Proportion mi Range Library Size Gene Count Prior

Flat ai = 1 Tub ai = 1/k

DPB DMB MD DPB DMB MD

0 - 1.67 × 10-5 6178 1181 0.800 0.855 0.854 0.104 0.104 0.104

- 1000 25 0.825 0.834 0.834 0.107 0.108 0.107

1.67 × 10-5 - 1.23 × 10-4 6178 3678 0.947 0.975 0.976 0.520 0.520 0.520

- 1000 209 0.9425 0.950 0.950 0.558 0.558 0.558

1.23 × 10-4 - 9.12 × 10-4 6178 1173 0.961 0.951 0.948 0.899 0.898 0.898

- 1000 578 0.952 0.957 0.957 0.911 0.911 0.911

9.12 × 10-4 - 6.74 × 10-3 6178 133 0.939 0.485 0.479 0.945 0.944 0.944

- 1000 165 0.950 0.950 0.945 0.934 0.934 0.934

6.74 × 10-3 - 1.35 × 10-1 6178 13 0.809 0.009 0.005 0.953 0.951 0.951

- 1000 23 0.948 0.794 0.780 0.943 0.939 0.939

Coverage percentages for 95% posterior intervals for MCMC methods. Percentages represent the average number of intervals out of 1000 which covered the
true proportion mi over the given range of mi values. Standard errors of proportions reported are below 1.5% and typically close to 1%.
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consequences of variation in cutting probability, con-
sider two experiments A and B. Letting pa and mia

represent the cutting probability and relative proportion
of mRNA for the ith tag in experiment A and similarly
for B, the theoretical odds ratio for the tag proportions
across libraries A and B is

OR m m
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where  ja a a
k

p p j  1 is the tag formation prob-
ability for tag j in experiment A, Ω is the true odds
ratio, and kj is the number of AE positions upstream
from which the tag was derived. The approximation
holds when both pa and pb are large (i.e. > 0.5) and the
ith expression level mi is small in an absolute sense for
both experiments, conditions that are almost universally
met in SAGE studies.
If only data derived from the 3’ most tagging site of

each gene is analyzed so that k = 0, and jja = pa then
the odds simply reduces to (mia(1 - mib))/(mib(1 - mia)),
the exact odds ratio desired. However, suppose all tags
are allowed and the experimenter tests differential
expression for the ith tag, which derives from an AE site
1 position upstream from the 3’ end. The tag formation
probability now takes the form p(1 - p). Assuming

cutting probabilities pa = .92 and pb = .96 we see that
our estimate of the odds ratio is overestimated by a fac-
tor of ~1.9 potentially leading to a false positive diagno-
sis. In fact, this phenomenon could result in a sizeable
proportion of both false positive and false negative con-
clusions. If SAGE analysis were restricted to 3’ most AE
sites and all data from upstream tags were eliminated
from the library, ji would be constant and sampling
bias would be eliminated by analysis using odds ratios
(logistic regression coefficients are estimated log-odds
ratios). Once again, the caveat to this approach is that a
significant proportion of the observed tags may be dis-
carded. The need for the adjustments we propose stems
from an effort to accurately combine multiple tags aris-
ing from the same mRNA and offers the ability to utilize
a much larger fraction of the data collected leading to
more power for differential testing.
Monte-Carlo sampling mechanisms such as DPB can

easily be applied to evaluate differential expression
across groups of libraries. In the case of comparison
for gene i across two libraries, individual Monte Carlo
samples from each library can be differenced, mi1 -
mi2, and the distribution of these differences used for
inference; see [[9], Section 6.]. As in a paired t-test, if
the bulk of differences fall far from 0 we may conclude
that differential expression exists. Alternatively, it may
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be more appropriate to form odds ratios based on the
sampled quantities and see if the bulk of these are far
from 1.
The Monte-Carlo sampling nature of the algorithms

presented here and their computational efficiency leads
to several advantages over recent methods [14-16]. First,
and foremost the ability to use a larger fraction of the
data collected while simultaneously correcting bias is
critical to improving power. In addition, MCMC sam-
ples allow both marginal and joint testing for differential
expression across all genes using a single sampling run
for each library involved. Joint testing of differential
expression is possible because posterior samples repre-
sent the joint posterior distribution of the proportions
m. Importantly, our method requires no asymptotic
conditions to be met in order to guarantee the validity
of the results.

Conclusions
This work focuses on a general biasing mechanism that
may have a significant impact on the interpretation of
libraries generated by SAGE and closely related meth-
ods. Beyond drawing attention to the consequences of
incomplete digestion, two main contributions are pre-
sented. First, we derive and analyze three Bayesian algo-
rithms that provide corrected posterior inference for
relative proportions of genes or tags in the overall popu-
lation. Second, through calculations we deduce the con-
sequences of tag formation bias on testing of differential
expression and discuss how the algorithms derived here
can be used to correctly assess differential expression.
This work compliments the earlier work in [6] by pro-

viding a flexible and efficient methodology which
extends the range of the prior distributions that are
available. It also allows researchers access to interval
estimates in order to assess uncertainty in the estimated
quantities.
The proposed methods are appropriate when incom-

plete digestion is the main source of multiple tag gen-
eration. They may be applied to both tag level data
and to inference at the gene level based on aggregated
counts. If possible, aggregating tags will provide better
inferences due to larger available counts. Of the three
approaches, the DPB method provided the most accu-
rate confidence intervals over the widest range of rela-
tive proportions and we recommend its exclusive use.
In addition, the choice of prior also plays an important
role in the effectiveness of the algorithm. Of the two
priors tested, the flat prior was effective over a wide
range of categories but resulted in excessive shrinkage
for the most abundant categories. For a fixed number
of sampled tags, this shrinkage effect becomes more
severe as one increases the number of categories.
Hence, aggregating tags provides a second advantage

since it greatly reduces the number of categories used
in an analysis. The proposed tub prior provides little
shrinkage and posterior intervals based on this prior
are very accurate for abundant categories. In practice,
both priors should be applied and inference should be
based on the samples with the larger average.
We note that the sampling algorithms presented are

independent of the model for tag formation probability
and models other than the geometric model discussed
can easily be substituted. It should also be possible to
extend the proposed methods using a mixture metho-
dology as suggested by [9].
Correction of tag formation bias may play a significant

role in improving power in differential expression stu-
dies based on SAGE or related tag libraries. To ensure
valid testing, one must either include bias correction or
eliminate non-3’ tag counts from the analysis. Further-
more, the ability to effectively test for changes in groups
of genes (gene networks) is now possible due to the
multivariate nature of the posterior distribution. This
advantage may become significantly more important as
more elaborate studies and techniques are developed in
the future.
Due to the overall simplicity of genome architecture,

alternative splicing is generally not a problem when
analyzing gene expression in S. cerevisiae and other
microorganisms. However, alternative splicing is wide-
spread in most multicellular organisms [1,2] and
greatly complicates transcriptome analysis. While the
adjustments we propose do not solve the interpretation
problems caused by alternative splicing, properly iden-
tifying multiple tags from common mRNA is a neces-
sary first step in doing so. A logical next step would
be to expand the tag formation model underlying this
work by allowing a single gene to produce multiple
mRNA isoforms instead of a single type. One approach
would be to extend our model in a manner similar to
the approach developed for analyzing mRNA sequence
data developed by [20].
Extending our model in such a way should allow us to

make inferences about the distribution of mRNA iso-
forms produced by a gene based on the distribution of
tags experimentally observed.
Conceptually, the problems caused by alternative

splicing are similar to those caused by tag ambiguity
between different genes. For example, in the case of
alternative splicing, the challenge is in determining the
mRNA isoform from which each tag originates. Simi-
larly, in the case of ambiguous tags, the challenge is in
determining the gene from which each tag originates.
Thus it is plausible that data interpretation problems
caused by both alternative splicing and ambiguous tags
could be overcome by extending our model to include
multiple sources of a single tag.
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Methods
The Data
We explicitly consider three strategies to simulate from
the posterior distribution given by Eq. (5). The algo-
rithms discussed are tested for inferential accuracy using
simulated data as well as being applied to a published
SAGE data set that analyzes a yeast organism S. cerevi-
siae [7]. The published data was collected from the log-
phase. There are 6,178 genes included in the data. The
maximum tag count was 392 and the minimum was
zero. 3,560 of the genes included had observed counts
of 0. Gene dependent sampling probabilities range from
≈ .3% to 100%. Tag assignments to unique genes and
assignment of non-unique tags for this analysis were
described in [6].

Computing and Software
All simulations described below were computed using
R-environment (Version 2.6.2) on an 8 core, Intel Xeon
2.66 GHz desktop server running Linux Ubuntu 8.04. R-
scripts that implement the Gibbs sampling algorithms
described below are provided; see Additional file 1.

The Dirichlet-Poisson-Binomial (DPB) Model
The DPB approach, inspired by Casella and George
[21], assumes a fixed population of mRNA’s of size N
exists within the sampled cells. The total size N is ran-
dom across samples and follows a gamma distribution
that is rounded down to the nearest integer. The
choice of gamma here is convenient due to its role as
a conjugate prior to the Poisson distribution. Given N,
the relative proportions of the categories of mRNA, mi,
are unknown and assumed to follow a Dirichlet distri-
bution with prior


 = (a1, ..., al). The ai will typically

be identical resulting in objective inference.
Because cells contain mRNA transcripts from thou-

sands of different genes, the probability of seeing any
particular type is low. It is therefore logical to assume,
given N and mi, that the actual number of mRNA’s of a
certain type gi, i = 1, ... l, extracted from the group of
cells, satisfies a Poisson distribution with mean μ =
N·mi. Finally, the restriction enzyme process generates a
tag count ti for a particular mRNA transcript in a bino-
mial fashion based upon the tag formation probability
ji. Hence, the hierarchical data generating mechanism
follows, Ti~Binomial(gi, ji), gi~Poisson(N * mi), m ~Dl

(

 ), and N ~ceiling(Gamma(g1, g2)). We refer to this
model as the Dirichlet-Poisson-Binomial (DPB) model.
A first weakness of this model is that the sum of all

counts ∑gi may not add up to the total counts N. How-
ever, this approach allows us to infer the total popula-
tion size N. Together, the elements described above give
a joint posterior distribution,
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where δ = (

 , g1, g2). Gibbs sampling can be imple-

mented by iteratively simulating from each conditional
after replacing any unknown random quantities in the
conditioning set with simulation values from the pre-
vious iteration; see [22].
The hierarchical model considered here is not identi-

cal to Eq. (3), but depends upon prior parameters (g1,
g2) which effect the mode of the posterior distribution.
One possibility for choosing values of these parameters
is to minimize the distance between the approximate
analytical mode discussed in [6] and the mode of this
model which can be computed through iterative maxi-
mization of the conditionals; see [23,24] for further
details.
In our simulations we used a shape parameter g1 =

100 and prior scale g2 = 200. The mean of a gamma
with these parameters is 20,000 which is somewhat lar-
ger than a natural estimate of the population size, ∑i(ti/
ji) = 16438.81. This was chosen intentionally to deter-
mine if the posterior would converge to a reasonable
estimate of N.

The Dirichlet-Multinomial-Binomial (DMB) Model
The Dirichlet-Multinomial-Binomial (DMB) approach is
arguably more faithful to the sampling mechanism
inherent in SAGE than DPB. N, the total number of
mRNA in the sample is assumed to follow a Poisson
distribution with mean l. Given this mRNA population
size, the vector g of counts for each category of mRNA
prior to tag formation follows a multinomial distribu-
tion,
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whose probabilities are the mRNA proportions mi and
are assumed to follow a Dirichlet distribution with para-
meter vector


 . Reminding readers that


 = (j1, j2, ...,

jl) is the vector of tag formation probabilities and
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letting δ = (l, g1, g2), the full conditional distributions
are derived to be,
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where m *(1 -

 ) is an element-wise product with 1

representing a vector of identical dimension to m.
Hence, the ith element of the vector is given by mi (1 -
ji).
This formulation is more natural in the sense that it

restricts the pre-tagging counts to sum to the popula-
tion total N. One drawback is that the observed data
provides no information for posterior inference about
the population size N. Iterative maximization for mode
calculation is not viable due to the discrete nature of
the multinomial conditional distribution.

The Missing Data (MD) Model
Instead of re-normalizing the probabilities θi = (miji)/
(∑miji) and basing inference on the posterior of Eq. (5),
a more straightforward approach uses the concept of
missing data which is often associated with the EM
algorithm; see [22]. We augment the observed data vec-
tor t with an extra category that represents any cDNA
that is not converted to a tag. This count, r, is not
observed, but if a distribution such as the Poisson is
proposed, we may consider a Bayesian approach. Given
the value of r and assuming a Dirichlet prior on the
unknown initial proportions m ~Dl(a1, ..., al), the
resulting posterior distribution for m is,
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This resulting posterior distribution is a Dirichlet dis-
tribution with l + 1 categories compared with the l cate-
gories in the prior distribution. Exact computation of
the conditional expectations E(mi|r) is now straightfor-
ward. Using the formula for the mean of a Dirichlet dis-
tribution
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intuitively reasonable. Substituting this into the previous

expression eliminates the dependence upon r. Hence,
the marginal expectation of mi across values of r is
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(7)

Gibbs sampling is also available for this problem and
extends inference to Bayesian interval estimates. If r
~Poisson(μ) then the posterior distribution can be writ-
ten,
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The full conditional distributions are
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In order to apply the Gibbs sampler a value for the
prior mean of r, μ must be selected. A logical mean for
the Poisson is ttot ∑imi(1 - ji)/∑imi ji since ∑mi(1 - ji)
= 1 - ∑mi ji is the probability that an mRNA is not
converted into a tag. Equation (4) provides a useful esti-
mate of ∑mi ji in the case of a flat prior.
Like the DPB algorithm above, the missing data algo-

rithm also admits an iterative optimization procedure in
order to compute the posterior mode. The mode of the

Dirichlet conditional given by [22] is mi i = (ti + ai -

1)/(∑i(ai + ti) + r - l) while the mode for the Poisson is
the mean rounded down to the nearest smaller integer.
For example, considering a flat prior for m along with a
prior mean of μ = 10, 100 for r, the posterior mode of
the missing data model is nearly identical to the exact
analytical mode given in [6]. It is tempting to invoke the
argument used to derive Eq. (7) to obtain the marginal
mode.
Unfortunately, when ai < 1 and ti = 0 this leads to

estimates outside of the parameter space.

Simulation Study Protocol
Simulation of libraries was based upon the proportions
estimated from the aggregated S. cerevisiae log-phase
data described earlier. First, long and short multino-
mial proportion vectors m of lengths l = 6, 178 and 1,
000 respectively were constructed. Actual mean esti-
mates from the log-phase library were adopted for the
case l = 6, 178 while for l = 1, 000, m was based on
renormalizing the first 1,000 elements of the longer
case. The vector of known tag formation probabilities,
{j1, ..., jl} was constructed by simulating a theoretical
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number of AE cleaving sites and then using Eq. (1) to
compute individual probabilities ji. The number of
cleaving sites followed a Poisson distribution with
mean 2 with 1 count added to each category. This
ensured that each “gene” has at least one cleaving site.
The cleavage probability was set at p = .55 based on
estimates given in [6].
Using the above protocol, for each combination of

library size, l, and prior, 1,000 libraries, tj, each containing
n = 15, 000 tags were simulated. For each simulated
library, each of the three proposed algorithms was used to
generate 20,500 posterior sample vectors mjk, k Î 1, ...20,
500. Every 20th sample was collected after a burn in per-
iod of 500 samples resulting 1,000 Monte Carlo samples
of m for each method. Samples were then used to gener-
ate mean, median and 95% marginal posterior intervals
for each of the l gene categories. Coverage percentages
for the ith gene category are computed by finding the pro-
portion of times that the interval for category i from a
particular method contains the true proportion mi across
the 1,000 simulated libraries tj . Figure 4 displays a sample
of coverage percentages across a range of categories for
the DPB method under two different prior values.

Additional file 1: SAGEGibbs.R. File contains a script which implement
the Gibbs Samplers described in the paper. The script is written in the R-
environment.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
72-S1.R ]
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