
PROCEEDINGS Open Access

Next generation models for storage and
representation of microbial biological annotation
Daniel J Quest*, Miriam L Land, Thomas S Brettin, Robert W Cottingham

From Seventh Annual MCBIOS Conference. Bioinformatics: Systems, Biology, Informatics and Computation
Jonesboro, AR, USA. 19-20 February 2010

Abstract

Background: Traditional genome annotation systems were developed in a very different computing era, one
where the World Wide Web was just emerging. Consequently, these systems are built as centralized black boxes
focused on generating high quality annotation submissions to GenBank/EMBL supported by expert manual
curation. The exponential growth of sequence data drives a growing need for increasingly higher quality and
automatically generated annotation.
Typical annotation pipelines utilize traditional database technologies, clustered computing resources, Perl, C, and
UNIX file systems to process raw sequence data, identify genes, and predict and categorize gene function. These
technologies tightly couple the annotation software system to hardware and third party software (e.g. relational
database systems and schemas). This makes annotation systems hard to reproduce, inflexible to modification over
time, difficult to assess, difficult to partition across multiple geographic sites, and difficult to understand for those
who are not domain experts. These systems are not readily open to scrutiny and therefore not scientifically
tractable.
The advent of Semantic Web standards such as Resource Description Framework (RDF) and OWL Web Ontology
Language (OWL) enables us to construct systems that address these challenges in a new comprehensive way.

Results: Here, we develop a framework for linking traditional data to OWL-based ontologies in genome
annotation. We show how data standards can decouple hardware and third party software tools from annotation
pipelines, thereby making annotation pipelines easier to reproduce and assess. An illustrative example shows how
TURTLE (Terse RDF Triple Language) can be used as a human readable, but also semantically-aware, equivalent to
GenBank/EMBL files.

Conclusions: The power of this approach lies in its ability to assemble annotation data from multiple databases
across multiple locations into a representation that is understandable to researchers. In this way, all researchers,
experimental and computational, will more easily understand the informatics processes constructing genome
annotation and ultimately be able to help improve the systems that produce them.

Background
Genome annotation systems provide utilities to identify
genes in a new genome sequence, classify each gene
according to its most likely functions, and predict bio-
chemical pathways that may exist in the sequenced
organism. These systems have provided the foundation

for many bioinformatics processes and analyses, but an
in-depth understanding of the algorithms, data proces-
sing procedures and hardware requirements utilized is
available only to a select few systems maintainers in
large genome centers [1]. The advent of next generation
sequencing technologies enables individual labs to repli-
cate the sequencing capacity traditionally found only at
genome sequencing centers. The capacity to annotate
and understand genome sequences (i.e. the sequence
annotation information technology and infrastructure) is

* Correspondence: questdj@ornl.gov
Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak
Ridge, TN 37831-6420, USA
Full list of author information is available at the end of the article

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

© 2010 Quest et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:questdj@ornl.gov
http://creativecommons.org/licenses/by/2.0

not easily transferred because of the hardware costs (e.g.
clustered computers), the bioinformatics expertise
required to integrate hundreds of tools, and the exper-
tise of manual annotators. As systems biology integrates
more sources of information, the complexity of annota-
tion will continue to increase. It is unlikely that even
large centres will be able to handle the scope and com-
plexity of what annotation is likely to become, ultimately
a computational model of the living cell.
Annotation systems such as RAST [2], the annotation

services at JCVI [3], have started to close this gap by
providing annotation services online that are free and
readily available to individual researchers. However, it is
still difficult to determine the quality, consistency, and
interoperability of the outputs from these systems [5].
Technologies such as the Distributed Annotation Sys-

tem (DAS) [6,7] provide a good start on these challenges
by providing an Extensible Markup Language (XML) [8]
standard for the annotation data exchange. This allows
sharing data at the syntax level, however the data is not
understandable to the machine at the semantic level.
Semantic interoperability is critical when combining
data streams from multiple sources, or when providing
different and useful views on data. Semantic interoper-
ability is a critical first step in transforming data into
usable knowledge.
Recent advances in unambiguous knowledge represen-

tation vocabularies (ontologies) provide promise for
recording the underlying semantics in biological data.
Gene Ontology (GO) provides a controlled set of terms
for gene products [9]. The Open Biological and Biome-
dical Ontologies initiative (OBO) [10] has been collect-
ing a series of ontologies for biological and medical
domains such as the Sequence Ontology [11], and Sys-
tems Biology Ontology [12]. The Comparative Data
Analysis Ontology [13] provides a set of concepts for
biological comparisons such as alignment and phylogen-
tic trees. The BioPAX ontology [14] provides a common
framework for relating pathway datasets. Future data
source integration will require the ability to tie data and
analysis to these common unambiguous biological con-
cept frameworks. More importantly, providing data
interoperability and additional utility requires the frame-
works be leveraged and connected to data stores under
a common standard.
The OWL Web Ontology Language [15,16] and OWL 2

[17] are W3C recommended standards for the construc-
tion of the Semantic Web [18,19]. OWL allows data aggre-
gation, integration and construction of a distributed
system for automated biological knowledge discovery. Pro-
tocols for sharing biological analysis, such as SSWAP [20],
are emerging. However, many biological ontologies pre-
date the OWL standard. Some converters exist for trans-
forming ontologies to the OWL standard [21], however

not all attributes are easily transferable. Consequently,
third party tools link to ontologies in unstructured ways.
There is no guarantee that the GO terms referenced are
logically consistent with one another or that the reference
is consistent with the programmatic model used in the
annotation system or with the semantic model intended
by the GO maintainers [22].
In the long term, new annotation systems must be

built that are more understandable, accessible, and mod-
ifiable by biological experts. The new systems must
decouple data from the hardware and algorithms used
for analysis. The first step in this process is robust stan-
dards (e.g. XML) for sharing information across systems.
The second step is the development of ontologies to
share semantic meaning across systems. Both are well
underway. The development of a framework for linking
traditional data to OWL based ontologies within the
context of genome annotation is the next step.
Described here is a proof-of-principle that accomplished
this next step through an analysis of the data storage
resources used in conventional annotation systems, pro-
totyping wrappers that convert the inputs and outputs
of algorithms into resource description framework state-
ments (RDF), prototyping storage solutions to store and
query RDF statement repositories, and prototyping the
conversion process from RDF statements into traditional
standards.

Results
Overview
The Oak Ridge National Lab (ORNL) Genome Annota-
tion and Analysis (ORGAA) system is a complex soft-
ware system developed over 10 years. In the ORGAA
annotation system, pipelines are used to predict the
locations of genes and functional RNA, assign functions
to proteins, find functional protein domains, find
repeats, characterize transporters and regulators, assign
Enzyme Commission numbers (EC numbers), and create
links to external databases. A high level overview of
ORGAA is shown in Figure 1.
When we refer to a pipeline, we mean software sys-

tems that are implemented using the pipes and filters
architecture [39]. A pipeline consists of (1) records –
elements for storing data, (2) filters – elements for
transforming data, (3) sources – a special type of filter
that reads data from files or databases, (4) wrappers –
software components that control the input and output
to programs and program execution (e.g. 3 filters
chained together, one filter for controlling the input,
one filter for running the program, and one filter for
reformatting the output), and (5) pipelines – software
components that can be recursively assembled to con-
struct larger systems. A wrapper is also a pipeline. Pipe-
lines are stateless, and chained together in linear stages

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 2 of 16

of execution. Architecture patterns such as the pipes
and filters architecture are used to manage the complex-
ity of software systems.
The ORNL annotation pipeline shares characteristics

with the model organism databases that use Genetic
Model Organism Database project components
(GMOD) [23-25] to organize data. However, it is differ-
ent from systems focused primarily on eukaryotes
because the annotators at ORNL have embedded the
experience from annotating over 300 microbes. Conse-
quently, ORGAA is more accurately characterized as a
general-purpose microbial annotation system.
A new data representation has been developed herein

for use in microbial genome annotation built on
advancements in Semantic Web technology. A microbial
annotation system consists of algorithms for predicting
genomic structure, functional features and creating rela-
tionships across databases, storage for algorithm results
and monitoring and reporting subsystems.
Our results and methods focus on:

(1) Comparing the features of Semantic Web storage
technologies to traditional annotation methods,
(2) Discussing current limitations in data
representation,
(3) Illustrating how Semantic Web technologies can
be used along side of conventional storage technolo-
gies, and
(4) Illustrating how wrappers can be used to refor-
mat the input and output of programs to produce
data consistent with the Semantic Web and thus
gain abilities not found in conventional systems.

This provides a demonstration that a genome annota-
tion system can be built on top of Semantic Web tech-
nologies and that these representations provide a layer
of abstraction that has specific advantages in software
development and are a natural fit for expressing the
scientific concepts of annotation.
We intend to use the following terms from the emer-

ging field of information and data quality to illustrate
the advantages of this approach:

• Correctness: Data is incorrect, when it contains
logically inconsistent information or inconsistent for-
matting that leads to inconsistent results or causes
downstream software processes to exhibit unex-
pected behaviour.
• Normalization: Data that is not normalized con-
tains undesirable properties most notably, data mod-
ification abnormalities that lead to loss of data
integrity (e.g. data correctness violations).
• Completeness: A portion of the knowledge repre-
sentation, A, is not complete if there exists accessi-
ble relevant information, B, that is disjoint from A.

Overview of annotation data storage technologies
Annotation systems are built using several different data
representations. Most common are tab delimited file
formats such as Gene Feature Format (GFF) [26]. Tab
delimited file formats are easy to parse and easy to use
in third party tools such as Microsoft Excel, however,
column definitions are usually documented separately.
Free text or semi-structured files such as GenBank or

Figure 1 An overview of the Oak Ridge Genome Annotation and Analysis (ORGAA) system.

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 3 of 16

EMBL files [27] are advantageous because they are the
current standard for warehousing annotations and are
human readable. However, this type of semi-structured
data is resistant to change, because small changes in the
standard tend to break parsers and legacy code. Conse-
quently, fields such as /note tend to get overloaded
with useful information while product descriptions and
gene names vary across annotation systems. These varia-
tions make it extremely challenging to build general
tools that are reliable. Relational databases are flexible,
robust, have a strong theoretical foundation and favour-
able runtime characteristics. However schemas imple-
mented in relational database systems tend to be
complex and are usually owned by system maintainers.
It is not easy to implement a relational schema for every
concept in biology because the focus of relational tech-
nology is on storage and retrieval of information and
not on describing the information stored. Also, it is dif-
ficult for domain experts (biologists) to construct and
share relational schemas.
Other technical solutions are optimal for sharing data

and performing queries across data repositories. XML
provides a viable alternative for sharing data across sites,
but is difficult for biologists to read. A more complete
overview of relative advantages and disadvantages of
data storage and exchange technologies is shown in
Table 1.
A fundamental constraint of current annotation sys-

tems is that they are constructed with the explicit goal
of submitting a sequence to GenBank/EMBL/DDBJ, the
International Nucleotide Sequence Databases (INSD)
[28]. Data warehousing has very different objectives than
systems biology research and experimental data integra-
tion. In practical terms, the objective of data submission
to the INSD has resulted in sequence annotation sys-
tems that: (1) are based on text files that are computa-
tionally difficult to manipulate, and (2) cannot easily
accept the expert knowledge possessed at the time of
annotation, and (3) are difficult to merge with other
datasets.
Relational databases, free text files, tab-delimited files

and XML have been adopted in annotation systems
because each has desirable attributes. Tab delimited files
are easy to build Perl scripts around for rapid prototyp-
ing. Relational technology is better suited to create
robust and fast production systems with flexible query
capability. Next generation data models for biological
annotation complement more traditional data storage
techniques because they also provide a semantic layer
for interoperability.
RDF/XML and OWL have the potential to revolutio-

nize annotation, because they share many of the favor-
able conventional storage techniques attributes, but also
have new capabilities to represent data provenance and

workflows, provide semantic data interoperability, allow
for greater data transparency (accessibility by domain
experts), and semantic consistency across systems.
These attributes will make it easier to store information
that would otherwise be lost, create views on data (one
such view is similar to the INSD representation), and
perform logical inferences.

Limitations to conventional representation technologies
As the annotation process proceeds, when additional
algorithms are run, when databases are searched and
results linked to the query, or when additional data is
added to the system, information is created. The order
in which steps are allowed to occur and how the results
from each of these steps are stored has significant
impact on system behavior.
Data stored in the system can be out of sync with data

stored in other parts of the system. As a simple example,
consider updating a BLAST database. A BLAST database
is formatted from a collection of FASTA records. BLAST
scoring and results are dependent on the number and
types or records in the FASTA file. Results (e.g. e-values
and best matches) prior to the update has the potential
to be different than those obtained after the update. Gen-
omes annotated years ago commonly contain functional
and positional annotation that was based on the best
knowledge at the time but would be very different if the
genome were annotated today.
Consider the following excerpts from two annotation

files downloaded from GenBank representing results for
two different annotation systems for the same gene in
two closely related strains of Escherichia coli:

/gene="dnaA”
/locus_tag="b3702”
/gene_synonym="ECK3694”
/gene_synonym="JW3679”
/function="putative regulator; DNA -

replication, repair,
restriction/modification”
/note="DNA biosynthesis; initiation of

chromosome
replication; can be transcription

regulator;
GO_component: GO:0005737 - cytoplasm;
GO_process: GO:0006261 - DNA-dependent

DNA replication”
/codon_start=1
/transl_table=11
/product="chromosomal replication

initiator protein DnaA, DNA-binding tran-
scriptional dual regulator”
/protein_id="NP_418157.1”
/db_xref="GI:16131570”

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 4 of 16

/db_xref="ASAP:ABE-0012103”
/db_xref="UniProtKB/Swiss-Prot:P03004”
/db_xref="ECOCYC:EG10235”
/db_xref="EcoGene:EG10235”
Example 1: dnaA from the annotation of Escheri-

chia coli K12 substr. MG1655
/locus_tag="EcDH1_0001”
/product="chromosomal replication

initiator protein DnaA”
/inference="protein motif:TFAM:

TIGR00362”

/note="TIGRFAM: chromosomal replication
initiator protein DnaA” /note="PFAM: Chro-
mosomal replication initiator DnaA domain;
Chromosomal replication initiator DnaA”
/note="SMART: AAA ATPase”
/note="SPTR: A1AHN7 Chromosomal replica-

tion initiator protein dnaA” /note="KEGG:
ssn:SSON_3652 chromosomal replication
initiation protein “
/note="COGs: COG0593 ATPase involved in

DNA replication initiation”

Table 1 A comparison of five common data storage technologies currently deployed in annotation systems

Free Text Tab/Line
Delimited

XML RDF/XML Relational-DB

Description Logic
(FOL)

NO NO NO YES NO

Ontology Standards NO NO NO YES NO

Centralized/not
scalable

NO YES* NO NO YES**

Human Readable YES YES NO YES YES

Domain Expert
Understandable

YES YES NO YES NO

Data Structure NONE Single Table Tree Graph Relational Tables

Data Expectations NONE NONE Schema - Constraints Inference
rules

Schema – Constraints

Native Format Text Text Text Text Binary

Query Engine
Language

Programmed by hand Programmed by
hand

Libraries available SPARQL SQL

Naming Standard NO UNA**** NO UNA NO UNA NO UNA UNA

Sequence Storage
Solution

In Text In Text XML/Indexed XML/
Indexed

Indexed

CWA/OWA*** OWA CWA CWA OWA CWA

Search Speed
(Worst Case)

NP-Hard O(n) O(n) P O(log n)

Update Speed
(Worst Case)

NP-Hard O(n) O(n) P O(log n)

Conversion to
Semantic

Data loss possible –
done by hand

No data loss –
done by hand

No data loss – done with
robust libraries

- No data loss –library usage and some
added labeling by hand

Conversion from
Semantic

No data loss Data loss Data loss - Data loss

Free text is used in repositories such as scientific journals. Tab/Line delimited files are used in popular formats such as FASTA, GFF, and BLAST. Tab/Line
delimited files also constitutes the bulk of program output from most bioinformatics software. Mature tools and sequence repositories such as GenBank support
XML output. Many OWL based ontology repositories exist for semantic data integration, however RDF/XML data is currently scarce. Relational databases typically
do not provide direct access to the data, instead a programming interface is provided for access to the underlying database. Free text is the most flexible, and
also the least machine-readable. Relational databases are the most formal structures with the fastest indexing and searching capabilities. Relational technology
requires the greatest computational expertise investment while free text is the most natural. XML and RDF/XML are designed for modification over time and in
sharing data. In the rows discussing search speed and update speed, O(log n), O(n), P and NP-Hard are computer science terms indicating a range of how fast a
computer solution can be obtained to a particular problem. P indicates a reasonable solution is possible in polynomial time, NP-Hard means that the solution
space explodes relative to the input size. NP-Hard problems are expected to not be solvable on a computer in reasonable time. O(log n), O(n), and P are all
solvable efficiently on a computer. In the rows discussing conversion to and from RDF/XML, Turtle, and other semantic aware data storage technologies, loss of
information includes schema, constraints, data and formatting. For example, to convert from a relational schema to tab-delimited files, information is lost
because the schema, triggers and views are not representable using tab-delimited files. So these columns are more than just data, they are data and descriptions
surrounding the data for making logical conclusions and for executing computer codes in reasonable time. In the conversion from free text to semantic
standards, assumptions and domain expertise may be lost.

*Assuming all information is in one file. If multiple files exist, then an indexing system needs to be developed to organize information.

**Relational databases are assumed to exist as a single installation on a powerful single resource. New database technologies have lessened this restriction in
recent years.

***CWA – Closed World Assumption, missing information treated as false. OWA – Open World Assumption, missing information treated as unknown.

****UNA Unique Name Assumption – Each individual has a single unique name.

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 5 of 16

/note="InterPro IPR001957:IPR003593:
IPR013159:IPR013317” /codon_start=1
/transl_table=11

Example 2: dnaA from the annotation of Escheri-
chia coli DH1 ATCC 33849
These annotations are from orthologous coding

sequences for DnaA from different strains of E. coli.
They will be used to illustrate several known quality
deficiencies in INSD formatted files.

1. Omission errors. These are a violation of the
quality characteristic of completeness. Information
available to the annotator at the moment of annota-
tion is not stored in the INSD file, or it is stored in
a way not understandable to other organizations (e.
g. not linked to an ontology). Another type of omis-
sion is when dataset fields are sparsely populated, it
may be possible to use an INSD tag, but it is not
used because the INSD submission validation script
causes an error, because the feature/qualifier is
poorly documented, or because the annotation sys-
tem does not support the functionality. In the above
example, not all tags are shared across annotations
(the first example has /gene, /gene_synonym,
/function, /protein_id, and /db_xref while
the second has /inference).
2. Version control errors: These are violations of
the quality characteristic of correctness. Under cur-
rent INSD policy it is the responsibility of the scien-
tist who submitted the annotation originally to
maintain and update the annotation. However,
usually there is no incentive for updating annotation
with small fixes that do not lead to significant publi-
cations or other professional rewards. Consequently
many INSD annotations are out of sync with data in
other databases or with other features unless the
annotation is redone.
3. Formatting inconsistencies. These are violations
of the quality characteristic of completeness. Often
two communities develop terminology for the same
thing independently. These divergent syntaxes will
both pass the INSD validation script. However it will
not be possible for a computer to determine that
two fields mean the same thing. Also, annotation
systems may produce different syntaxes for the same
biological concept over time. In the above example
‘/note="SPTR: A1AHN7 Chromosomal repli-
cation initiator protein dnaA”’ indicates
an external reference to DNAA_ECOLI (P03004,
P78122, Q2M814) in SwissPro/UniProt/Tremble as
does ‘/db_xref="UniProtKB/Swiss-Prot:
P03004”. Another example is the slight inconsis-
tency between the content in the /product lines.

4. Nonnormalized data. These errors violate the
principles of normalization, which attempt to reduce
redundant data. Some datasets have repeated fields
and superfluously duplicated field values derived
from other sources. An example is ‘GO_process:
GO:0006261 - DNA-dependent DNA replica-
tion’. Here ‘DNA-dependent DNA replication’ is
redundant data that is copied into the INSD file
from GO for the purpose of improving readability.
Updating this information in the INSD file will
cause it to be out of sync with GO. Updates to the
term in GO will cause it to be out of sync with what
is in the INSD file unless both locations are simulta-
neously updated which usually is overlooked.
5. Inconsistent data granularity. These are viola-
tions of the quality characteristics of consistency and
correctness. Notes often contain many important
bits of information in free text that are difficult to
parse. For example, /note="COGs: COG0593
ATPase involved in DNA replication
initiation”, contains a database reference
(COG), a database ID (COG0593) and expert gener-
ated free text. Fields in other records contain only a
database reference.
6. Incorrectly labeled records. These are also viola-
tions of the quality characteristic of correctness. An
example is a gene labeled with an incorrect function,
or a group of genes with known function labeled as
hypothetical. As more individual scientists are
allowed to annotate their own genomes it will
become more difficult to regulate the usage of tags.
It will become harder to define usage, and meaning.
This indicates a need for more education and train-
ing on information management skills, or an
approach that allows more computer automation.
7. Poorly structured data. These are violations of
correct metadata description and relevance. In the
example above, both annotations contain tags that
are in free text. This can not easily be compared by
a computer. Each annotation uses the /note tag
differently. In the first, /note tags are used to indi-
cate function and to create unstructured links to
gene ontology terms. In the second, /note tags are
used primarily to reference functional descriptions in
other databases. In both cases, bioinformaticians
must build custom parser rules to fully take advan-
tage of the information. These parsers will not work
on all of the files in the INSD, only those files for-
matted by the same annotation system. In other
descriptions, comparing text on the computer is
nearly impossible. Both usages illustrate qualifier tag
overloading.
8. Overloading of field function. Overloading, or
using for more than one purpose, the function of

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 6 of 16

qualifier tags (fields) in the database structure vio-
lates the quality characteristic of correctness. It is
often difficult to untangle the current function of a
field if it has been used for many different functions.
9. Overly rigid and inflexible standards: This
makes adoption difficult. The three INSD collabora-
tors must agree on common tags, which results in a
slow rate of change. Annotation systems have much
more information available that is currently lost in
the process of creating the INSD file. Computational
systems also have access to the series of events that
created each of the qualifiers in the end file. Cur-
rently, annotation systems are not allowed to use
additional information or make information easier to
parse with computers because the standard is based
on consensus. The result is that useful information
is lost in the process of generating a genome annota-
tion. Some of this information is placed on web sites
and is not stored in a machine readable way.

Semantic Web technologies can help resolve some of
the inconsistencies between these two representations
by linking the representations from multiple annotation
groups into a single data representation. This single
representation could also contain information to record
the history of information, and thus uncover the meth-
ods for obtaining the information.

The semantic web technology stack applied to
annotation
It is proposed here that next generation annotation
systems should adhere to the following objectives: (1)
Create less burdensome software requirements for
downstream data users, (2) Provide a data model that
is logically consistent with conventional methods, (3)
Allow data integration from multiple sources, pro-
grams, groups or locations on the web, (4) Provide for
a better understanding of how data is created, (5)
Allow for a local level of standards that exceeds con-
sensus standards, and thus permit technology advance-
ment, and (6) Not create data loss or loss of
functionality during data aggregation. Meeting these
objectives leads to an alternative model of genome
annotation where each process adds additional infor-
mation to the system, or creates links between infor-
mation in the system or across systems. RDF/XML and
OWL are technologies designed to build systems of
this type. The OWL Web Language (OWL) is a speci-
fication for formally describing concepts and relation-
ships between concepts. This can be applied to the
biological concepts or components of a software sys-
tem. RDF/XML [29]is a method for describing links
from one data instances to another or from a data
instance to a term (object) in an ontology.

OWL contains three constructs for describing data, the
Individual, the Class, and Properties. An Individual, or
data instance is an element of data in the data repository.
A sequence is an example Individual (e.g. ‘attaga-
catccg’) Each Individual has at least one Class.AClass
is a set of individuals that share some property. For
example bothdnaA andnhaA are members of the Class-
gene. Ontologies are constructed by nesting Classes in
hierarchies. This is accomplished through rdfs:sub-
ClassOf which states that one Class in the OWL ontol-
ogy is a subclass of another class. For example a
protein_sequence is a subclass of a biological_sequence.
Properties can be used to state relationships, or triples,
between individuals or from individuals to data values.
Properties can also be nested in classification hierarchies.
Properties can also be constrained on both the domain
and range. For example a property hasFunctional-
Description can be constrained on the domain to
objects that are genes, and it can be constrained on the
range to objects that are functional descriptions or
objects that are subclasses of functional descriptions.
Thus hasFunctionalDescription can be con-
strained to only provide relationships between instances
that have the class gene and instances that have the
class functionalDescription.
RDF/XML and OWL are built using triples. Each tri-

ple contains a subject (individual or class), a predicate
(property) and an object(individual or class). Subjects,
predicates and objects are all Uniform Resource Identi-
fiers (URI) [30]. RDF/XML provides the specification for
linking data instances to concepts (Classes) in OWL
ontologies. RDF triples can be used to link data
instances to XML datatypes (e.g. ‘atacatccg isA
xsd:string’), data instances to individuals (e.g.
‘dnaA owl:sameAs ECK3694’), properties to other
properties (e.g. ‘annotate:similarTo owl:Symme-
tricProperty sequence_ontology:homolo-
gous_to’), and data instances to classes (e.g. ‘dnaA
isA sequence_ontology:gene’). RDF triples allow
for at least two important capabilities: (1) they allow
constraints to be placed on data instances so that data is
well formulated and consistent, and (2) they allow logi-
cal reasoning software to traverse ontology relationship
hierarchies and thus answer complex questions.
In description logic terminology there is a fundamen-

tal modelling concept refer to as an axiom which is a
logical statement that relate roles or concepts. The set
of such axioms that define concepts or terminology are
referred to as a TBOX, and the set of axioms that define
assertions or data are referred to as an ABOX. A knowl-
edge base consists of the combination of a TBOX and
ABOX which can be served with RDF/XML being used
as the ABOX, and OWL being used as the TBOX [22].
Annotation knowledgebase systems can be constructed

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 7 of 16

such that they require that each algorithm and database
search create RDF statements describing the provenance
of data modifications and link discoveries in a semanti-
cally consistent way.
A knowledgebase constructed using OWL and RDF/

XML has several advantages over conventional data
representations:

1. Semantics are explicitly stored in the system, mak-
ing data unambiguous.
2. Because data is based on XML, data is easily
stored and merged across parts of the system or
across systems maintained by different groups.
3. Data is structured and can be queried in much the
same way as in a relational database (using SPARQL
[31]).
4. Standard algorithms (e.g. theorem provers [32-34])
can be used to analyze, query data repositories and
make logical extensions to existing knowledge.
5. Data repositories of RDF/XML are inherently dis-
tributed over the web and thus processed in clus-
tered computing environments and cloud
computing.

These advantages have yet to be realized because
ontologies are integrated into data repositories in an ad-
hoc manner. In a semantic-aware knowledgebase sys-
tem, semantic operations are not difficult to recover
because they are imbedded in a data structure and not
stored as free text, or embedded in programming logic.
Below are some examples of how RDF/XML can be

used to solve each of the problems with INSD files iden-
tified above.

1. Omission errors. Many omission errors of the
type identified above can be corrected by linking
annotations from different annotation groups. Take
the collection of all proteins with a significant align-
ment to dnaA from E. coli K12 as an example. RDF/
XML is designed in such a way that it is possible to
recover every qualifier that was ever associated to
any of the proteins in this set. Therefore omission
errors can be greatly reduced by leveraging the
strengths and experiences of different research
groups and combining complementary datasets. Sim-
ply mashing the tags together does not solve this
because that does not constrain or classify tags, so
there is no way to know how tags are related. This
would eventually result in a large set of redundant
tags for each gene with no good method for filtering
them.
2. Version control errors: RDF/XML is a web-based
technology; it is not a static warehousing based tech-
nology. Therefore, when an update happens on part

of the data in the system, all of the records in the
system reflect the change. At any given moment, it
is possible to construct an equivalent to the annota-
tion file because it is just a view on the RDF data
and not a flat file.
3. Formatting inconsistencies: RDF allows simple
formatting inconsistencies such as the one described
above to be resolved by querying the tag collection
of highly related sequences and determining co-
occurrence of terms. Other formatting inconsisten-
cies can be handled by associating explicit format-
ting rules to OWL classes and deprecating the use
of free text in descriptions while enforcing the use
of properly formatted data instances that belong to
OWL classes.
4. Nonnormalized data. RDF allows data to be nor-
malized by explicitly removing redundant triples.
5. Inconsistent data granularity. RDF requires that
each relationship stated in a predicate links only two
things. Concepts linked in this way between well
structured classes will not have multiple data
instances encoded in a single relationship, unless
users violate best practices.
6. Incorrectly labeled records. Because each
instance must conform to a class, incorrectly labeled
records can be identified by analyzing property labels
of the same type in instances from superclasses/sub-
classes. For example, imagine an instance of dnaA is
incorrectly labeled as hypothetical. An analysis of
the associated GO classes of every near neighbor
could be used to identify the inconsistency. This sort
of query is extremely labor intensive when ontology
references are encoded as free text or not present.
7. Poorly structured data. Regardless of the annota-
tion system or scientific group providing the data, if
data is structured such that each instance must
belong to a class, and that class is organized in an
ontology, then data instances can be formatted to
conform to the requirements of a class.
8. Overloading of field function. RDF and OWL
allow constraints to be placed on fields such that
only instances of a particular type are allowed.
Instead of containing free text descriptions, tags can
reference instances belonging to a specific class.
Because these instances belong to a specific class, it
is possible to search properties that relate instances
belonging to a particular type. Therefore all known
usages of a properties can be organized and
described and new properties can be added in a logi-
cally consistent manner.
9. Overly rigid and inflexible standards: Instead of
focusing on a globally accepted lowest common
denominator standard, RDF and OWL allow indivi-
dual system maintainers to focus on standards for

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 8 of 16

solving particular problems. This allows software
systems to evolve at a different rate from data
warehouses.

Example of RDF/XML applied to annotation
XML has not been widely adopted by the bioinformatics
community, perhaps because it is not human readable
and not easily understood by domain expert biologists.
Here, we present TURTLE [35] showing how a human
readable semantic-aware standard can be constructed as
an alternative to standard GenBank files to overcome
this limitation.
gene 17489..18655

/gene="nhaA”
/gene_synonym="ECK0020”
/gene_synonym="ant”
/gene_synonym="antA”
/gene_synonym="JW0018”
/locus_tag="b0019”

CDS 17489..18655

/codon_start=1
/transl_table=11
/gene="nhaA”
/gene_synonym="ECK0020”
/gene_synonym="ant”
/gene_synonym="antA”
/gene_synonym="JW0018”
/locus_tag="b0019”
/product="sodium-proton antiporter”
/function="transport; Transport of
small molecules:
Cations”
/note="Na+/H antiporter, pH dependent;
GO_component:
GO:0009274 - peptidoglycan-based cell
wall; GO_component:
GO:0019866 - organelle inner membrane;
GO_process:
GO:0009268 - response to pH”
/db_xref="GOA:P13738”
/db_xref="InterPro:IPR004670”
/db_xref="PDB:1ZCD”
/db_xref="UniProtKB/Swiss-Prot:
P13738”
/experiment="N-terminus verified by
Edman degradation: PMID
8381959”
/protein_id="AAC73130.1”
/translation="MKHLHRFFSSDASGGIILII
AAILAMIMANSGATSGWYHDFLETP

VQLRVGSLEINKNMLLWINDALMAVFFLLVGLEVK
RELMQGSLASLRQAAFPVIAAIGG
MIVPALLYLAFNYADPITREGWAIPAATDIAFALGVL
ALLGSRVPLALKIFLMALAIID
DLGAIIIIALFYTNDLSMASLGVAAVAIAVLAVLN
LCGARRTGVYILVGVVLWTAVLKS
GVHATLAGVIVGFFIPLKEKHGRSPAKRLEHVLHPW
VAYLILPLFAFANAGVSLQGVTL
DGLTSILPLGIIAGLLIGKPLGISLFCWLALRLK
LAHLPEGTTYQQIMVVGILCGIGFT
MSIFIASLAFGSVDPELINWAKLGILVGSISSAVI
GYSWLRVRLRPSV”

Example 3: The gene nhaA as it is stored in a tra-
ditional GenBank file.
Below is a TURTLE representation of the same

record. This example contains three subjects, gene:
example_gene, CDS:exampleCDS, and experi-
ment:exampleExperiment.
@prefix an: <http://compbio.ornl.gov/

annotate.owl#> .
gene:example_gene

a:hasStart integer:17489 ;
a:hasEnd integer:18655 ;
a:hasStrand strand:+ ;
a:obtainedFrom Prodigal V2.0
a:hasGeneName string:nhaA ;
a:hasGeneSynonym string:ECK0020 ;
a:hasGeneSynonym string:ant ;
a:hasGeneSynonym string:antA ;
a:hasGeneSynonym string:JW0018 ;
a:hasGeneSynonym string:sof ;
a:hasLocusTag string:b0019 .

CDS:exampleCDS

a:hasGene gene:example_gene ;
a:codon_start integer:1 ;
a:transl_table integer:11 ;
a:hasLocusTag string:b0019 ;

a:hasProductDescription string:
sodium-proton antiporter ;

a:hasFunctionDescription string:
transport; Transport of small
molecules: Cations ;
a:note string: Na+/H antiporter, pH
dependent ;
a:hasGO_component GO:0009274;
GO:0009274 a:hasDescription peptido-
glycan-based cell wall;
a:hasGO_component GO:0019866;
GO:0019866 a:hasDescription organelle
inner membrane ;

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 9 of 16

http://compbio.ornl.gov/annotate.owl#
http://compbio.ornl.gov/annotate.owl#

a:hasGO_process GO:0009268;
GO:0009268 a:hasDescription response
to pH ;
a:hasdb_xref GOA:P13738 ;
a:hasdb_xref InterPro:IPR004670 ;
a:hasdb_xref PDB:1ZCD ;
a:hasdb_xref UniProtKB/Swiss-Prot:

P13738 ;
a:hasExperiment experiment:exampleEx-
periment ;
a:protein_id="AAC73130.1” ;
a:hasTranslation

proteinSequence:"""MKHLHRFFSSDASGGIILII
AAILAMIMANSGATSGWYHDFLETP
VQLRVGSLEINKNMLLWINDALMAVFFLLVGLEVKR

ELMQGSLASLRQAAFPVIAAIGG
MIVPALLYLAFNYADPITREGWAIPAATDIAFALGV

LALLGSRVPLALKIFLMALAIID
DLGAIIIIALFYTNDLSMASLGVAAVAIAVLAVLNLC

GARRTGVYILVGVVLWTAVLKS
GVHATLAGVIVGFFIPLKEKHGRSPAKRLEHVLHPW

VAYLILPLFAFANAGVSLQGVTL
DGLTSILPLGIIAGLLIGKPLGISLFCWLALRLKLA

HLPEGTTYQQIMVVGILCGIGFT
MSIFIASLAFGSVDPELINWAKLGILVGSISSAVI-

GYSWLRVRLRPSV""” .

experiment:exampleExperiment

a:eve string:N-terminus verified by
Edman degradation ;
a:hasEvidence edman degradation;
a:hasdb_xref PMID:8381959 .

Example 4: The gene nhaA as it is stored in
TURTLE, a RDF/XML equivalent.
The primary objective of this example is to illus-

trate how an RDF/XML representation can be dis-
played in a human readable way that is roughly
equivalent to an INSD file; it may not be immediately
obvious to the reader that a format conversion of
this type is something significant. However, it is sig-
nificant in at least the following ways: (1) in it ’s
potential for correcting data representation errors
such as omission errors, version control errors, for-
matting inconsistencies, nonnormalized data, incon-
sistent data granularity, poorly structured data, and
overloading of field function, (2) in it’s capabilities
for allowing for software and data abstraction and in
alleviating overly rigid and inflexible standards, (3) in
that constraints can now be placed on fields because
well formed fields must be linked to terms in an
ontology.

In the above example, the domain and range of each
predicate is constrained such that each data instance is
a member of a class and not just considered as free text.
In this example, gene:example_gene and CDS:
exampleCDS are linked through the relationship CDS:
exampleCDS a:hasGene gene:example_gene.
The predicateannotate:hasGene requires that the
object referenced is of type gene. These types of rela-
tionships can not be encoded in the INSD representa-
tion because tags in the INSD file are not ontology
terms. Higher level concepts such as what an a:gene
is, and constraints on this data type are defined in the
ORNL annotation OWL ontology, and, in this case,
mapped to the ‘gene’ class in the sequence ontology
(SO:0000704). Constraints on the predicates in the
example also exist in the annotation ontology.
These constraints make it possible to normalize data, for

example each gene_synonym in the GenBank example is
repeated for both the CDS and the gene when in reality
they only apply to the gene. In RDF, because the CDS is
associated with the gene, each synonym for the gene can
also be associated with the CDS through the RDF graph.
Omission errors can also be handled with this

approach because RDF/XML allows us to merge data
from any other data sources on the web such as KEGG
[37] that already have RDF/XML accessible data [38].
This allows everything known about nhaA in any data-
set to be linked to the annotation.
Problems in the GenBank record with formatting

inconsistencies, poorly structured data, inconsistent data
granularity, and overloading of field function are all
addressed in the TURTLE representation to a much
greater degree. The best example of this is the TURTLE
alternative to the /note tag. Instead of a free text
description with GO identifiers sprinkled throughout,
the TURTLE representation illustrates hard links to GO
classes and free text descriptions of those terms. This
representation is easier to compute because the GO
classes are easily distinguishable from free text by the
computer. Another example is that, in the INSD file,
experimental validation is represented in free text. In
the TURTLE representation annotators can represent
both an evidence code that can be classified and placed
in an evidence ontology (EV) [36], and they can link the
data entry to the evidence method. It is clear that this
data representation scheme is better at handling the tra-
ditional problem of data loss than the INSD standard
because statements do not have to pass a central regula-
tory body to be placed in the system. Statements that
would have been lost in the past can each be encoded
relative to a local ontology. At a later date, the meaning
of these statements can be mapped to other ontologies
as they develop, or the local ontology can be shared and
become a standard.

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 10 of 16

RDF also addresses version control and normalization
errors. The TURTLE example above is actually an RDF
result from a SPARQL query. This separates the way
the data is stored from the way the data is viewed. In
the case of the INSD file, the file contains the data. This
leads to data replication and loss of data integrity. A
much better approach is to have a file that contains
references to other sources of information, as the refer-
enced information improves, the annotation also
improves. Implementing a data cache can resolve perfor-
mance issues.
The RDF example also imports relevant mapping to

other ontologies (e.g. GO and SO). This is done via
importing the ORNL annotation ontology. Concepts in
the ORNL annotation ontology such as programs and
databases can be defined locally independent of a central
standards body. An example of this is a:obtained-
From Prodigal V2.0. This states that the region
was obtained using the gene prediction program Prodi-
gal. The classification hierarchy that places Prodigal as a
gene prediction program is stored in the ORNL annota-
tion ontology, and is not deposited in INSD. This allows
concepts to be declared and used rapidly local to the
annotation system. These concepts allow for a greater
degree of abstraction. Tool developers and data curators
can declare concepts of importance to the task at hand
without the burden of understanding the structure and
function of annotation systems.

Discussion
In the past, most work in bioinformatics focused on
algorithms; however as more high-throughput experi-
mental techniques become available, managing data
complexity is an ever increasing challenge. Bioinfor-
matics systems are growing so quickly that it is no
longer possible for a single source to fund data collec-
tion and analysis. Better methods are needed to increase
data quality and interoperability. Advances can come
from utilities that allow faster access, more intuitive
access, more robust and sharable data structures, or the
ability to provide new, increasingly detailed descriptions
of data that are precise and machine readable even if
manually contributed. RDF/XML and OWL can be used
in each of these ways, and have great potential to
change the way data modelling is performed.
It is important to recognize that RDF/XML, OWL,

and other Semantic Web technologies are complemen-
tary to traditional database technology, XML, program-
ming languages (e.g. Perl) and other current techniques.
Resources built on these technologies need not be aban-
doned for the successful implementation of the Seman-
tic Web; rather it is important that traditional
technologies are linked in a logically consistent manner.
If this can be achieved, the Semantic Web will enable

better software engineering practices, easier evaluation
of system performance characteristics, and most impor-
tantly, a better understanding of the software processes
and data used in systems biology.
An illustrative example of some of these advantages in

annotation can be found in the current propagation of
low quality product assignments. Consider a protein
sequence, P. Assume that P has been determined bio-
chemically to have a known function, f. Annotation sys-
tems commonly copy the functional properties of P to
putative proteins based on a sequence similarity cut-off.
Imagine that an annotation system encounters a
hypothetical protein, HP1, that’s closest match is P and
assigns f to HP1. Now HP1 is forever associated with f
in INSD. At a later date, another sequence annotation
system performs a search for another hypothetical pro-
tein, HP2 and assigns f as its function because the near-
est neighbor to HP2 is HP1. This process continues
until eventually a hypothetical protein, HPX which may
have a function other than f is assigned the function f.
Semantic annotation allows more than the association of
evidence codes to each annotation. It also allows a trail
of evidence (data provenance) to be constructed so that
the methods and series of deductions leading to the
functional assignment can be catalogued and ranked in
a systematic way. This allows for better characterization
of algorithm performance and better understanding of
systematic error. More importantly, it allows such errors
to be corrected. It is possible that a system based on
conventional storage technologies could implement this
kind of data tracking in a local fashion; however, it is
impossible for the inferences to be shared unless all
users have nearly identical technology stacks. The
advantage of the Semantic Web approach is that it
allows users with vastly different technology infrastruc-
ture to share and process inferences at a detailed level
in a consistent and automated way.

Conclusions
We have presented a conceptual framework for con-
structing a description logic and web standard based
knowledgebase for genome annotation systems. The
core components of this system were introduced along
with examples that illustrate the implementation details
and advantages. Some of the stated advantages include
the ability to record a series of operations that are
semantically consistent across groups and technologies,
the ability to share data and semantics across research
communities, greater data transparency (accessibility by
domain experts), and logical consistency.
Semantic Web technology is still in its infancy and many

important details need to be worked out to translate infor-
matics research problems into production systems.
Although there are currently many implementations of

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 11 of 16

core utilities, we do not yet know how to build systems
that meet all of the stated expectations. Large scale proto-
types are needed to characterize performance issues and
understand potential pitfalls.
Our approach to creating a semantic annotation sys-

tem will meet these challenges, but many underlying
details are still being considered. Combining multiple
RDF data sources is a challenge because of the lack of
available systems with such capabilities and researchers
with sufficient expertise to build and demonstrate the
benefits of such systems for biological research. When
the web was first developed it was not immediately
obvious how HTML formatting was better than text
files. Over time, as more web pages came online, the
advantage of hyperlinks for navigating content became
apparent. RDF/XML and OWL create a standard for
linking data. This capability will increase in usefulness
in a similar way as these methods are adopted and data
accessibility increases. The critical first step is to create
RDF/XML data repositories that can be leveraged; anno-
tation is a central resource in bioinformatics and is
therefore an intuitive place to start.
For the most part, ontologies are not as useful as they

could be because the analysis routines and data are not
always linked in the most meaningful ways. Ontologies
developed with data that references and uses them will
be more accurate, more robust, simpler to understand
and more elegant.

Methods
System architecture
The Semantic Annotation System (SAnoS) is a proto-
type system for creating genome annotations for the

Semantic Web. SAnoS builds on the ORGAA system. It
consists of pipelines for the discovery of genes, RNA
and other functional features, database search tool wrap-
pers (e.g. BLAST), ontologies, and the capacity to create
legacy formats (e.g. GenBank) from the Semantic Web
data representation. Figure 2 shows a high level over-
view of the functional aspects of the SAnoS architecture.
At the center of the architecture is an RDF triple store

(a database of RDF/XML triples, defined in the Results
section) that stores the input and output from algorithm
pipelines that create additional data instances and create
links between datasets. The triple store derives its data
types from the ontologies available to the system. Note
that the triple store need not be one file, exist on one
computer, or exist on one location on the internet.
SAnoS algorithms for finding relationships in data sets
are distributed, scalable, and require input and output
to be RDF. These pipelines are built using the pipes and
filters architecture [39] and are built on top of the
SAnoS core library. The system can create an annota-
tion view on demand. This annotation can be exported
to the web portal for viewing, or it can be converted to
a legacy format through the legacy format conversion
process.

An ontology for annotation
Instead of assuming that one ontology could be built for
the purposes of annotation, we instead assumed that
several ontologies would be needed. OWL representa-
tions of the Gene Ontology (GO), and the Sequence
Ontology (SO) were obtained and used as a starting
point. Whenever possible, existing ontologies were lever-
aged when defining terms needed by the system. In the

Figure 2 SAnoS System Architecture. The open arrows represent the flow of data through the system.

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 12 of 16

construction of RDF/XML data stores this is accom-
plished via imports that reference the OWL document.
One imports an ontology into another to reuse the
existing capabilities of the imported ontology in the new
ontology. Below is an example showing imports of rele-
vant OWL ontologies in a TURTLE representation [35].
@prefix : <http://compbio.ornl.gov/

annotate.owl#> .
@prefix rdfs: <http://www.w3.org/2000/

01/rdf-schema#> .
@prefix owl2xml: <http://www.w3.org/

2006/12/owl2-xml#> .
@prefix xsd: <http://www.w3.org/2001/

XMLSchema#> .
@prefix owl: <http://www.w3.org/2002/

07/owl#> .
@prefix rdf: <http://www.w3.org/1999/

02/22-rdf-syntax-ns#> .
@prefix GO: <http://purl.org/obo/owl/

GO> .

@prefix ECO: <http://purl.org/obo/ECO> .
@prefix SO: <http://purl.org/obo/owl/

SO> .
@prefix CDAO: <http://cdao.cvs.source-

forge.net/viewvc/*checkout*/cdao/cdao/
OWL/cdaov2.owl?revision=1.1> .
@prefix annotate: <http://compbio.ornl.

gov/annotate.owl#> .
Example 5: An example of import statements used

in OWL. In this example, the import statements are
used to reference other ontologies in the current
ontology.
Genome annotation pipelines. Oak Ridge National

Lab’s (ORNL) as an example, contain many concepts
that do not exist in standard Biological and Biomedical
Ontologies (OBO). For example, Prodigal [40] is a pro-
gram used for determining the location and orientation
of genes in a newly sequenced organism. Statements
dealing with data provenance such as ‘gene predic-
tedBy Prodigal’ and ‘Prodigal isVersion 2.0’

Figure 3 A simplified version of the ORNL annotation ontology edited in Protégé.

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 13 of 16

http://compbio.ornl.gov/annotate.owl#
http://compbio.ornl.gov/annotate.owl#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2006/12/owl2-xml#
http://www.w3.org/2006/12/owl2-xml#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/obo/owl/GO
http://purl.org/obo/owl/GO
http://purl.org/obo/ECO
http://purl.org/obo/owl/SO
http://purl.org/obo/owl/SO
http://cdao.cvs.sourceforge.net/viewvc/*checkout*/cdao/cdao/OWL/cdaov2.owl?revision=1.1
http://cdao.cvs.sourceforge.net/viewvc/*checkout*/cdao/cdao/OWL/cdaov2.owl?revision=1.1
http://cdao.cvs.sourceforge.net/viewvc/*checkout*/cdao/cdao/OWL/cdaov2.owl?revision=1.1
http://compbio.ornl.gov/annotate.owl#
http://compbio.ornl.gov/annotate.owl#

are possible with a locally controlled vocabulary. We
developed an annotation ontology to describe concepts
and terms specific to the software process and terms
unavailable in existing resources.
This ontology was developed and edited in Protégé

[41]. Figure 3 shows an active session editing the ORNL
annotation ontology. The OWL standard allows for
classes, properties, individuals, and datatypes [15]. OWL
provides structure for the underlying terminology used
in describing data (a terminology box or TBOX in
description logic [22]). As other ontologies evolve, the
OWL ‘owl:sameAs’ property is used to link semantic
terms (concepts) across ontologies.

Creating a wrapper for programs
To directly interact with the RDF/XML data store, an
off the shelf program is wrapped with data formatting

logic on the front end to query the RDF data store for
data needed and to format the data into a form the pro-
gram can understand. Then the program is run on the
reformatted data and creates an output. The output
from the program must also be converted to RDF/XML
for storage in the data store.
We will demonstrate the process here with the first

step in the ORNL annotation pipeline, running the gene
prediction software, Prodigal. Figure 4 shows an imple-
mentation of a pipeline for running Prodigal. Before
Prodigal is run, raw sequence information is stored in
the Data Source. First, the data store is queried to
obtain basic information (such as URIs) about sequences
in the filesystem for processing. Then Prodigal is run on
the sequences. This generates a Gene Feature Format
GFF [26] file representing the predicted gene locations
for each sequence in the sequence set. A post processing

Figure 4 An example RDF pipeline for algorithm execution.

Figure 5 A Mechanism for translation between legacy formats and RDF/XML.

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 14 of 16

pipeline converts the GFF file to RDF/XML representa-
tion. This is accomplished by first querying the RDF
store for triples directly related to sequences that the
Prodigal application that was run on, and then associat-
ing the Prodigal predictions (in RDF) with the RDF
results obtained from the data store. This creates a new
RDF file that references the annotation ontology and the
sequence ontology. This information, or a URI reference
to it, can then be commited to the RDF store.

Creating a RDF/XML data store
The RDF/XML data store consists of any set of RDF
formatted files. RDF formatted files reference OWL
ontologies and other RDF files via URIs. An RDF store
is similar to a collection of web pages, each collection of
statements imbedded in a page links other pages. An
arbitrary collection of RDF statements can be stored in
a single relational database table, called an RDF triple
store. Powerful tools for searching and manipulating
RDF triple stores have emerged in recent years, most
notable are query tools, and reasoning engines. Jena [42]
is a Semantic Web framework written in Java for the
development of Semantic Web knowledge-bases. The
core Jena library contains utilities for manipulating and
storing data models that are compatible with the
Semantic Web. Jena includes packages such as ARQ
that implement a language processor for the SPARQL
query language, SDB/TBD for implementing RDF sto-
rage comparable to relational database technology, and
Pellet for OWL based reasoning over semantic
resources. The Jena technology suite was used to imple-
ment a prototype RDF-triple store for use by annotation
pipelines.

Accessing legacy information
Despite the fact that XML/GenBank formatted docu-
ments contain many problems, large infrastructure is
currently built on top of these standards. To interface
with legacy systems, we propose using the Java Architec-
ture for XML Binding (JAXB) [44]. JAXB allows for
seamless conversion from different flavours of XML.
This is accomplished by automatically constructing Java
classes from an XML schema using a binding compiler,
and then creating java objects with data from an XML
file conforming to the schema. Once the objects are
instantiated, a reusable map is constructed that coordi-
nates the translation from objects into an alternative
XML schema. For example, to construct Java objects
from GenBank/EMBL files, first obtain the XML schema
for GenBank/EMBL annotation [43]. Then, use the
binding compiler, xjc, to derive java objects that are
compatible with the GenBank/EMBL XML schema.
Third, translate files in GenBank/EMBL format to XML
using the EMBL XML converter [43] or BioPerl [45].

Then use JAXB to unmarshal the content in the XML
document into instances of java objects. Finally con-
struct the reusable JavaObject-XML mapping using the
Velocity Template Engine [46] and use it to convert
Java instances into RDF. Process shown in Figure 5.
This process is reversible. However, in translation of
RDF/XML to INSD many semantically aware statements
will be converted to free text. In conversion of INSD to
RDF/XML additional information will need to be added
from other data sources and anthologies to fill in knowl-
edge gaps and clarify inconsistencies.

Acknowledgements
This work was supported by the BioEnergy Science Center (BESC) which is a
U.S. Department of Energy Bioenergy Research Center supported by the
Office of Biological and Environmental Research in the DOE Office of
Science, along with the U.S. Department of Energy Joint Genome Institute,
and the Laboratory Directed Research and Development Program of Oak
Ridge National Laboratory managed by UT‐Battelle, LLC, for the U.S.
Department of Energy under Contract No. DE‐AC05‐00OR22725.
This article has been published as part of BMC Bioinformatics Volume 11
Supplement 6, 2010: Proceedings of the Seventh Annual MCBIOS
Conference. Bioinformatics: Systems, Biology, Informatics and Computation.
The full contents of the supplement are available online at
http://www.biomedcentral.com/1471-2105/11?issue=S6.

Authors’ contributions
ML and DQ outlined the problems with conventional storage technologies
for annotation. TB and DQ designed the architecture for the system. ML, DQ
and RC provided the vision for the project. DQ wrote the software and
developed the prototypes. DQ, ML and RC wrote the manuscript. All authors
approved the final version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 7 October 2010

References
1. Salzberg S: Genome re-annotation: a wiki solution? Genome Biology 2007,

8(1):102.
2. Rapid Annotation using Subsystems Technology (RAST) server. [http://

rast.nmpdr.org].
3. J. Craig Venter Institute (JCVI) Annotation Service. [http://www.jcvi.org/

cms/research/projects/annotation-service/].
4. Oak Ridge Genome Annotation and Analysis (ORGAA). [http://compbio.

ornl.gov/tools/pipeline/].
5. White O: A Common Framework for Multiple Sources of Bacterial

Annotation. Sequencing and Finishing in the Future: 2009 2009.
6. Dowell R, Jokerst R, Day A, Eddy S, Stein L: The Distributed Annotation

System. BMC Bioinformatics 2001, 2(1):7.
7. Prliƒá A, Birney E, Cox T, Down T, Finn R, Gr√§f S, Jackson D, K√§h√§ri A,

Kulesha E, Pettett R, et al: The Distributed Annotation System for
Integration of Biological Data. Data Integration in the Life Sciences Springer
Berlin Heidelberg 2006, 4075:195-203.

8. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
Recomendaton 2008 [http://www.w3.org/TR/2008/REC-xml-20081126/].

9. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nature genetics
2000, 25(1):25-29.

10. The Open Biological and Biomedical Ontologies. [http://www.obofoundry.
org/].

11. Eilbeck K, Lewis S, Mungall C, Yandell M, Stein L, Durbin R, Ashburner M:
The Sequence Ontology: a tool for the unification of genome
annotations. Genome Biology 2005, 6(5):R44.

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 15 of 16

http://www.biomedcentral.com/1471-2105/11?issue=S6
http://www.ncbi.nlm.nih.gov/pubmed/17274839?dopt=Abstract
http://rast.nmpdr.org
http://rast.nmpdr.org
http://www.jcvi.org/cms/research/projects/annotation-service/
http://www.jcvi.org/cms/research/projects/annotation-service/
http://compbio.ornl.gov/tools/pipeline/
http://compbio.ornl.gov/tools/pipeline/
http://www.ncbi.nlm.nih.gov/pubmed/11667947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11667947?dopt=Abstract
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.obofoundry.org/
http://www.obofoundry.org/
http://www.ncbi.nlm.nih.gov/pubmed/15892872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892872?dopt=Abstract

12. Le Novre N: Model storage, exchange and integration. BMC neuroscience
2006, 7 Suppl 1(Suppl 1):S11.

13. Prosdocimi F, Chisham B, Pontelli E, Thompson J, Stoltzfus A: Initial
implementation of a comparative data analysis ontology. Evolutionary
bioinformatics online 2009, 5:47-66.

14. BioPAX Ontology Homepage. [http://www.biopax.org/].
15. OWL Web Ontology Language. [http://www.w3.org/XML/Core/

#Publications].
16. Horrocks I, Schneider P, van Harmelen F: From SHIQ and {RDF} to {OWL}:

The making of a web ontology language. Journal of Web Semantics 2003,
1(1):7-26.

17. Grau B, Horrocks I, Motik B, Parsia B, Patel-Schneider P, Sattler U: OWL 2:
The next step for OWL. Web Semantics: Science, Services and Agents on the
World Wide Web 2008, 6(4):309-322.

18. Antoniou G, van Harmelen F: A Semantic Web Primer. MIT 2004.
19. Berners-Lee T, Hendler J, Lassila O: The Semantic Web. Scientific American

2001.
20. Gessler D, Schiltz G, May G, Avraham S, Town C, Grant D, Nelson R: SSWAP:

A Simple Semantic Web Architecture and Protocol for Semantic Seb
Services. BMC Bioinformatics 2009, 10(1):309.

21. Obo-Owl RESTful Conversion API. [http://www.berkeleybop.org/obo-conv.
cgi].

22. The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press 2003.

23. Mungall C, Emmert D, The FlyBase C: A Chado case study: an ontology-
based modular schema for representing genome-associated biological
information. Bioinformatics 2007, 23(13):i337-346.

24. O’Connor B, Day A, Cain S, Arnaiz O, Sperling L, Stein L: GMODWeb: a web
framework for the generic model organism database. Genome Biology
2008, 9(6).

25. Stein L, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E,
Stajich J, Harris T, Arva A, et al: The generic genome browser: a building
block for a model organism system database. Genome research 2002,
12(10):1599-1610.

26. GFF (General Feature Format) Specifications Document - Wellcome Trust
Sanger Institute. [http://www.sanger.ac.uk/resources/software/gff/spec.
html].

27. Stoesser G, Baker W, van den Broek A, Camon E, Garcia-Pastor M, Kanz C,
Kulikova T, Leinonen R, Lin Q, Lombard V, et al: The EMBL Nucleotide
Sequence Database. Nucleic acids research 2002, 30(1):21-26.

28. International Nucleotide Sequence Databases Collaboration (INSDC).
[http://www.insdc.org/].

29. RDF/XML Syntax Specification (Revised). 2004 [http://www.w3.org/TR/
REC-rdf-syntax/].

30. Berners-Lee T, Fielding R: Uniform Resource Identifier (URI): Generic
Syntax.[http://www.rfc-editor.org/rfc/rfc3986.txt].

31. SPARQL Query Language for RDF W3C Recommendation. [http://www.
w3.org/TR/rdf-sparql-query/].

32. Tsarkov D, Horrocks I, Furbach U, Shankar N: FaCT++ Description Logic
Reasoner: System Description. Automated Reasoning Springer Berlin
Heidelberg 2006, 4130:292-297.

33. TWC: Comparison of Ontology Reasoners: Racer, Pellet, Fact++. AGU Fall
Meeting Abstracts 2008, A1068.

34. Haarslev V, Muller R, Gor R, Leitsch A, Nipkow T: RACER System
Description. Automated Reasoning Springer Berlin Heidelberg 2001,
2083:701-705.

35. Turtle - Terse RDF Triple Language. [http://www.w3.org/TeamSubmission/
turtle/].

36. Karp PD, Paley S, Krieger CJ, Zhang P: An evidence ontology for use in
pathway/genome databases. Pacific Symposium on Biocomputing Pacific
Symposium on Biocomputing 2004, 190-201.

37. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes.
Nucleic acids research 2000, 28(1):27-30.

38. Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O, Chen H,
Doherty D, Forsberg K, Gao Y, Kashyap V, et al: Advancing translational
research with the Semantic Web. BMC Bioinformatics 2007, 8(Suppl 3):S2.

39. Buschmann F, Henney K, Schmidt D: Pattern Oriented Software
Architecture: On Patterns and Pattern Languages (Wiley Software
Patterns Series). John Wiley & Sons 2007.

40. Hyatt D, Chen G, LoCascio P, Land M, Larimer F, Hauser L: Prodigal:
prokaryotic gene recognition and translation initiation site identification.
BMC Bioinformatics 11(1):119.

41. Noy N, Sintek M, Decker S, Crub zy M, Fergerson R, Musen M: Creating
Semantic Web Contents with Prot 233;-2000. IEEE Intelligent Systems 2001,
16:60-71.

42. Carroll J, Dickinson I, Dollin C, Seaborne A, Wilkinson K, Reynolds D: Jena:
Implementing the Semantic Web Recommendations. 2003 2003, 74-83.

43. EMBL XML Documentation. [http://www.ebi.ac.uk/embl/xml/].
44. McLaughlin B: Java and XML data binding. O’Reilly & Associates, Inc. 2002.
45. Stajich J, Block D, Boulez K, Brenner S, Chervitz S, Dagdigian C, Fuellen G,

Gilbert J, Korf I, Lapp H, et al: The Bioperl toolkit: Perl modules for the life
sciences. Genome research 2002, 12(10):1611-1618.

46. Apache Velocity Site - The Apache Velocity Project. [http://velocity.
apache.org/].

doi:10.1186/1471-2105-11-S6-S15
Cite this article as: Quest et al.: Next generation models for storage and
representation of microbial biological annotation. BMC Bioinformatics
2010 11(Suppl 6):S15.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Quest et al. BMC Bioinformatics 2010, 11(Suppl 6):S15
http://www.biomedcentral.com/1471-2105/11/S6/S15

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/17118155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19812726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19812726?dopt=Abstract
http://www.biopax.org/
http://www.w3.org/XML/Core/#Publications
http://www.w3.org/XML/Core/#Publications
http://www.ncbi.nlm.nih.gov/pubmed/19775460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775460?dopt=Abstract
http://www.berkeleybop.org/obo-conv.cgi
http://www.berkeleybop.org/obo-conv.cgi
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18570664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18570664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368253?dopt=Abstract
http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.ncbi.nlm.nih.gov/pubmed/11752244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752244?dopt=Abstract
http://www.insdc.org/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://www.ncbi.nlm.nih.gov/pubmed/14992503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14992503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17493285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17493285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211023?dopt=Abstract
http://www.ebi.ac.uk/embl/xml/
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://velocity.apache.org/
http://velocity.apache.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Overview
	Overview of annotation data storage technologies
	Limitations to conventional representation technologies
	The semantic web technology stack applied to annotation
	Example of RDF/XML applied to annotation

	Discussion
	Conclusions
	Methods
	System architecture
	An ontology for annotation
	Creating a wrapper for programs
	Creating a RDF/XML data store
	Accessing legacy information

	Acknowledgements
	Authors' contributions
	Competing interests
	References

