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Abstract

Background: The task of recognizing and identifying species names in biomedical literature has recently been
regarded as critical for a number of applications in text and data mining, including gene name recognition,
species-specific document retrieval, and semantic enrichment of biomedical articles.

Results: In this paper we describe an open-source species name recognition and normalization software system,

LINNAEUS, and evaluate its performance relative to several automatically generated biomedical corpora, as well as
a novel corpus of full-text documents manually annotated for species mentions. LINNAEUS uses a dictionary-based
approach (implemented as an efficient deterministic finite-state automaton) to identify species names and a set of

freely at http://linnaeus.sourceforge.net/.

heuristics to resolve ambiguous mentions. When compared against our manually annotated corpus, LINNAEUS
performs with 94% recall and 97% precision at the mention level, and 98% recall and 90% precision at the
document level. Our system successfully solves the problem of disambiguating uncertain species mentions, with
97% of all mentions in PubMed Central full-text documents resolved to unambiguous NCBI taxonomy identifiers.

Conclusions: LINNAEUS is an open source, stand-alone software system capable of recognizing and normalizing
species name mentions with speed and accuracy, and can therefore be integrated into a range of
bioinformatics and text-mining applications. The software and manually annotated corpus can be downloaded

Background

The amount of biomedical literature available to
researchers is growing exponentially, with over 18 mil-
lion article entries now available in MEDLINE [1] and
over a million full-text articles freely available in
PubMed Central (PMC) [2]. This vast information
resource presents opportunities for automatically
extracting structured information from these biomedical
articles through the use of text mining. A wide variety
of biomedical text-mining tasks are currently being pur-
sued (reviewed in [3,4]), such as entity recognition (e.g.
finding mentions of genes, proteins, diseases) and
extraction of molecular relationships (e.g. protein-pro-
tein interactions). Many of these systems are con-
structed in a modular fashion and rely on the results of
other text-mining applications. For example, in order to
extract the potential interactions between two proteins,
the proteins themselves first need to be correctly
detected and identified.
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One application that could facilitate the construction
of more complex text-mining systems is accurate species
name recognition and normalization software (i.e. soft-
ware that can tag species names in text and map them
to unique database identifiers). For example, if the spe-
cies and locations of species mentions discussed in a
document were known, it could provide important
information to guide the recognition, normalization and
disambiguation of other entities like genes [5-7], since
genes are often mentioned together with their host spe-
cies. In recent text-mining challenges such as the identi-
fication of protein-protein-interactions at BioCreative II
[8] or bio-molecular event extraction at the BioNLP
shared task [9], some groups considered species identifi-
cation and normalization an essential sub-task [10].
Likewise, improved methods for identifying species
names can assist pipelines that integrate biological data
using species names as identifiers [11,12].

In addition to being useful for more complex text-
mining and bioinformatics applications, species name
recognition software would also be wuseful for
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“taxonomically intelligent information retrieval” [13].
Document search queries could be filtered on the basis
of which species are mentioned in the documents [14],
providing researchers more fine-grained control over lit-
erature search results. This use case provides a powerful
extension to simple keyword-based PubMed searches,
since all synonyms of a species would be normalized to
a standard database identifier, and could therefore be
retrieved by any synonym used as input. This can cur-
rently be done to some degree by specifying Medical
Subject Heading (MeSH) terms when performing a
PubMed query. However, MeSH-based queries have lim-
itations since the set of MeSH tags comprises only a
small subset of all species. Additionally, semantic
enhancement (marking-up entities in text and hyper-
linking them to external databases [15,16]) of research
articles with species names could provide readers with
easier access to a wealth of information about the study
organism. Accurate recognition and normalization of
species mentions in biological literature would also facil-
itate the emerging field of biodiversity informatics,
which aims to develop databases of information on the
description, abundance and geographic distribution of
species and higher-order taxonomic units [13,17,18].

The task of identifying species names in biomedical
text presents several challenges [10,13,19], including: (i)
Species name ambiguity: many abbreviated species
names are highly ambiguous (e.g. “C. elegans” is a valid
abbreviation for 41 different species in the NCBI taxon-
omy). Ambiguity is also introduced because names can
refer to different NCBI taxonomy species entries (e.g.
“rats” can refer to either Rattus norvegicus or Rattus
sp.). (ii) Homonymy with common words: some species
common names are widely used in general English text
(e.g. “Spot” for Leiostomus xanthurus and “Permit” for
Trachinotus falcatus). These names introduce a large
number of false positives if not properly filtered. (iii)
Acronym ambiguity: species dictionaries contain acro-
nyms for species names (e.g. HIV for Human immuno-
deficiency virus), which can refer to multiple species or
other non-species entities. In fact, it has previously been
shown that 81.2% of acronyms in MEDLINE have more
than one expansion [20]. This presents challenges relat-
ing to identifying when an acronym refers to a species,
and, if so, which species when it refers to several. (iv)
Variability: while species dictionaries cover a large num-
ber of scientific names, synonyms and even some com-
mon misspellings, they cannot match human authors in
variability of term usage. In some cases, authors use
non-standard names when referring to species, spell
names incorrectly or use incorrect case.

Despite these challenges, several attempts have been
made to automate the process of species name recogni-
tion and normalization using a range of different text
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mining approaches. Previous efforts in species name
recognition can broadly be categorized in two groups:
software aiming to identify species names in legacy
documents in the field of biodiversity (e.g. the Biodiver-
sity Heritage Library [21]), and software aiming to iden-
tify species names in current biomedical literature (e.g.
MEDLINE or PubMed Central). The main aim of tools
profiled towards the field of biodiversity is to recognize
as many species names as possible, many of which have
not been recorded in existing species dictionaries. Biodi-
versity-oriented methods typically use rule-based
approaches that rely on the structure of binomial
nomenclature for species names adopted by Carl Lin-
naeus [22]. By taking advantage of regularity in naming
conventions, these approaches do not have to be
updated or re-trained as new dictionary versions are
released or species names change, and can cope with
the very large number of possible species names in the
biodiversity literature. However, rule-based methods are
often unable to identify common names (e.g. Drosophila
melanogaster follows the typical species name structure,
while “fruit fly” does not).

TaxonGrab [23] is such a rule-based tool, which con-
sists of a number of rules based on regular expressions.
Using an English-language dictionary, it finds all words
that are not in the common-language dictionary, and
applies rules based on character case and term order in
order to determine whether a term is a species name or
not. It is implemented in PHP and available under an
open-source license [24]. TaxonGrab performance is
high (94% recall, 96% precision) against a single 5000-
page volume on bird taxonomy, but it has not been
evaluated on biomedical articles. “Find all taxon names”
(FAT) [25] is a more complex mention-level method
related to TaxonGrab, with several additional rules
aimed at increasing recall and precision. FAT reports
better accuracy than TaxonGrab (>99% recall and preci-
sion) on the same evaluation set and can be accessed
through the GoldenGate document mark-up system
[26,27]. It is important to note, however, that the perfor-
mance of these methods has not been evaluated against
normalization to database identifiers.

The uBio project provides a set of modular web ser-
vices for species identification [28] and automatic cate-
gorization of articles based on the species mentioned in
them [11]. FindIT, part of the uBio suite, is a rule-based
system aiming to perform species name recognition,
aided by a range of dictionaries. After recognition, a
confidence score is given for each match and, where
possible, any recognized species names are mapped to
uBio Namebank records. However, like TaxonGrab, Fin-
dIT is unable to recognize common names such as
“human.” TaxonFinder is a related method influenced
by both TaxonGrab and FindIT, that brings together
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elements from both systems [29,30]. MapIT performs
species name normalization by mapping species names
to a taxonomic tree rather than directly to a database
identifier. The implementation is not described in detail
and no evaluation of the system is reported. Our testing
of the system reveals that MapIT will map common
names such as “human” to any species with a name or
synonym that contains human, e.g. “Homo sapiens,”
“Human immunodeficiency virus” and “Human respira-
tory syncytial virus.”

Using dictionary-based methods instead of rule-based
methods, it is also possible to recognize common
names, making the software more suitable for proces-
sing biomedical research articles, where authors often
only refer to species by using their common (vernacular)
names, such as “human” or “mouse.” Recognized species
names are typically normalized against the NCBI taxon-
omy [31]. For example, PathBinderH [14] is a diction-
ary-based web service where users can submit PubMed
queries and filter the documents retrieved by species
mentioned in the documents. Unfortunately, the service
is currently limited to 20,000 species and is restricted to
a fixed set of 65,000 of documents in MEDLINE. Ali-
Baba implements a dictionary-based web service for spe-
cies name recognition in PubMed abstracts and
normalization to NCBI taxonomy identifiers, which
includes methods to filter homonyms for common spe-
cies names [32]. WhatizitOrganisms [33] is another dic-
tionary-based system based on the NCBI species
taxonomy, also available as a web service, that recog-
nizes and normalizes species as well as other taxonomic
ranks. It is a one of modules of the more general Whati-
zit system [33], which provides a number of different
entity recognition and normalization pipelines based on
dictionaries for different entity types. Neither the imple-
mentation details nor any evaluation of either AliBaba
or WhatizitOrganisms system have been reported, how-
ever an analysis of WhatizitOrganisms output is pre-
sented here.

Recently, Kapeller et al. [10] have reported work on
species name recognition and normalization in an
attempt to determine the “focus organisms” discussed in
a document. This system includes a dictionary-based
term search combined with filters to remove common
English words, and then ranks species based on their
mention frequency in the abstract or main text. Evalua-
tion is performed against a set of 621 full text docu-
ments where species mentions have been automatically
generated from corresponding protein-protein interac-
tion entries in the IntAct database [34], with a reported
recall of 73.8% and precision of 74.2%. Since it is aimed
at recognizing species in order to guide protein name
normalization, the system is limited to the 11,444 spe-
cies with entries in UniProt [35], and does not
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implement any disambiguation methods since levels of
species name ambiguity are low in this dictionary. The
software is not available either for download or as a web
service.

Wang and colleagues [7,36,37] have developed a spe-
cies name recognition system to aid the disambiguation
and identification of other entities such as gene/protein
names and protein-protein interactions. This system
uses diagnostic species names prefixes along with names
from the NCBI taxonomy, UniProt and custom hand-
compiled dictionaries to tag species with either rule-
based or machine learning techniques. This system
requires other entities of interest (e.g. genes) to be pre-
tagged as input, and only attempts to tag species men-
tions associated with these other entities of interest.
Training and evaluation is based on two related corpora
of 217 and 230 full-text documents manually annotated
for proteins, genes and species. Against these evaluation
sets, their rule-based approaches can achieve either very
high precision (91%) with very low recall (1.6%) or inter-
mediate values (~45%) of both performance measures
[7,37]. Alternatively, their machine learning based
approaches that use contextual features around entities
of interest to tag species yield higher performance
(~70%), but are highly biased toward species represented
in the training dataset [7]. Very recently, Wang et al.
[38] have described extensions to this system and have
made their Species Word Detector method available as
an UIMA component [39] together with a corpus where
protein/gene mentions (but not species mentions) have
been manually annotated and linked to NCBI taxonomy
identifiers [40].

Finally, Aerts et al. [41] use a sequence-based
approach to detect species referred to in biomedical text
by extracting DNA sequences from articles and mapping
them to genome sequences. Based on a set of 9,940 full
text articles in the field of gene regulation, these authors
report that the correct species can be identified (relative
to the species annotated in the ORegAnno database
[42]) for 92.9% of articles that contain a DNA sequence
that can be mapped to a genome. No software for this
approach is available as a web service or standalone
application. Additionally, this approach requires that
articles report a DNA sequence of sufficient length to
be mapped unambiguously to a genome, which is unli-
kely for most abstracts and may only be available for a
limited proportion of full text articles.

Here we aim to produce a robust command-line soft-
ware system that can rapidly and accurately recognize
species names in biomedical documents, map them to
identifiers in the NCBI taxonomy, and make this software
freely available for use in other text-mining and bioinfor-
matics applications. We have named this software system
LINNAEUS, in honour of the scientist who established
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the modern species naming conventions [22]. The goal of
this work is not to discover all possible species names
across publications in all domains of the life sciences, but
to provide efficient methods to link species names in the
biomedical literature to standard database identifiers. We
perform recognition and normalization for all species
names at the mention level, rather than at a document
level, as document-level properties (such as focal organ-
isms [10]) can naturally be inferred from the mention
level. This also enables software built upon LINNAEUS
to use the precise location of species mentions, such as in
the disambiguation and normalization of other positional
entities (such as genes or proteins) or in direct link-outs
from mentions in semantically enhanced documents.
Additionally, we aim to address which dataset is best sui-
ted for evaluating the accuracy of species name recogni-
tion software. To do so, we evaluate several automatically
generated biomedical document sets with species names
attached to them, and conclude that a manually anno-
tated gold standard is necessary to reveal the true perfor-
mance of species name identification systems such as
LINNAEUS. We therefore also provide a new gold-stan-
dard corpus of full-text articles with manually annotated
mentions of species names.

Methods

Overview of the LINNAEUS system

Using the NCBI taxonomy [31] and a custom set of spe-
cies synonyms, we created species dictionaries optimized
for time-effective document tagging (Figure 1A). These
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dictionaries are used for tagging the documents, after
which a number of post-processing steps are performed
(Figure 1B): ambiguous mentions are disambiguated
where possible using a set of heuristics, acronym defini-
tions are detected and mentions corresponding to com-
monly occurring non-species terms are filtered out.
Last, the species alternatives for any mentions that
remain ambiguous are assigned probabilities based on
their relative mention frequencies.

Species name dictionary

The NCBI taxonomy (names data file downloaded June
1st, 2009) was used to construct the species name dic-
tionary. This dictionary covers 386,108 species plus
116,557 genera and higher-order taxonomic units. Dur-
ing this work, only species were considered, but the
software could easily be adapted to recognize genera or
other higher-order taxonomic units as well. All species
terms in the NCBI taxonomy database are categorized
according to type, such as scientific name (e.g. Droso-
phila melanogaster), common name (e.g. fruit fly), etc.
All types were included except for acronyms, where
only a smaller subset was used (see the following sec-
tion). Based on the scientific names of species, abbre-
viated versions of each scientific name were generated
and included in the dictionary, such as “D. melanoga-
ster” from “Drosophila melanogaster” (see also [10]). On
average, each species had 1.46 names provided in the
NCBI taxonomy, which rose to 2.46 names per species
when abbreviations were included.

NCBI

dictionary

Generate
Generate
regular »  Automaton
: automaton /
expressions
Acron.ym Background
Y A mention sp. mention
frequencies ’ R
Automaton w W (AcroMine) frequencies
/// e
~_ o \\ \v
\v/ v
. . . . Detect Filter common Assign
Tagging » Disambiguation . frequency
acronyms English words N
probabilities

Figure 1 Overview of the LINNAEUS species name identification system. (A) Schematic diagram of the species name dictionary and
automaton construction. (B) Schematic of species names tagging and post-processing.
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In contrast to previous work that used the UniProt
species dictionary [10], substantial ambiguity is inherent
in our NCBI taxonomy based dictionary, where the
same term can refer to several different species. This is
mostly the case with abbreviations; when abbreviated
species names are not considered, the average number
of species per term is 1.00088 (527,592 terms and
528,058 term-species pairs). If abbreviations are
included, the number of species per term rises to 1.066
(669,578 terms, 713,525 term-species pairs).

In addition to the entries in the NCBI taxonomy, a set
of additional synonyms were included that occur very
frequently in the literature (see also [10,37]), such as the
terms “patient,” and “woman” that we assume refer to
human. These could be particularly useful if no scienti-
fic names have been mentioned in a document, as often
occurs in the medical literature. A full list of additional
synonyms is available in Additional File 1.

Acronyms listed for species in the NCBI taxonomy are
not always exact and unambiguous, in that a specific
acronym can be mapped to a specific species, but in rea-
lity might be used more commonly for something else
(either another species or even a non-species term).
Acromine [43] is a text-mining tool that has been used
to detect acronym definitions in MEDLINE, and allows
users to query acronyms through a web service in order
to view the declaration frequencies of that acronym. An
example of an overloaded species acronym is “CMV,”
which in the NCBI taxonomy is mapped to “Cucumber
mosaic virus.” According to data generated by Acro-
mine, CMV has been defined as “Cucumber mosaic
virus” 233 times in MEDLINE, but is also much more
commonly defined as “Cytomegalovirus” (7128 times).
Another example is the acronym “PCV”, which in the
NCBI dictionary is mapped to “Peanut clump virus.” In
total, PCV declarations have been detected 912 times by
Acromine, of which only 15 refer to different terms for
“Peanut clump virus” (the most common long form is
“packed cell volume,” seen 490 times).

In order to overcome this problem, all acronyms listed
in the NCBI taxonomy were queried against Acromine
in order to retrieve frequency counts for the various
expanded forms that the acronyms appear with in MED-
LINE. Species recognition using LINNAEUS was then
performed on the expanded-form terms in order to
determine for which species each acronym was used,
and their relative mention frequency (including non-spe-
cies terms). The acronyms were then included in the
dictionary, and the species frequencies imported from
Acromine for each acronym was assigned to each poten-
tial match to the acronym. From this, it is also possible
to estimate how probable it is that the acronym refers
to a non-species entity. For example, the probability that
PCV (mentioned above) would refer to the “Peanut

Page 5 of 17

clump virus” species would be 1.6% (15/912). The full
list of acronyms and their associated species probabil-
ities is available as Additional File 2.

Automaton construction and tagging

Texts can be matched by directly using the regular expres-
sions in the dictionary, but the large number of expres-
sions would result in very high time requirements.
Deterministic finite-state automatons (DFA) allow efficient
regular expression matching, where the regular expres-
sions for several species can be combined to greatly
increase efficiency. A java implementation of DFA algo-
rithms, the dk.brics.automaton package [44] was modified
to retain species identity when joining the regular expres-
sions of different species. Using the modified software, it is
possible to find all regular expression matches (and which
species they belong to) in texts in O(#n) time, where 7 is
the length of the text. Because of this implementation, the
actual number of species regular expressions does not
affect the time required for matching [45].

Post-processing

After performing species name annotation using the
DFA software, a number of post-processing steps are
performed (see Figure 1B for overview).

Disambiguation

In the case of overlapping mentions of different length,
the longer mention is retained and the shorter mention
is removed (following the longest-match principle). This
resolves cases such as “nude mice,” where both the full
term and the term “mice” will match (in this case to the
same species), and “Human immunodeficiency virus 1”
where both the full term and the shorter terms “Human
immunodeficiency virus” and “Human” will match (to
different species).

For mentions that remain ambiguous and where one of
the possible candidate species is mentioned explicitly
elsewhere in the text, all occurrences of the ambiguous
term are resolved to refer to the explicitly mentioned
species. This is very common, as authors often mention
the full name of a species with subsequent mentions
being abbreviated: for example, texts first mentioning
Caenorhabditis elegans (an explicit mention) followed by
a number of mentions of C. elegans (an ambiguous men-
tion matching 41 different species) are common. If sev-
eral of the candidate species are mentioned explicitly (e.g.
both Caenorhabditis elegans and Croton elegans followed
by a mention of C. elegans), the mention is set to refer to
all the explicitly mentioned species, which (while not
completely disambiguating the mention) reduces the
number of potential species to which it could refer.
Acronym declaration detection
In addition to the acronyms annotated by LINNAEUS
that are included in the dictionary, novel acronym
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declarations are also detected on a per document basis.
When an acronym definition is detected (of the form
“species (acronym),” where species was in the dictionary
and acronym is a sequence of capital letters, digits or
hyphens), all subsequent occurrences of that acronym
are also tagged within the document.

Removing common English words

Based on a simple list of species names that occur com-
monly in the English language when not referring to the
species (see Additional File 3), we remove any mention
with a species-term combination in the list (see also
[10,37]). This removes synonyms such as “spot” (for
Leiostomus xanthurus) and “permit” (for Trachinotus
falcatus), and greatly reduces the number of false posi-
tives generated by the system.

Assigning probabilities to ambiguous mentions

Last, any mentions that remain ambiguous are assigned
probabilities of how likely that mention refers to a parti-
cular species. The probabilities for ambiguous mentions
are based on the relative frequency of non-ambiguous
mentions of the involved species across all of MEDLINE
and the open access subset of PubMed Central full-text
documents. The probabilities for acronyms are based on
the relative frequencies of acronym definitions as
detected by Acromine (see above). For example, for the
ambiguous mention “C. elegans,” the probability for
Caenorhabditis elegans would be very high, while the
probability for Crella elegans would be much lower. For
the acronym “HIV” (which might refer to both “Human
immunodeficiency virus” and, much less commonly,
“the Hippocratic irrelevance variable”), the probability
for it referring to “Human immunodeficiency virus”
would be very high.

These probabilities enable an additional form of heur-
istic disambiguation: in the cases where an ambiguous
mention has a species alternative with a probability
higher than a given cut-off (e.g. 99%), the mention
could be fully disambiguated to that species (such as for
the term “C. elegans” which can be disambiguated as
Caenorhabditis elegans). Likewise, a mention could be
removed if the sum of all species-related mention prob-
abilities is smaller than a given threshold (e.g. 1%); this
can happen for acronyms where in more than 99% of
cases the acronym is used for a non-species term. These
levels present a trade-off between accuracy and minimi-
zation of ambiguity, and could be adjusted after tagging
depending on the individual needs of the user.

Input and output formats

LINNAEUS is capable of processing a wide range of
document XML formats, including MEDLINE XML
[46], PMC XML [47], Biomed Central XML [48] and
Open Text Mining Interface XML [49]. In addition, it
can also process plain-text documents both from locally
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stored files and from remote database servers. Species
name recognition results can be stored to standoff-
based tab-separated value files, XML documents, HTML
documents (for simple visualization of results) and
remote MySQL database tables.

Document sets for species tagging

Throughout this work, three different document sets
were used to recognize and normalize species names.
For all sets, any documents published after 2008 were
removed to create fixed and reproducible sets of docu-
ments and avoid possible discrepancies during the
course of the project resulting from updates to database
records.

MEDLINE

MEDLINE is the main database of abstracts for articles
in PubMed, containing more than 18 million entries.
However, many entries do not actually contain any
abstract. The number of documents, if counting only
entries containing an abstract published up to the end
of 2008, is just over 9.9 million.

PubMed Central open access subset

PMC provides a set of over a million full-text articles
free of charge. Unfortunately, only about 10% (105,106
published up to the end of 2008) of these are truly open
access and available for unrestricted text mining. The
articles in this open-access (OA) subset of PMC are
referred to here as “PMC OA.” The majority of the arti-
cles in PMC OA are based on XML files, but some have
been created by scanning optical character recognition
(OCR) of non-digital articles (29,036 documents), and a
few have been created by converting portable document
format (PDF) documents to text (9,287 documents). We
note that for the PMC OA documents that were gener-
ated with OCR or pdf-to-text software, references are
not removed from these documents. Because of this,
species names occurring in reference titles may be
tagged. For all other documents (MEDLINE, PMC OA
abstracts and PMC OA XML documents), only the title,
abstract and (if available) body text is tagged (i.e. refer-
ence titles are not processed).

Abstracts from PMC OA

The abstracts of all articles in the PMC OA set form a
set referred to as “PMC OA abs.” PMC OA abstracts
were obtained from the abstract part of the PMC OA
XML files, or from the corresponding MEDLINE entry
if no such section existed in the XML file (this happens
when the article has been produced through OCR or
pdf-to-text tools). PMC OA abstracts consists of 88,962
documents, which notably is fewer than the number of
documents in PMC OA (105,106). This is because not
all PMC articles are indexed in MEDLINE, and there-
fore some OCR or pdf-to-text documents did not have a
corresponding MEDLINE entry, making it infeasible to
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accurately extract the abstract. Of the 88,962 abstracts,
65,739 abstracts (74%) were extracted from XML docu-
ments, while the remainder was extracted from corre-
sponding MEDLINE documents.

Division of the PMC OA full-text document set

As explained in the previous section, it is not possible to
reliably extract an abstract for roughly one-fifth of all
full-text articles in PubMed Central since they do not
have an abstract section in the PMC XML or a corre-
sponding MEDLINE entry. We chose not to eliminate
these full-text articles from our analyses since they com-
prise a substantial subset of documents in PubMed Cen-
tral and their exclusion may bias our results. However,
their inclusion makes direct comparisons of results
based on PMC OA abstracts and all PMC OA full-text
documents difficult, since some documents are present
in the PMC OA full-text set that are missing from the
PMC OA abstract set. To solve this problem at the
document level, we created the “PMC OA full (abs)” set,
which contains the 88,962 full-text documents where an
abstract could be extracted, allowing direct comparisons
between full-text documents and abstracts on exactly
the same articles. Unfortunately, this document set still
does not allow direct mention-level comparisons
between abstracts and full text since the offset coordi-
nates from MEDLINE entries and PMC OA full-text
documents are not compatible. Because of this, we cre-
ated the “PMC OA full (xml)” set, which consists of
only the 65,739 full-text documents where abstracts
could be extracted from the corresponding PMC XML
files. Using this PMC OA full-text XML set, it is also
possible to perform mention-level comparisons on the
same set of documents on the same offset coordinates.
We note that “PMC OA” refers to the complete set of
105,106 full-text documents, which we alternatively
denote as “PMC OA full (all)”.

Document sets for evaluation

Currently, no open access corpus of biomedical docu-
ments exists that is specifically annotated for species
mentions. Thus we created a number of automatically
generated evaluation sets in order to analyze the accu-
racy of LINNAEUS and other species name tagging soft-
ware. Because of the nature of the data they are based
on, many of these evaluation sets can only be analyzed
at the document level. Additionally, none of these auto-
matically generated evaluation sets were based on data
specifically created in order to annotate species men-
tions. Because of this, we created an evaluation set of
full-text articles manually annotated for species men-
tions. The number of documents, species and tags cov-
ered by each evaluation set is shown in Table 1 and the
full set of manually annotated documents can be found
at the project webpage.
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Table 1 Species name tag sets for different evaluation
corpora and LINNAEUS output

Tag set Document Documents Species Tags
set
NCBI taxonomy ~ MEDLINE 5237 6,871 8,701
PMC OA abs 10 21 21
PMC OA 12 26 26
MeSH MEDLINE 6,817,973 824 7,388,958
PMC OA abs 44,552 518 51,592
PMC OA 88,826 527 57,874
Entrez gene MEDLINE 440,084 3,125 486,791
PMC OA abs 8371 406 9,307
PMC OA 9,327 428 10,294
EMBL MEDLINE 174,074 149,598 396,853
PMC OA abs 5157 7,582 12,775
PMC OA 7,374 7,867 15,136
PMC linkouts MEDLINE 35,534 29351 248222
PMC OA abs 41,054 41,070 286,998
PMC OA 42,910 32,187 289411
Whatizit- MEDLINE 71,856 23598 3,328,853
Organisms PMC OA abs 82410 25375 3,791,412
(64,228)
PMC OA 94,289 26,557 4,075,644
Manual MEDLINE 75 176 3,205
PMC OA abs 89 (76) 215 3,878
PMC OA 100 233 4,259
LINNAEUS MEDLINE 9,919,312 57,802 30,786,517
output
PMC OA abs 88,962 5114 303,146
(65,739)
PMC OA 105,106 18943 4,189,681

Numbers in parentheses show the portion of abstracts that can be extracted
from the document XML files, enabling mention-level accuracy comparisons
(see Methods for details).

NCBI taxonomy citations

Some species entries in the NCBI taxonomy contain
references to research articles where the species is dis-
cussed. For these documents, we assume the species are
most likely mentioned somewhere in the article, allow-
ing relative recall to be a useful measure. NCBI taxon-
omy citations were downloaded on June 1st, 2009.
Medical subject heading terms

Each article in MEDLINE has associated MeSH terms
specifying which subjects are discussed in the article. A
subset of these terms relates to species, and can be
mapped to NCBI taxonomy species entries through the
Unified Medical Language System (UMLS). However,
the number of species represented by MeSH terms is
limited. In total, there are MeSH terms for only 1,283
species, and only 824 species actually occur in the
MeSH tags in MEDLINE. Moreover, a MeSH term
given to an article is no guarantee that a term is expli-
citly mentioned in the document. Additionally, only a
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small number of the total species mentions in a docu-
ment are expected to be represented in the MeSH tags
(only so-called focus species), causing estimates of preci-
sion using this corpus to be less informative than recall.
MeSH terms were extracted from the 2009 MEDLINE
baseline distribution.

Entrez gene entries

Entrez gene [50] provides database entries for genes
with both article references and species information.
Based on these data, articles can be mapped to species.
While species are often mentioned together with a gene,
explicit species mentions are not guaranteed in those
articles. Additionally, as the database focuses on genes
rather than species, a large proportion of species men-
tions in this document set may not be included (for
example, there will be many human mentions that do
not pertain to genes, and therefore are not tagged).
Thus, relative precision on the Entrez gene document
set is expected to be low regardless of the real software
accuracy. Entrez gene data were downloaded on June
1st, 2009.

EMBL records

Similarly to the Entrez gene records, many EMBL [51]
sequence records also contain information about both
which species the sequence was obtained from and in
which article it was reported (see also [52]). This enables
extraction of species-article mappings, assuming that the
species is explicitly mentioned in the paper reporting
the nucleotide sequence. As with the Entrez gene set,
this is however not guaranteed, and any species that are
discussed in addition to those with reported sequences
will not be present in the evaluation set (again causing
precision measures to be uninformative). Version r98 of
EMBL was used for this evaluation set.

PubMed Central linkouts

Although not described in any publication, NCBI per-
forms species recognition text mining on full-text articles
included in PMC. These taxonomic “linkouts” can be
accessed when viewing an article on PMC, and can also
be downloaded through the NCBI e-utils web services.
By downloading these linkouts it is possible to create an
evaluation set that is relevant to both recall and precision
(although only on the document level). The PMC linkout
data were downloaded on June 1st, 2009.
WhatizitOrganisms

In order to evaluate mention-level accuracy and bench-
mark LINNAEUS against another species name recogni-
tion system, all documents in the PMC OA set were
sent through the WhatizitOrganisms web service pipe-
line. Unfortunately, the Whatizit web service could not
process around 10% of PMC OA documents (see Table
1), which are therefore unavailable for comparison. The
WhatizitOrganisms tagging was performed June 25th,
2009.
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Manually annotated gold-standard corpus

Because all of the previously described evaluation sets
are limited by the fact that they are not specifically
annotated for species names, it became clear that such a
set was needed in order to measure the true accuracy of
LINNAEUS. Because no such evaluation set was avail-
able, 100 full-text documents from the PMC OA docu-
ment set were randomly selected and annotated for
species mentions. As the focus of this work is on species
rather than on genera or other higher-order taxonomic
units, the corpus was only annotated for species (except
for the cases where genus names were incorrectly used
when referring to species).

All mentions of species terms were manually anno-
tated and normalized to the NCBI taxonomy IDs of the
intended species, except for terms where the author did
not refer to the species. A commonly occurring example
is “Fisher’s exact test” ("Fisher” is a synonym for Martes
pennanti, but in this case refers to Sir Ronald Aylmer
Fisher, who invented the statistical test). In the cases
where a species ID did not exist in the NCBI taxonomy
(mostly occurring for specific species strains), they were
given a species ID of 0 (which is not used in the NCBI
taxonomy).

Annotated mentions were also assigned to the follow-
ing categories that indicated specific features of men-
tions, which can be used in evaluation analyses:

(i) Lexical categories:

+ Whether the term was misspelled by the author.

+ Whether the author used incorrect case when spel-
ling the species name (e.g. “Drosophila
Melanogaster”).

+ Whether the term was incorrectly spelled owing to
an OCR or other technical error.

(i) Syntactic categories:

+ Whether the name was part of an enumeration of
species names (e.g. in “V. vulnificus CMCP6 and
YJ016,” referring to two different strains of Vibrio
vulnificus).

(ili) Semantic categories:

+ Whether the author used an incorrect name (e.g.
using genus name “Drosophila” when referring spe-
cifically to Drosophila melanogaster or just “Pileated”
when referring to the Pileated woodpecker, Dryoco-
pus pileatus).

+ Whether the species term was used as an adjectival
“modifier,” such as in “human p53” (where the
author is not actually referring to the human species,
but rather a gene). Note that although the author
was not referring directly to the species, these men-
tions are still important when extracting species
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Table 2 Composition of species tags in the manually
annotated corpus and false negative predictions by
LINNAEUS relative to the manually annotated corpus on
the same document set

Category Number of tags in Number of false
corpus negatives
Misspelled 46 11
Incorrect case 130 128
OCR/technical 18 16
errors
Enumeration 2 1
Incorrectly used 79 66
name
Modifier 1,217 125
Normal mention 2,788 12

A detailed description of the different tag categories is provided in the
Methods.

mentions in order to perform, for instance, gene
name recognition. We also note that while the adjec-
tive “human” in “human p53” is considered a modi-
fier, we do not consider it a modifier in phrases
such as “the p53 gene in human”, where the noun
“human” refers directly to the human species.

A mention may belong to several categories (for exam-
ple, it may be both used as a modifier and misspelled), or
not belong to any category at all (i.e. just being a normal
mention, which is the most common case). A summary
of the number of species tags associated with each cate-
gory is shown in Table 2. The categories give insights
into how often species names are misspelled or used
incorrectly in the literature. They also enable deeper ana-
lyses of any prediction errors made by LINNAEUS or any
other software evaluated against this corpus. Of the 4259
species mentions annotated in this corpus, 72% (3065)
are common names, reinforcing the importance of being
able to accurately identify common names when proces-
sing biomedical research articles.

In order to estimate the reliability of the manual annota-
tions, 10% of the corpus (10 documents) was also annotated
by a second annotator and the inter-annotator agreement
(IAA) was calculated. In total, there were 406 species men-
tions annotated in the 10 documents by at least one annota-
tor. Of these 406 mentions, 368 were annotated identically
by the two annotators (both mention position and species
identifier). Cohen’s k measure for inter-annotator agree-
ment [53] was calculated as k = 0.89. Details of the IAA
analysis can be found in Additional File 4.

Performance Evaluation

Tags produced by LINNAEUS were compared to those
in the evaluation reference sets to determine the perfor-
mance of the system. If a specific tag occurs in both the
LINNAEUS set and the reference set, it is called a true
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positive (TP); if it occurs only in the LINNAEUS set it
is called a false positive (FP); and if it occurs only in the
reference set it is called a false negative (FN). This is
performed both on a document level (where the location
of a tag within a document is not considered) and men-
tion level (where the tag locations have to match
exactly). For the evaluation sets where information is
only available on a document level, mention level eva-
luation is not performed. In the case of ambiguous men-
tions, the mention is considered a TP if the mention
contains at least the “true” species (and, for mention
level analyses, the location is correct). We note that
LINNAEUS attempts to identify all species mentioned
in a document, and thus there is no limit on the num-
ber of species reported.

Results

We applied the LINNAEUS system to nearly 10 million
MEDLINE abstracts and over 100,000 PMC OA articles
that were published in 2008 or before (Table 1). Tagging
of the document sets took approximately 5 hours for
MEDLINE, 2.5 hours for PMC OA abstracts and 4
hours for PMC OA, utilizing four Intel Xeon 3 GHz
CPU cores and 4 GB memory. (We note that the main
factor influencing processing time is the Java XML
document parsing rather than the actual species name
tagging.) These species tagging experiments far exceed
the scale of any previous report [7,10,14,23,25,36,37,41],
and represent one of the first applications of text mining
to the entire PMC OA corpus (see also [15,54,55]). Over
30 million species tags for over 57,000 different species
were detected in MEDLINE, and over 4 million species
tags for nearly 19,000 species in PMC OA. LINNAEUS
identifies species in 74% of all MEDLINE articles, 72%
of PMC OA abstracts, and 96% of PMC OA full-text
articles. In terms of the total number of species in the
NCBI taxonomy dictionary, 15% of all species in the
NCBI dictionary were found by LINNAEUS in MED-
LINE, 1.3% were found in PMC OA abstracts and 4.9%
were found in the PMC OA full-text articles. The den-
sity of species names in MEDLINE or PMC OA
abstracts is 30-fold and 3-fold lower, respectively, than
that for PMC OA full-text articles; the density of species
mentions is 11-fold lower in both sets of abstracts rela-
tive to full-text documents.

Ambiguity of species mentions in MEDLINE and

PubMed Central

Across all of MEDLINE and PMC OA, between 11-14%
of all species mentions are ambiguous. Thus levels of
species name ambiguity are on the same order as
across-species ambiguity in gene names [56], and indi-
cate that some form of disambiguation is necessary for
accurate species names normalization. Levels of
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Table 3 Levels of ambiguity in LINNAEUS species tags on
different document sets

None Earlier Whole
Strict Approx. Strict Approx. Strict Approx.
MEDLINE 0111 0.053 0.059 0.030 0.054 0.028
PMC OA abs  0.110 0.061 0.054 0.031 0.049 0.028
PMC OA 0.143 0.075 0.029 0.015 0.027 0013

“None” refers to the baseline case where no disambiguation is performed,
“earlier” refers to disambiguation of an ambiguous mention by searching for
its explicit species mentions earlier in the document and “whole” refers to
disambiguation by searching for its explicit mentions across the whole
document. In the “approximate” mode, a heuristic is employed to further
disambiguate ambiguous mentions based on the probability of correct
species usage.

ambiguity for the tagged document sets before and after
the disambiguation step by LINNAEUS are shown in
Table 3. Ambiguity levels are calculated as the number
of ambiguous mentions divided by the total number of
mentions, where an ambiguous mention is counted
when a mention maps to several species. The disambi-
guation method “none” shows values prior to any dis-
ambiguation; “earlier” disambiguates by scanning for
explicit mentions earlier in the document and, for com-
parison, “whole” disambiguates by scanning for explicit
mentions in the whole document. “Strict” disambigua-
tion does not consider the associated probabilities of
correct species mentions, whereas “approximate” repre-
sents the disambiguation of any mentions where a single
species has higher than 99% probability, or the sum of
all species probabilities is lower than 1%.

Scanning for explicit species mentions elsewhere in
the text leads to roughly a two-fold reduction in ambi-
guity for abstracts, but nearly a five-fold reduction for
full text. Approximate tagging based on probabilities of
correct species usage leads to roughly a two-fold reduc-
tion in levels of ambiguity, in both abstracts and full
text. Overall, less than 2.9% of mentions in full-text
documents remain ambiguous when explicit mentions
are sought elsewhere in the text and, combined with
approximate disambiguation based on probabilities of
correct species usage, levels of ambiguity drop to less
than 1.5%.

Evaluation of LINNAEUS species name tagging

Evaluation of species mentions found by LINNAEUS
compared to those in the evaluation sets are shown in
Table 4. For the document-level evaluation sets (NCBI
taxonomy references, MeSH tags, Entrez-gene refer-
ences, EMBL references and PMC linkouts), the docu-
ment-level tags are compared directly against the tags
found by LINNAEUS in MEDLINE, PMC OA abstracts
or PMC OA documents. For the mention-level evalua-
tion sets (WhatizitOrganisms output and the manually
annotated set), tags are only compared directly between
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the evaluation sets and PMC OA XML, since PMC OA
XML is the only document set on the same offset coor-
dinates as the evaluation sets (see Methods). For the
automatically generated sets, we interpret recall and pre-
cision in the context of how species are annotated in the
evaluation set to provide a qualitative analysis of the
false positives and false negatives. For the manually
annotated gold standard evaluation set, a quantitative
analysis of false positives and false negatives was also
performed.

NCBI taxonomy citations

Results for PMC OA and PMC OA abstracts relative to
the NCBI taxonomy are difficult to assess because of the
low number of intersecting documents (n = 12). When
comparing NCBI taxonomy citations to LINNAEUS pre-
dictions on MEDLINE, no particular species or set of
terms stand out among the incorrect predictions. From
an analysis of the false negatives ("missed” mentions), it
seems that the majority of false negatives are not actu-
ally mentioned in the abstract, although they still could
be mentioned in the main body text. The reason for the
apparent low precision and high number of false posi-
tives is that the majority of species mentioned in the
articles are not included in the evaluation tag set.
Medical subject headings

For MeSH, very few mentions are actually included in
the evaluation set, as the purpose of MeSH is to identify
the main themes discussed in a paper rather than each
individual species mentioned. This greatly affects the
number of false positives. Human stands out among the
false negatives, representing 84% (1,950,767) of all false
negatives in MEDLINE and 31% (1,316) in PMC OA.
Inspecting a sample of documents shows that, both for
human and other species, the false negatives are not
explicitly mentioned in the documents. As expected,
full-text documents offer higher recall relative to
abstracts, since mentions located in the main body text
are available to both LINNAEUS and the MeSH
curators.

Entrez gene entries

Relative to Entrez gene, our tagging precision is low
(19.0% for full-text documents) due to the fact that far
from all species mentions are included in the evaluation
tag set. Recall is high for full-text articles, with 93.9% of
species tags in the PMC OA set correct found by LIN-
NAEUS. Among the entries that still were missed, Dro-
sophila melanogaster stands out, comprising 28.7% (184)
of false negatives. Inspection shows that false negatives
often appear because only the genus name “Drosophila”
being used in the article as shorthand for the species
Drosophila melanogaster, potentially warranting the
addition of “Drosophila” as a synonym for Drosophila
melanogaster (see also [10]). Among the remaining false
negatives, the species seems not to be mentioned in the
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Table 4 Performance evaluation of LINNAEUS species tagging on different evaluation sets

Set Level Main set TP FP FN Recall Prec
NCBI taxonomy Doc. MEDLINE 6,838 10,032 (1,807) 0.7922 (0.4071)
PMC OA abs 15 20 6) 0.7143 (0.4286)
PMC OA full (abs) 16 166 3) 0.8421 (0.0791)
PMC OA full (all) 22 196 (4) 0.8462 (0.1010)
MeSH Doc. MEDLINE 5,073,147 4,577,293 2315811 0.6866 05257
PMC OA abs 36,641 49,151 (14,797) 0.7123 (04271)
PMC OA full (abs) 46,484 291,872 (2,219) 0.9544 (0.1374)
PMC OA full (all) 54,814 346,071 (2,880) 0.9201 (0.1367)
Entrez gene Doc. MEDLINE 346,989 171,001 (139,702) 0.7130 (0.6699)
PMC OA abs 6,946 4,110 (2,357) 0.7466 (0.6283)
PMC OA full (abs) 8,184 38,275 (470) 0.9457 (0.1762)
PMC OA full (all) 9,662 42,209 (628) 0.9390 (0.1863)
EMBL Doc. MEDLINE 158,462 183,950 (235,745) 04020 (0.4627)
PMC OA abs 4,807 4,360 (7,902) 03782 (0.5244)
PMC OA full (abs) 6,601 34,447 (3,859) 06311 (0.1608)
PMC OA full (all) 9433 40,212 (5613) 0.6269 (0.1900)
PMC linkouts Doc. MEDLINE (27,259) (23,377) (122,596) (0.1819) (0.5383)
PMC OA abs (30,315) (27,192) (141,735) (0.1762) (0.5272)
PMC OA full (abs) 10,288 156,012 61,656 0.6414 04141
PMC OA full (all) 1,2069 163,052 61,671 0.6450 04073
Whatizit-Organisms Doc. PMC OA abs 64,686 29,222 12,930 0.8334 0.6888
PMC OA full (abs) 308,410 67,171 100,079 0.7550 0.8211
PMC OA full (all) 344,445 73,489 109,668 0.7585 0.8242
Mention PMC OA abs 139,077 147,426 39,351 0.7794 04854
PMC OA full (xml) 1,164,799 1,596,615 527,284 0.6883 04218
PMC OA full (all) 1,304,620 2,398,321 1,133,018 05352 03523
Manual Doc. PMC OA abs 101 0 3 09712 1.0
PMC OA full (abs) 421 46 9 0.9791 0.9015
PMC OA full (all) 462 49 9 0.9809 0.9041
Mention PMC OA abs 326 3 19 0.9449 0.9909
PMC OA full (xml) 3,190 92 222 0.9350 0.9720
PMC OA full (all) 3,973 120 241 0.9428 0.9707

Values in parentheses are for comparisons between document sets of different type (for example, evaluation tag sets based on full text compared against
species tags generated on abstracts) or when the evaluation set is likely to exclude a large number of species mentions. PMC OA full (all) shows accuracy for all
full-text documents. PMC OA full (abs) shows accuracy for all full-text documents with an abstract that can be extracted, allowing comparison of document-level
accuracy between full-text and abstract. PMC OA full (xml) shows accuracy for all full-text documents with XML abstract, allowing comparison of mention-level

accuracy between full-text and abstracts.

documents. The lower recall for abstracts relative to full
text is most likely due to the species associated with a
gene being mentioned in the main body text rather than
in the abstract.

EMBL records

For the EMBL set, no species is especially over-repre-
sented among the false negatives. An inspection of the
false negative samples from all three document sets
reveals that the species is often not explicitly mentioned
in the article. Sometimes this is because nucleotide
sequences are reported in a paper for a species but only
discussed in supplementary data files, which are not
available to be tagged by the software. Higher recall
values for full-text articles as compared to abstracts

indicate that species names are more likely to be men-
tioned in the main body. As with the MeSH and Entrez
gene document sets, precision values are of low relevance
due to the evaluation set not including all species
mentions.

PubMed Central linkouts

Performance of LINNAEUS compared to PMC linkouts
reveals recall levels similar to those obtained on the
EMBL document set, but lower than those for MeSH or
Entrez Gene, despite the fact that this evaluation set has
been constructed with the similar aim of performing
species tagging as LINNAEUS (although on a document
level). Inspecting a number of false positives and nega-
tives reveals that all were incorrectly tagged in the PMC
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linkout evaluation set, often for no apparent reason. For
some false negative cases, articles have been tagged with
species whose names can only be found in the titles of
the references. This suggests that species names in the
PMC linkouts are detected also in referenced article
titles (while in some cases linkouts are missed even
when species are mentioned in the main article title).
Lower performance for MEDLINE and PMC OA
abstracts is due to comparing species names found by
LINNAEUS only in abstracts to those found in the full
documents in PMC linkouts, and as such are not
directly relevant.

WhatizitOrganisms

The last automatically generated evaluation set we con-
sidered was from WhatizitOrganisms, which provided
the opportunity to investigate the performance of LIN-
NAEUS species tagging at both the document and men-
tion level. LINNAEUS recall is worse at the document
level when evaluated against WhatizitOrganisms relative
to MeSH or Entrez Gene, but better than EMBL or
PMC linkouts, while precision is higher than all the
other datasets. At the mention level, relatively low
values of both recall and precision of LINNAEUS tags
evaluated against WhatizitOrganisms indicate substantial
differences in the tagging of these two methods. When
inspecting these differences, they can be seen to form
three main error classes, described below.
Disambiguation errors When a species term is ambigu-
ous, WhatizitOrganisms will always return a single ID
only, which can be incorrect (for instance, for all
instances of “C. elegans”, the ID for Celeus elegans is
returned). In the cases where LINNAEUS has correctly
disambiguated these mentions, they will result in both a
false negative and a false positive relative to WhatizitOr-
ganisms. Using the example above, the false negative
would stem from Celeus elegans not being found, and
the false positive would be caused from Caenorhabditis
elegans being found, despite not being in the Whatizi-
tOrganisms reference set. Most ambiguous terms
(mainly abbreviations and in some cases acronyms) give
rise to this kind of error.

Acronym errors Acronym errors are introduced both
because of ambiguities as described above (for example,
“HIV” mentions are systematically tagged as Simian-
Human immunodeficiency virus by WhatizitOrganisms),
but also because some acronyms in the NCBI taxonomy
have been excluded from the LINNAEUS dictionary
(this will happen if Acromine has not recorded any
occurrences at all of species being abbreviated for a
given acronym).

Manual dictionary modifications The last class con-
sists of the terms that either are added manually as
synonyms to the LINNAEUS dictionary, or are filtered
out during post-processing by LINNAEUS. Common
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“false positive” mentions in PMC OA arise from addi-
tional synonyms including “patient” and “patients”
(681,166 total) and women (120,492). Common “false
negative” mentions in PMC OA arise from manually
removed terms including “spot” and “spots” (32,701
total), as well as “name” and “names” (29,848 total).
Manually annotated corpus

To understand the true performance of the LINNAEUS
system, we generated a gold standard dataset specifically
annotated to evaluate species name identification soft-
ware. The reliability of this gold standard is high, how-
ever some species names are likely to be omitted from
this evaluation set, as shown by IAA analysis (see
above). Performance of species tagging by LINNAEUS
on full-text articles is very good, with 94.3% recall and
97.1% precision on mention level, and 98.1% recall and
90.4% precision on document level. Inclusion of tags
from our additional synonyms such as “patient” does
not explain this high level of performance alone, as we
observe 91.4% recall and 96.9% precision on mention
level when tags for additional synonyms are filtered out.
When compared against the abstracts of the manually
annotated corpus, LINNAEUS was shown to perform
with 94.5% recall and 99.1% precision at the mention
level, a level similar to the accuracy achieved against
full-text documents. These high levels of performance
for species name tagging also imply that our disambi-
guation methods typically identify the correct species
when confronted with multiple options.

We also compared output from WhatizitOrganisms to
our manually annotated corpus to understand the per-
formance of LINNAEUS relative to another mention-
level species name tagging system. Compared to our
manually annotated corpus, WhatizitOrganisms achieved
recall of 42.7% and precision of 66.2% on the mention
level, and recall of 80.3% and precision of 69.1% on the
document level. When all additional synonyms (which
are not present in the WhatizitOrganisms dictionary
and therefore cannot be predicted by this system) are
filtered out from the evaluation set, WhatizitOrganisms
achieved recall of 64.4% and precision of 66.2% on the
mention level, and recall of 84.7% and precision of
69.1% on the document level. Differences in perfor-
mance between the two methods arise from the discre-
pancies in tagging discussed in the direct evaluation
between LINNAEUS and WhatizitOrganisms above. An
upgraded version of WhatizitOrganisms that addresses
many of these issues and shows significantly improved
accuracy relative to our manually annotated corpus is
due to be launched soon (Dietrich Rebholz-Schuhmann,
personal communication).

Based on the categorization of manually annotated
mentions, it is possible to analyze the type of false nega-
tive and false positive predictions made by LINNAEUS.
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False negatives are mainly due to incorrect case being
used (Table 2), suggesting that an approach that ignores
case might be worth exploring. False positives are more
diverse: they are mostly caused by species synonyms
occurring in common English, or because LINNAEUS
tagged author names as species (an example is “Rice,”
which occurred in author names four times in the cor-
pus). Nearly 10% of all false positives were acronyms
that had been marked as probably not referring to spe-
cies (the sum of mention probabilities were lower than
5%). Approximately 20% of all false positives were due
to mentions being missed during manual annotation.
This result is consistent with the IAA analysis, which
revealed that a second curator could identify additional
species tags in these documents. These omissions were
not corrected during the course of evaluation in order
to preserve the integrity of evaluation set. Thus, the cur-
rent manually annotated corpus should be viewed as an
“18 carat” gold standard, and we aim to release a “24
carat” gold standard version in the future that corrects
these errors.

Trends in species mentions

To provide an overview of commonly mentioned species
in biomedical research, and to determine if our system
generated interpretable results on large sets of docu-
ments, we used LINNAEUS tags to estimate the fre-
quency of species mentions in all of MEDLINE. The ten
most commonly mentioned species at the document
level are shown in Table 5, and the 100 most frequently
mentioned species across MEDLINE can be found in
Additional File 5. This analysis counts all unambiguous
mentions of a species, plus the single most likely species
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for ambiguous mentions. Mentions are on a document
level and a single document can mention multiple spe-
cies. Humans constitute the by far the most frequently
discussed organism in all of MEDLINE, with almost half
of all species mentions (48.4%), as has been reported
previously in analyses of data used for training and test-
ing species recognition software [7,10]. Other commonly
used model organisms such as rat, mouse and baker’s
yeast are also represented, but somewhat more surpris-
ing is the frequent occurrence of cow, rabbit, dog and
chicken. The high number of mentions for cow and rab-
bit are partially explained by indirect mentions of these
species for their role in generating experimental
reagents such as “bovine serum” or “rabbit polyclonal
antibody.”

Utilizing species tags from MEDLINE, it is also possi-
ble to extract information about how many papers men-
tion a species over time. Previous work on measuring
trends in organism names over time has focussed on the
first description of new taxa [57], while here we are
interested in understanding the frequency that known
species are discussed within the biomedical literature
over time. Figure 2 shows document-level species men-
tions per year for the five most frequently mentioned
species plus HIV from 1975 to the present, a timeline
previously investigated for trends in gene names over
time [58]. For clarity, data for the remaining species in
top ten (E. coli, dog, baker’s yeast and chicken) is not
shown, but all four of these species follow the same pat-
tern as the top five species. With the exception of HIV,
all of the most frequently mentioned species have con-
sistently been referred to at high levels over the last
three decades. In contrast, the number of mentions for

mentions
00 1000 10000 100000

1

10

Human
Rat
Mouse
Cow
Rabbit
HIV

1975 1980 1985
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1990

Figure 2 Number of articles per year in MEDLINE mentioning human, rat, mouse, cow, rabbit and HIV since 1975. Note that the rapid
rise in mentions of the term HIV occurs just after its discovery in 1983 [59].
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Table 5 Top ten most commonly mentioned species in
MEDLINE.

Species Mentions Ratio of all Ratio of all
mentions documents
Human 4,801,489 04743 04840
Rat 831,552 0.0821 0.0838
Mouse 655,695 0.0647 0.0661
Cow 186,091 00183 0.0187
Rabbit 162,487 0.0160 0.0163
Escherichia 144,077 0.0142 0.0145
coli
HIV 117,441 0.0116 0.0118
Dog 112,366 0.0111 0.0113
Baker's yeast 112,254 0.0110 0.0113
Chicken 75,440 0.0074 0.0076

Mentions are calculated on a document level in MEDLINE relative to the total
number of document-level mentions (n = 10,122,214) and the total number of
documents (n = 9,919,312)

HIV increases rapidly after its discovery in 1983 [59].
Thus, while HIV is only the seventh most frequently
mentioned species in all of MEDLINE (1975-2008)
(Table 5), it is currently (2008) the fourth most fre-
quently mentioned species after humans, mice and rats.
We note that all mentions in 1985 are of the synonym
“AIDS virus,” since the term “Human immunodeficiency
virus” was not suggested until in 1986 [60]. These
results demonstrate that our species name tagging sys-
tem generates meaningful predictions when applied to
large sets of biomedical documents and confirm the
human-centric nature of biomedical research.

Discussion

Species name recognition and normalization is increas-
ingly identified as an important topic in text mining and
bioinformatics, not only for the direct advantages it can
provide to end-users but also for guiding other software
systems. While a number of tools performing species
name recognition and/or normalization of both scientific
names and synonyms have been reported previously
[7,10,14,23,25,33,36,37,41,61], the work presented here
contributes to the field in a number of unique ways.
These include availability of a robust, open-source,
stand-alone application (other tools are either not publi-
cally available, only available as web services or not cap-
able of recognizing common names), scale of species
tagging (all of MEDLINE and PMC OA until 2008),
depth and rigour of evaluation (other tools do not per-
form evaluation against normalized database identifiers,
or are limited to a small sample of documents) and
accuracy (compared to other available tools, LINNAEUS
shows better performance, mainly due to better handling
of ambiguous mentions and inclusion of additional
synonyms). Moreover, we provide the first open-access,
manually annotated dataset of species name annotations
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in biomedical text that can be used specifically to evalu-
ate the performance of species name recognition
software.

Evaluation of species name identification software
requires manually annotated gold standards

The relative performance of any bioinformatics applica-
tion is only as good as the evaluation set against which
it is compared. In the case of species name recognition
software, no open-access manually annotated dataset of
species name annotations in biomedical text existed as a
gold standard for evaluation prior to the current work.
During this project, we investigated four different auto-
matically generated evaluation sets (NCBI taxonomy
citations, MeSH tags, Entrez gene references, EMBL
citations) based on curated document-species pairs. We
also investigated two different automatically generated
evaluation sets based on document-species pairs pre-
dicted using text-mining software (PMC linkouts and
WhatizitOrganisms). Although it was possible to inter-
pret the recall of LINNAEUS when the document set
and the evaluation set were of the same type (e.g. full-
text), the precision of our system could not be accu-
rately evaluated because of incomplete or imperfect
annotation of species mentions in any of these evalua-
tion sets. We conclude that evaluation sets of docu-
ment-species mappings automatically inferred from
“secondary” sources such as document-gene (e.g. Entrez
gene) or document-sequence (e.g. EMBL) mappings are
of limited value in evaluating species name recognition
software.

Because of the inherent limitations with the automati-
cally-generated evaluation sets (including incomplete
annotation of species names or incorrect disambigua-
tion), a manually annotated evaluation corpus was cre-
ated. Evaluation against the manually annotated
evaluation corpus showed very good performance for
LINNAEUS with 94.3% recall and 97.1% precision on a
mention level, and 98.1% recall and 90.4% precision on
a document level. None of the automatically generated
evaluation sets come close to revealing this level of pre-
cision for species name recognition using LINNAEUS.
These results underscore the importance of our manu-
ally annotated gold standard evaluation set, and suggest
that evaluation of other systems on automatically gener-
ated evaluation sets (e.g. [10]) may have underestimated
system precision. One interesting observation afforded
by having a high quality evaluation set is that recall is
higher than precision on a document level, while preci-
sion is higher than recall on a mention level. One rea-
son for this is that when authors use non-standard or
misspelled names, they will usually use those names
multiple times throughout the document, leading to sev-
eral false negatives on a mention level but a single only
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on document level. Conversely, false positives are more
spread out among documents, leading to small differ-
ences in false positive counts for mention and document
level evaluations.

Improved accuracy of species name identification

in full-text articles

The vast majority of text-mining research is currently
conducted on abstracts of biomedical articles since they
are freely available in PubMed, require fewer computa-
tional resources for their analysis, and are thought to
contain the highest density of information [62,63].
Nevertheless, increasing evidence suggests that informa-
tion retrieval is better on full-text articles since coverage
of biomedical terms is higher relative to abstracts
[62-66]. Our results for species names identification
results support this conclusion, with recall of species
names being higher for full-text articles relative to
abstracts for the majority of evaluation sets tested
(Table 4) and virtually all (96%) full-text articles being
tagged with at least one species name. The benefit of
performing term identification on full-text articles may
be particularly useful in the case of species names, since
the distribution of organism terms appears to be more
uniform throughout different sections of a biomedical
document than terms for diseases, genes or chemicals
and drugs [62,63].

Our results also clearly demonstrate that disambigua-
tion of species mentions by searching for explicit men-
tions is more successful in full-text articles than in
abstracts. Thus, as has been found previously for gene
names [63], the increased coverage of full-text has addi-
tional benefits for species name disambiguation, since
more information is available to the disambiguation
algorithms when processing full-text articles. Interest-
ingly, we find that levels of ambiguity drop regardless of
whether explicit mentions are scanned for either earlier
in the text or in the whole text, possibly since the mate-
rials and methods sections of articles are often at the
end of papers. After searching for explicit mentions, we
find that ambiguity levels of species names in biomedi-
cal text are low (3-5%), and can be reduced even further
(1-3%) using probabilistic methods if a small degree of
error can be tolerated.

Conclusions

We have developed and evaluated a robust open-source
software system, LINNAEUS, which rapidly and accu-
rately can recognize species names in biomedical docu-
ments and normalize them to identifiers in the NCBI
taxonomy. The low levels of ambiguity, high recall and
high precision of the LINNAEUS system make it ideally
suited for automated species name recognition in
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biomedical text. LINNAEUS species identification in the
biomedical domain could be enhanced by inclusion of
names for cell lines [67], which often act as biological
proxies for the species that gave rise to them. LIN-
NAEUS is likely to also perform well in other problem
domains such as the ecological and taxonomic literature
provided that high quality species name dictionaries are
available (e.g. [68]), although this remains an open area
for future research. Further development of LINNAEUS
for broader application outside the biomedical literature
may require integration with other approaches such as
rule-based systems for species name recognition (e.g.
TaxonGrab), and we are currently aiming to provide
implementations of such methods in the future that
would be able to utilize the document processing meth-
ods provided by LINNAEUS. The availability of LIN-
NAEUS now provides opportunities for downstream
applications that use species names in text, including
integration of species names into larger bioinformatics
pipelines, semantic mark-up of species names in biome-
dical texts, and data mining on trends in the use of spe-
cies name across documents and time.
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Click here for file
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