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Abstract

Background: As the size of the known human interactome grows, biologists increasingly rely on
computational tools to identify patterns that represent protein complexes and pathways. Previous
studies have shown that densely connected network components frequently correspond to
community structure and functionally related modules. In this work, we present a novel method to
identify densely connected and bipartite network modules based on a log odds score for shared
neighbours.

Results: To evaluate the performance of our method (NeMo), we compare it to other widely
used tools for community detection including kMetis, MCODE, and spectral clustering. We test
these methods on a collection of synthetically constructed networks and the set of MIPS human
complexes. We apply our method to the CXC chemokine pathway and find a high scoring
functional module of 12 disconnected phospholipase isoforms.

Conclusion: We present a novel method that combines a unique neighbour-sharing score with
hierarchical agglomerative clustering to identify diverse network communities. The approach is
unique in that we identify both dense network and dense bipartite network structures in a single
approach. Our results suggest that the performance of NeMo is better than or competitive with
leading approaches on both real and synthetic datasets. We minimize model complexity and
generalization error in the Bayesian spirit by integrating out nuisance parameters. An
implementation of our method is freely available for download as a plugin to Cytoscape through
our website and through Cytoscape itself.

Background
Rapid innovation in the field of high-throughput whole-
genome biochemistry has revolutionized our under-
standing of biology. The vast amount of molecular

biology data presents us with new organizational
challenges as we seek to extract knowledge from
whole-genome experimental assays. Biochemical assays
that annotate associations between pairs of genes and

Page 1 of 9
(page number not for citation purposes)

BioMed Central

Open Access

mailto:cgrivera@jhu.edu
mailto:rvakil2@jhu.edu
mailto:joel.bader@jhu.edu
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


proteins have become increasingly diverse. Some of
these important assays yield protein-protein, protein-
DNA, and synthetic lethal genetic interactions. Taken
together these molecular interaction data sets form our
picture of the known interactome. With estimates on the
size of the complete protein interactome for humans and
other metazoans topping 650,000 interactions [1-4],
sophisticated tools are needed to cope with the complex-
ity of biological systems.

In molecular interaction networks, groups of densely
connected molecules frequently have an important
biological interpretation. Dense sub-networks of mole-
cules often represent protein complexes and coherent
biological processes. Community finding in large net-
works has become a ubiquitous problem, and many
research groups spanning diverse fields have proposed
methods. Theoretically, the problem of finding the
densest subgraph in a network is known to be NP-hard
[5]. Consequently, almost all methods that propose
solutions to this problem are necessarily approximate
heuristics. In our preliminary analysis on synthetic and
real datasets, we find our approach to be competitive
with or significantly better than a selection of leading
approaches including Metis, MCODE, and spectral
clustering. Our method is also fast.

Dense subgraphs and clique structures are not the only
interconnectivity pattern with biological significance.
Bipartite structures in datasets of synthetically lethal
interactions can represent redundancy in biological
pathways. Our approach simultaneously identifies both
dense network structures and dense bipartite structures
in molecular interaction networks. Molecular interac-
tions can be either directed in the case of transcriptional
regulatory interactions or undirected in the case of
protein-protein interactions. Our proposed technique
allows both directed and undirected molecular interac-
tions to be naturally integrated and processed using our
approach.

Cytoscape [6] has proven to be a superior platform for
biological network visualization and analysis. The
integration of our network analysis tool with Cytoscape
ensures broad dissemination and increased usability of
our technique. Coupled with other network analysis
tools that provide functional enrichment and topology
statistics for subnetworks of interactions, we enable
seamless integration with existing network analysis
workflows.

Previous research
The problem of identifying community structure has
been studied by many fields including high performance

computing, bioinformatics, applied mathematics, and
soft matter physics. The general problem is known by
several names including community detection, network
module prediction, network clustering, and graph
partitioning [7-9]. Existing approaches have limitations
that we address with our method.

Spectral methods take advantage of the Fiedler vector of
the graph Laplacian to perform recursive bisection and
multiway partitioning [10,11]. Some spectral methods
can be used to identify dense bipartite structures [12,13].
Spectral methods have associations with repeated ran-
dom walks which can also be used to identify dense
network modules [14,15].

Methods that identify minimum cuts or maximum flows
are also used for network bisection [16,17]. Some of
these methods aim to maximize a measure of modularity
[18], although the measure of modularity is known to
have resolution limits [19]. These approaches can also be
applied to directed networks [20]. Heat kernels [21] and
betweenness centrality [22] have also been used to
identify community structure.

Other methods formulate a score to identify hubs or seed
nodes and perform a local search to identify the
community surrounding the hub [23-26] based on
diverse fitness functions like mutual information. These
methods can be fast for small queries, but frequently lack
global properties. Methods that use bottom-up hierarch-
ical agglomeration to identify community structure [27]
are also frequently used.

MCODE [24] was introduced for the Cytoscape platform
to enable searches for dense clique-like structures within
a network. The algorithm identifies seed nodes for
expansion by computing a score of local density for
each node in the graph. The algorithm expands highly
scoring seed nodes in a local search procedure by adding
highly scoring nodes connected to the module. The
algorithm includes post-processing features that remove
unwanted elements from the set of resulting networks.
The algorithm relies on many adjustable parameters,
which can burden a user and possibly lead to over-
fitting.

Spirin and Mirny [28] use a brute force bottom-up
approach to enumerate all fully-connected graphs in the
network. The approach has exponential time complexity
and is not viable for large networks such as the
molecular interaction networks observed today. They
propose a Monte Carlo (MC) procedure to identify dense
subnetworks as an optimization problem with network
density as the objective. They use the simulated anneal-
ing algorithm to ensure convergence, although
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convergence may be slow for large networks. Others have
suggested efficient methods for identifying cliques of a
given size [29].

More recent approaches like that of Dhillon and Guan [30]
perform graph-partitioning using weighted kernel k-means.
The approach allows graph-partitions of unequal sizes.
However, this and other top-down partitioning and
bisection methods require the specification of the number
of clusters. In networks of sufficient size and complexity, it
is unreasonable to expect a user to know this value a priori.

Zhang et al. [31] find that many real world modules are
not densely interconnected, which breaks a widely held
assumption about the clique-like nature of network
modularity. Indeed, many families of protein ligands do
not interact within the family; however, these families can
be identified by virtue of interactions with many of the
same receptors. Thus, somemodules form dense bipartite
structures with other parts of the network. These details
indicate that network modularity comes from both
clique-like and dense bipartite network topologies. The
method described here is unique in that it identifies both
types of network communities in a single approach.

Contributions of our approach
In this paper, we propose a novel network clustering
approach called NeMo. Our results on both synthetic
and real data indicate that NeMo has performance which
is competitive with or better than a selection of widely
used approaches. Our method identifies functional
modules that are overlooked by many existing module
finding algorithms, including dense bipartite graph
structures. Additionally, our method can integrate
diverse data sources such as undirected protein-protein
interactions and directed protein-DNA interactions. Our
method is more accessible to new users because there are
no parameters to tune.

Results
Algorithm comparison on synthetic data
To verify the effectiveness of our approach, we compare
two variants of the NeMo algorithm to a selection of
widely used community finding algorithms including
kMetis, MCODE, and spectral clustering. All of the
methods have run time requirements small enough for
interactive use. Metis is a fast and widely used as a
benchmark for community finding algorithms. Karypis
and Kumar [7], the authors of metis, indicate that kMetis
produces more accurate clusters than metis. Thus, kMetis
is used as the benchmark. The number of embedded
clusters in each synthetic network varies from 5 to 10.
kMetis has a parameter to specify the number of clusters.
We run kMetis six times for each synthetic network to

allow for partitions based on different numbers of
clusters. Spectral clustering requires the number of
bisections to be set. In the synthetic trials, we run
spectral clustering with 2, 3 and 4 levels of recursive
bisection. MCODE has a parameter that specifies the size
of clusters returned. For each synthetic network, we run
MCODE 10 times in a uniform grid search over the size
parameter. All other MCODE parameters are left as
defaults. For kMetis, MCODE, and spectral clustering,
the set of putative modules for a synthetic network is
taken to be the union of all modules for all parameter
settings previously discussed. NeMo in contrast has no
tuneable parameters.

NeMo uses hierarchical agglomerative clustering as part
of the procedure. To identify the best setting for the
hierarchical clustering, we compare the use of single-
linkage and complete-linkage hierarchical agglomerative
clustering as part of NeMo for synthetic network module
identification.

The reconstruction fidelity of the synthetic network for
an algorithm is given by the putative module of highest
similarity to a synthetic module. We assign similarity
between networks to be the Jaccard coefficient between
the set of nodes in the synthetic module and the putative
module. It should be noted that algorithms that return
more putative modules benefit from this approach.
Reconstruction fidelity is a measure that ranges from 0,
completely missed, to 1, recovered exactly. We define
reconstruction error as one minus reconstruction fidelity.

In Figure 1, we show the result of the algorithm
comparison on synthetic data. The dataset consisted of
1000 synthetic networks containing over 8000
embedded modules. The plot indicates that NeMo with
complete-linkage hierarchical clustering identifies 30%
of modules with 100% fidelity and 45% of modules with
80% fidelity. The results suggest that NeMo with
complete linkage identifies modules with higher recon-
struction fidelity than NeMo with single-linkage or
MCODE. For reconstruction error less than 0.3, NeMo
with complete-linkage performs better than kMetis,
MCODE and spectral clustering. NeMo with single-
linkage performs competitively with kMetis and better
than MCODE and spectral clustering for reconstruction
error levels less than 0.2.

The mean number of putative modules returned by each
algorithm varied significantly. NeMo returned an average
of 24 and 19 putative modules for single-linkage and
complete-linkage respectively, while MCODE returned
an average of 426 putative modules for synthetic
networks. kMetis returned 45 and spectral clustering
returned 22 on average.
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Algorithm comparison using MIPS human complexes
To remove potential bias that may be introduced by
using synthetic data, we compare the algorithms based
on the entire human interactome. We use the complete
set of MIPS human complexes [32,33] as the gold
standard set of network modules. We generate putative
network modules from the entire human interactome
using each algorithm. The human interactome used in
this analysis is a comprehensive set of more than
225,000 physical human protein-protein interactions
(PPIs) taken from the Michigan Molecular Interactions
(MiMI) [34] repository. MiMI aggregates physical PPIs
from many reputable sources including REACTOME,
DIP, BIND, HPRD, and others.

Motivated by the notion that the definition of module
reconstruction fidelity does not control for the size of the
putative module set, we present the algorithm compar-
ison using a new procedure. For example, an algorithm
that returns all combinations of nodes as putative
network modules would have high reconstruction
fidelity for all test modules. To control for the size of
the putative module set, we use the algorithms to predict
if a given network module is a real MIPS complex or a

randomly generated network. The score used for predic-
tion is the measure of reconstruction fidelity. Under the
new test, an algorithm that returns all combinations of
nodes as putative network modules would appear no
better than random.

The dataset consists of a gold standard set of 380 human
MIPS complexes. We generate 380 randomized com-
plexes by permuting node labels. The randomized
complexes preserve the size distribution of the MIPS
complex dataset. For each algorithm, we compute the set
of putative network modules embedded in the inter-
actome. We use the putative network module set
generated by each algorithm to rank all 760 test modules
by reconstruction fidelity. To display the results, we
generate a receiver operating characteristic (ROC) curve.
The ROC characterizes the true positive rate and false
positive rate for MIPS complex prediction for varying
levels of reconstruction fidelity. The best methods will
have high reconstruction fidelity for real MIPS complexes
and low reconstruction fidelity for random complexes.

From the ROC curve (Figure 2(a)) we find that, for a
false positive rate less than 0.1, NeMo with complete-
linkage has a better true positive rate than kMetis,
MCODE, and spectral clustering. With a false positive
rate of zero, we find that NeMo with complete-linkage
has the highest true positive rate of about .85. We
computed the area under the curve for each algorithm,
and we find that NeMo with complete-linkage has an
AUC of 0.94, kMetis has an AUC of 0.94, spectral
clustering has 0.89, NeMo with single-linkage has 0.77,
and MCODE has 0.67. We conclude from this data that
NeMo with complete-linkage has performance on real
data that is competitive with kMetis and spectral
clustering and better than MCODE.

The precision recall curve (Figure 2(b)) highlights
another aspect of the comparison. NeMo with com-
plete-linkage maintains 100% precision from 0% to 85%
recall, while spectral clustering has a significant drop to
90% precision with only 10% recall.

All methods experience a dramatic drop in precision at
85% recall. Beyond this threshold, the methods can no
longer distinguish real MIPS complexes from random
modules.

Application to the CXC chemokine pathway
The CXC chemokine pathway is important in regulating
inflammation response. The inflammation response is
known to be an important inhibitor of cancer progres-
sion. To study the relationship between cancer and the
CXC chemokine pathway, we examined the CXC

Figure 1
Community-finding algorithm performance on
synthetic networks. Comparison of NeMo with single-
linkage, complete-linkage, MCODE, kMetis, and spectral
clustering measured in terms of the reconstruction fidelity of
synthetic modules. The x-axis indicates reconstruction error
between 0 and 1 with 0 indicating complete module
reconstruction and 1 indicating that the algorithm did not
identify the module. The figure shows the fraction of
modules identified with a reconstruction error less than a
given threshold.
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chemokine pathway with respect to high-grade glioblas-
toma [35].

We used NeMo to identify functionally related modules
in the network. For illustrative purposes, in Figure 3, we
highlight one functionally related module uniquely
identified by our method. We identify the family of 12
glycine, serine and threonine metabolic proteins includ-
ing PLA2G2E, PLA2G3, PLA2G2A, PLA2G2D, PLA2G4A,
PLA2G12B, PLA2G2F, PLA2G5, PLA2G6, PLA2G12A,
PLA2G10, and PLA2G1B. Accession numbers and gene
names are given in Table 1. The functional module is
missed by other network partitioning and clustering
methods because the family of proteins does not self-
interact. In fact, they form an independent set in the CXC
chemokine pathway. In Figure 3, we show the family of
phospholipases in the context of the CXC chemokine
pathway. The intensity of red node coloring indicates

elevated levels of gene expression in association with
glioblastoma. We find that PLA2G5 experiences rela-
tively high levels of gene expression in association with
high-grade CNS glioblastoma.

We also notice the high connectivity between GNA12
and GNA13 and the family of phospholipases. It is
known that GNA12 and GNA13 are associated with
long-term depression and regulation of actin cytoskele-
ton. The jointly up-regulated expression of both the
phospholipases and GNA12 and GNA13 suggests a
relationship between glioblastoma, inflammation, and
depression. The relationship between inflammation and
depression is well characterized [36]. While the relation-
ships between inflammation, depression and cancer has
been identified [37] there does not seem to be existing
literature that suggests a relationship between glioblas-
toma, inflammation, and depression specifically.

Figure 2
Interactome-scale community-finding algorithm comparison. (a) ROC comparing NeMo with single-link, NeMo with
complete-linkage, MCODE, kMetis, and spectral clustering for the identification of MIPS human complexes. (b) Precision and
recall curves comparing NeMo with single-link, NeMo with complete-linkage, MCODE, kMetis, and spectral clustering for the
identification of MIPS human complexes. Each algorithm produced a set of putative network modules embedded in the
interactome. The putative network module set of each algorithm was used to rank a set of 380 MIPS complexes and 380
randomized networks by reconstruction fidelity (Jaccard coefficient).
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Integration into Cytoscape
To increase the accessibility and utility of our method in
practice, we implemented our algorithm as a plugin to
Cytoscape. Currently, the plugin can be downloaded
from our website [38]. The plugin is distributed contain-
ing NeMo with complete-linkage.

Discussion
Identifying dense bipartite networks
All of the methods described in the related work section
identify either dense networks or dense bipartite

structures. The method we present here identifies both
network topologies in a common approach. Because
NeMo does not rely on direct interaction to identify
community structure, the method can identify an
interesting set of structures that lie between clique-like
networks and dense bipartite graphs.

Applicable to directed and undirected graphs
NeMo allows the integration of protein-protein, protein-
DNA, and metabolic interaction networks to find
densely-connected components. Our method seamlessly

Figure 3
A functional module of the CXC chemokine pathway uniquely identified by NeMo. A collection of 12 proteins from
the glycine, serine and threonine metabolic pathway. The family of proteins can be identified visually, but is often missed by
automatic network module identification algorithms because they form an independent set in the CXC chemokine pathway.

Table 1: Genes discussed in association with the CXC chemokine pathway module

Symbol Acc. Full Name

PLA2G2E Q9NZK7 phospholipase A2, group IIE
PLA2G3 Q9NZ20 phospholipase A2, group III
PLA2G2A P14555 phospholipase A2, group IIA (platelets, synovial fluid)
PLA2G2D Q9UNK4 phospholipase A2, group IID
PLA2G4A P47712 phospholipase A2, group IVA (cytosolic, calcium-dependent)
PLA2G12B Q9BX93 phospholipase A2, group XIIB
PLA2G2F Q9BZM2 phospholipase A2, group IIF
PLA2G5 P39877 phospholipase A2, group V
PLA2G6 O60733 phospholipase A2, group VI (cytosolic, calcium-independent)
PLA2G12A Q9BZM1 phospholipase A2, group XIIA
PLA2G10 O15496 phospholipase A2, group X
PLA2G1B P04054 phospholipase A2, group IB (pancreas)
GNA12 Q03113 guanine nucleotide binding protein (G protein) alpha 12
GNA13 Q14344 guanine nucleotide binding protein (G protein), alpha 13

BMC Bioinformatics 2010, 11(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/11/S1/S61

Page 6 of 9
(page number not for citation purposes)



identifies functional modules in both directed and
undirected graphs. Furthermore, our method is able to
identify network modules in combined directed and
undirected networks.

Parameterless design
NeMo has no adjustable parameters. The lack of tunable
parameters is an advantage for inexperienced users, and
appears to boost performance as well. Methods such as
kMetis, k-means, spectral clustering and many other top-
down approaches require the user to select the number
of clusters in advance. In a network of sufficient
complexity and size, a user should not be expected to
know the number of embedded network modules a
priori. The number of clusters is one of many parameters
used by existing methods. In these methods, an
unfortunate choice of parameter setting can lead to a
poor result set. NeMo avoids many of these complica-
tions by using the maximum likelihood estimates for the
parameters in the method.

Algorithm comparisons
To evaluate our proposed method, we compared NeMo
with widely used community finding algorithms like
kMetis, MCODE, and spectral clustering. We found that
NeMo with single-linkage was outclassed by modern
community finding approaches like kMetis and spectral
clustering. We find that NeMo with complete-linkage has
performance which is competitive with or better than
recent approaches on both real and synthetic data. As a
general trend in the results, we find that NeMo with
complete-linkage identifies more networks with 100%
reconstruction fidelity than the competing approaches;
however, the advantage is lost for higher acceptable
levels of false positives and reconstruction error.

Conclusion
As the size of the known human interactome grows,
biologists increasingly rely on computational tools to
identify patterns in the data. In this work we present a
novel community finding algorithm based on a log odds
score of shared neighbours. NeMo is unique in its ability
to identify both dense network and dense bipartite
structures in a single approach. To evaluate the perfor-
mance of our method (NeMo with complete-linkage),
we compare our method to a set of widely used
approaches for community finding such as kMetis,
MCODE, and spectral clustering. We test all of the
methods using a collection of synthetically constructed
networks and the entire human interactome. On both
real and synthetic datasets, we find that NeMo with
complete-linkage has performance that is competitive
with or better than existing methods for community
finding.

We apply our method to the CXC chemokine pathway to
identify functional modules. We highlight a functional
module of 12 disconnected phospholipase isoforms. The
result reveals our methods ability to identify coherent
functional modules that are weakly connected. We
implemented NeMo with complete-linkage as a plugin
for Cytoscape. The plugin is freely available through our
website [38] and through Cytoscape itself.

Methods
We propose a log odds score rab for observing a certain
number sab of shared neighbours between nodes a and b.
A shared neighbour is a node c that satisfies a~c and b~c,
where the tilde symbol indicates adjacency. We assume
that the counts sab~Poisson(l). The score rab approxi-
mately equals the log odds ratio between the probability
of s

ab
under the alternative and null hypotheses. The null

hypothesis is that the number of shared neighbours
between a and b is from a random network model. We
define λ as the Poisson parameter for sab under the null
hypothesis. The alternative hypothesis states that the
number of shared neighbours between a and b is greater
than expected by chance. We define λ̂ as the Poisson
parameter for sab under the alternative hypothesis.

r
sab
sab

ab ≈
⎡

⎣
⎢

⎤

⎦
⎥ln

Pr[ ]
Pr[ ]

|
|
λ
λ

(1)

Simplifying equation (1), we have,

r s sab ab ab≈ −ln(Pr[ | ]) ln(Pr[ | ])λ λ (2)

If we assume sab~Poisson(l),

r
e esab

sab

sab

sab
ab ≈

−
−

−
ln(

!
) ln(

!
)

λ λ λ λ
(3)

Simplification of equation (3) gives,

r sab ab≈ −⎡
⎣⎢

⎤
⎦⎥

−ln ( )
λ
λ

λ λ (4)

To find the maximum likelihood solution for λ̂ , we
solve,

d

d

esab

sabˆ

ˆ ˆ

!λ
λ λ−

= 0 (5)

Solving equation (5), we find the maximum likelihood
solution.

λ̂ml abs= (6)

BMC Bioinformatics 2010, 11(Suppl 1):S61 http://www.biomedcentral.com/1471-2105/11/S1/S61

Page 7 of 9
(page number not for citation purposes)



Under the null hypothesis, λ is the expectation of sab.
Let na, nb, and e be the number of neighbours of a, the
number of neighbours of b, and the total number of
edges respectively. Let N be the set of all nodes.

λ = ≈ − − − + −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∈

∑s n i i
e

na a nb nb
e

n
n n n

ab a b

Ni

( () ) ( )1

4 2
1 1

4 2

(7)

Substituting equation (6) in equation (4) gives the score

r s
sab sab ab ab≈ −⎡

⎣⎢
⎤
⎦⎥

−ln ( )
λ

λ (8)

Finally, we exclude significance from node pairs that
have far fewer shared neighbours than expected at
random.

r s
sab sab ab ab≈ −⎡

⎣⎢
⎤
⎦⎥

−ln
λ

λ (9)

The Grouping Process
We compute the score rab for all node pairs a and b. We
perform hierarchical agglomerative clustering using
either single-linkage or complete-linkage clustering. We
process node pairs in descending order based on the
score rab. The process ends when the observed number of
shared neighbours for a node-pair is less than the
expected number of shared neighbours. The interpreta-
tion of the convergence criteria is that we have processed
all node pairs that have more shared neighbours then we
would expect by chance.

We follow a simple procedure to collapse insignificant
structure from the hierarchical tree. For every internal
node p with two children m and n where m is a leaf and n
is an internal node, we collapse the edge between p and
n. Putative network modules are identified as the set of
leaf nodes that are descendants of an internal node.
A putative network module is returned for each internal
node.

Synthetic data construction
We aim to quantitatively evaluate the performance of
our method with leading methods in the field. We use
synthetically created networks to achieve this task. Each
synthetic network consists of between 5 to 10 embedded
clusters. The between cluster edge density is chosen
uniformly at random between 0.05 and 0.1. Each cluster
has an edge density chosen uniformly at random
between 0.05 and 0.08. The size of each cluster is
chosen randomly between 5 and 10.
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