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Abstract

Background: Nuclear factor kappa B (NF-�B) is a chief nuclear transcription factor that controls the transcription of
various genes; and its activation is tightly controlled by Inhibitor kappa B kinase (IKK). The irregular transcription of
NF-�B has been linked to auto-immune disorders, cancer and other diseases. The IKK complex is composed of
three units, IKKa, IKKb, and the regulatory domain NEMO, of which IKKb is well understood in the canonical
pathway. Therefore, the inhibition of IKKb by drugs forms the molecular basis for anti-inflammatory drug research.

Results: The ligand- and structure-based virtual screening (VS) technique has been applied to identify IKKb
inhibitors from the ChemDiv database with 0.7 million compounds. Initially, a 3D-QSAR pharmacophore model has
been deployed to greatly reduce the database size. Subsequently, recursive partitioning (RP) and docking filters
were used to screen the pharmacophore hits. Finally, 29 compounds were selected for IKKb enzyme inhibition
assay to identify a novel small molecule inhibitor of IKKb protein.

Conclusions: In the present investigation, we have applied various computational models sequentially to virtually
screen the ChemDiv database, and identified a small molecule that has an IC50 value of 20.3μM. This compound is
novel among the known IKKb inhibitors. Further optimization of the hit compound can reveal a more potent anti-
inflammatory agent.

Background
Inhibitor kappa-B kinaseb (IKKb) is a serine-threonine
protein kinase, which is critically involved in the activa-
tion of transcription factor Nuclear Factor kappa B (NF-
�B) in response to various inflammatory stimuli [1].
I�B, an inhibitory unit, is responsible for retaining NF-
�B in the cytoplasm [2], for the degradation of I�B by
phosphorylation, and for ubiquitination to translocate
NF-�B into the nucleolus, leading to transcription initia-
tion [3]. IKKb plays a crucial role in the way of canoni-
cal NF-�B pathway, which phosphorylates I�B protein
and thereby translocates NF-�B into the nucleus and
initiates pro-inflammatory gene transcription. The

canonical NF-�B pathway is well recognized in chronic
inflammatory diseases [4] and inhibition of the IKKb
enzyme by a highly potent inhibitor has remained the
primary goal for anti-inflammatory drug discovery.
The IKK complex comprises two catalytic subunits,

IKKa and IKKb, and a regulatory subunit, IKKg.
Although both the catalytic subunits can catalyze the
phosphorylation of I�Ba, the IKKb subunit seems to
play a dominant role in the canonical pathway. Further-
more, IKKa has a crucial role in mediating p52 activa-
tion through the ‘non-canonical’ pathway [5]. IKKa can
form an alternative complex (without IKKb and IKKg)
and its function is required for the development of the
lymphoid organ and the maturation of B cells [6]. Ter-
mination of the canonical pathway by inhibiting IKKb is
a potential target in anti-inflammatory drug research.
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Recently, the virtual screening (VS) method is playing
an increasingly important role in drug discovery. The
structure-based method involves docking of small mole-
cules and ranking them based on their score. Every
scoring function has its own inherent limitations, and
thus, there is a high chance for reporting false positives.
In order to minimize the risks of using a structure-
based approach, additional filters have been used to
enrich the VS scheme. The application of various com-
putational filters in the VS cascade certainly alleviates
the difficulties encountered during the initial stages of
the drug discovery process. Every model used in the VS
scheme has been meticulously validated by test sets that
are not included in training the models. In general, the
performance of the model is highly dependent on the
choice of the ligand that used to train the model.

Results and discussions
3D-QSAR pharmacophore model
Among the 10 pharmacophore models generated, model
1 was considered to be the best, because it has the low-
est RMSD value (0.89Å) and a high correlation coeffi-
cient (r = 0.93) between the experimental and estimated
activity data of the training set. The difference between

the total and the null hypothesis cost is 40.21. If the dif-
ference is 40-60 bits, then there is a 75-90% chance that
this model can represent a true correlation of the data.
Additionally, the difference between null and fixed costs
is more than 50 and the configuration cost is 16.17,
which is less than the maximum threshold of 17. Cost
analysis has confirmed that the statistical relevance of
pharmacophore 1 being a reliable model in forecasting
the activity precisely. Model 1 has four features, com-
prising an HD, two RA and an HyD (Fig. 1) and has
been rigorously validated by estimating the activity of
136 compounds, whose experimental activity range span
four orders of magnitude. The estimated activity is
found to be fairly good and the correlation value (r)
between the experimental and estimated value is 0.77.
Detailed information about this pharmacophore is
described elsewhere [7].

Recursive partitioning model
The decision tree developed based on the IKKb inhibi-
tors is effective in differentiating between IKKb inhibibi-
tors and non-inhibitors rapidly. Moreover, this model
exhibits a high level of accuracy of 89.8% and 73.8% for
the training and test sets, respectively. Table 1 explains

Figure 1 The Hypogen model composed of two ring aromatic (RAI and RAII), one hydrophobic and one hydrogen bond donor
features.
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the statistical measures that support this model. The
sensitivity of RP models is usually found to be higher
than the specificity, with respect to training and test
sets. Therefore, this model is effective in precisely classi-
fying inhibitors and non-inhibitors. The precision value
can demonstrate the capability of the RP model in pre-
dicting active compounds [8]. The observed Kappa
values of the training set (0.97) and test set (0.77) indi-
cate that the predictivity of the RP model is not by
chance [9]. The Matthews Correlation Coefficient
(MCC) has been used to measure the quality of binary
classifications. The MCC values are 0.8 and 0.4 with
respect to the training and test sets, signify improved
prediction over random classification. Based on the
satisfactory statistics obtained by this model, we have

used the RP model for the virtual screening cascade, in
order to classify active and inactive compounds from
the large database.
Decision tree
The RP model has been characterized by five branches
and eight nodes, and each node contains information on
the classification of either ‘active’ or ‘inactive’ com-
pounds (Fig. 2). The tree is composed of various
descriptors; of these, the chief descriptor belongs to the
electrotopological category. It can encode information
for both the topological environment of an atom and its
electronic interactions with all other atoms in the
molecule.
The S_ssCH2 is the first decisive factor, which stands

for the sum of intrinsic values for the -CH2- atom type

Table 1 Statistical analysis of the RP model

Data set Accuracy a (%) Sensitivity b (%) Specificity c (%) Precision d (%) Kappa e MCC f

Training 89.8 (202/225) 92.2 (95/103) 87.7(107/122) 86.3 0.97 0.8

Test 73.8 (62/84) 77(47/61) 65.2 (15/23) 85.4 0.77 0.4
aAccuracy = (TP + TN)/(TP +TN + FP + FN); bSensitivity = TP/(TP + FN); cSpecificity = TN/(TN + FP); dPrecision = TP/(TP + FP); eKappa = accuracy-E/1-E, where E =
expected agreement = (TN+FN) (TN+FP) (FP+TP) (FN+TP)/(TP+FP+FN+TN)2; fMCC = (TP * TN) - (FP * FN)/√(TP + FN) (TP + FP) (TN+ FP) (TN + FN).

Figure 2 The RP decision tree showing the chief decisive factors, the red nodes representing the active class and the green nodes
representing the inactive class.
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with two single bonds (SP3). The descriptor indicates
that generally active compounds have alkyl groups. The
second descriptive factor is the hydrogen bond acceptor
that represents interaction with the hinge loop. Most of
the active compounds have a minimum of four donor
features, implying that any one of the acceptor features
can have an interaction with the hinge loop donor.
Similarly, on of the other decisive descriptors, the
hydrogen bond (Hbond) acceptor can also explain the
same concept vice versa. The other decisive factors are
CYP2D6 inhibition, area, dipole-mag, Hbond donor, and
S_aaN. An explanation corresponding to each descriptor
is provided in Table 2.

Virtual Screening
By using the above mentioned models, we have been
able to filter the ChemDiv database, that has approxi-
mately 0.7 million compounds (Fig. 3). We have used a
Hypogen pharmacophore model as a primary filter. The
database search retrieved 15,110 hits and the top scoring
5,000 compounds with reasonable fit-values, which are
in the range 7.61-9.17 have been considered for further
filtering. Following the pharmacophore search, the RP
classification model has been applied to 5000 com-
pounds, of which 1806 compounds are classified as
IKKb inhibitors. In the VS cascade, the final filter is
molecular docking. All 1,806 compounds are subjected
to heavy and light constrained docking and as a result, 6
and 358 hit compounds were reported, respectively.
Finally, the top scoring (based on f-scores) 31 com-
pounds from both docking methods have been selected.
Of these, only 29 compounds available from suppliers
were subjected to in vitro screening.

Hit analysis
The IKKb enzyme inhibition screening of 29 compounds
revealed that two compounds have an inhibition effect of
more than 20% at 10μM concentration (Fig. 4). The first
compound, with 42.5% of inhibition, was found to have
an IC50 value at 20.3 μM (Fig. 5). The positive control,
Bayer-5a has been measured to have an IC50 value of
0.17 μM, which is 6.96 fold higher than that reported by
Murata et al. [10] and could be due to differences in

assay conditions. Based on the Bayer-5a screening result,
it is expected that the hit compounds will be more potent
in recombinant human IKKb inhibition assays.
The hit molecule VH01 is based on a pyran moiety

that makes five Hbond interactions at the ATP binding
pocket (Fig. 6a), two Hbonds (Acceptor and donor) with
the hinge region Cys99, and establishes three other
bonds between various functional groups of lead mole-
cules and residues such as Lys44, Gly168 and Asn150
(Fig. 6b). The molecule can be stabilized well in the
pocket and therefore, has a high docking score of
-22.60. The reported hit molecule is specifically derived
from a light constraint method, because heavy con-
straints force the conformation of any molecule to inter-
act with the hinge region. Therefore, the docking score
falls as these compounds can now make ideal interac-
tions with the hinge region; however, they fail to inhibit
IKKb in real time. Hence, we have proposed the light
constraint approach, that can be applied to locate mole-
cules in the deep buried binding pocket as the heavy
constraint method can only produce unrealistic hits.
Moreover, our previously reported screening also sup-
ports the light constraint method [11].
The VH02 compound has a low inhibition effect of

20.6% at 10 μM concentration, due to which it was not
considered further for IC50 calculation. However, simi-
larity searching reveals that the compound has a high
degree of similarity with the imidazoquinoxaline deriva-
tive BMS-345541 (Fig. 7), that can potently inhibit IKKb
(IC50 = 0.3 μM) and has 13-fold selectivity over IKKa.
The chemical similarity between the VH02 and BMS-

34541 provides a basic intuition for the chemical modifi-
cation of this hit compound. The benzaldehyde moiety
of VH02 can be replaced by tiny hydrophobic moieties,
whereas, the phenol moiety can be replaced by pyrrole,
that can maintain the same distance constraint for nitro-
gen as that of the BMS compound, to facilitate hydro-
gen bond formation between the NH group of the
ligand and the receptor.

Conclusion
We have developed a filter-driven scaffold model and
applied it for the virtual screening of IKKb inhibitors.

Table 2 Summary of the descriptors that were found to be useful in decision making in the RP model

Descriptor Illustration

S_ssCH2 Sum descriptor for carbon with two single bonds.

Hbond Acceptor Number of hydrogen bond acceptor

ADMET_CYP2D6_PROB Prediction of CYP2D6 inhibition.

Area Molecular surface area.

Dipole-mag The strength and orientation behaviour of a molecule in an electrostatic field.

Hbond donor Number of hydrogen bond donor

S_aaN Sum descriptor for nitrogen with two aromatic bonds.
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Sequential filtering of the database can reduce the false
positive rate to a large extent at each stage. The first
two models are generated by means of using the known
inhibitor information and the third model is a structure-
based approach. At the initial level of screening, IKKb
inhibitor-like compounds are retained, and allowed to

pass on to the structure-based filter. Docking of several
compounds simultaneously to the IKKb active site
revealed the set of compounds that are stable at the
ATP binding pocket. In general, identification of lead
molecules using a computational modeling approach
often relies on approximation and has limited accuracy.
Therefore, the VS hits have been validated further by
subjecting them to in vitro studies.
The VS approach reported 367 hits; and among these

compounds, only 29 have been selected based on
encouraging scores, diversity, and commercial availabil-
ity for the IKKb inhibition assay. Of the 29 compounds
tested, we have identified one hit (VH01) with IC50 20.3
μM. Despite this inhibition value, this compound is
found to be structurally novel among reported IKKb
inhibitors. There are series of similar compounds
patented by Zhuravel et al. [12], which interestingly,
also seem to exhibit antitumor activity. Hideshima et al.
[13] have previously explained the use of a small mole-
cule inhibitors of IKKb and its role in inhibiting the
haematological cancer, multiple myeloma. Accordingly,
we will focus our attention on the anti-cancer point of
view with the identified hit compound. Further optimi-
zation of VH01 can lead us to discover more potent
compounds that can act as anti-inflammatory as well as
anti-cancer agents, and this work currently underway.
Although the VH02 compound has not been found to
be very potent, its similarity to BMS-345541 has sug-
gested that the screening system could bring out the
core features required to be present in the IKKb inhibi-
tor. Moreover, the VS cascade is not based on serendip-
ity, as it has proven its efficiency in identifying IKKb
inhibitors.

Methods
Pharmacophore model generation
The pharmacophore hypothesis modeling was per-
formed using the Catalyst 4.11 (Accelrys, 9685 Scranton
Road, San Diego, Calif. 92121) package. A total of 159
compounds collected from the literature [4,14-17], was
made into a library. Subsequently, the library was
divided into training and test sets composed of 23 and
136 compounds, respectively. From each scaffold cate-
gory, a few representative compounds were chosen
based on diverse substituents with a wide range of activ-
ity data. The 3D-QSAR pharmacophore model known
as Hypogen was generated based on 23 IKKb inhibitors,
whose activity data ranges from 3 nM ≤ IC50 ≤ 50000
nM. Detailed information about the pharmacophore can
be found elsewhere [7]. The training set compounds
were broadly classified into four groups: those with an
activity range < 100 nM were classified as highly active
(+++); an activity range between > 100 nM to < 1 μM
were defined as active (++); compounds with an activity

Figure 3 Schematic representation of the virtual screening
cascade.
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range of > 1 μM to < 10 μM were defined as moderately
active (+); and, the compounds having an IC50 value >
10 μM were classified as inactive (-). The same grouping
strategy was applied to the test set compounds also.
Excluding the training set compounds, the remaining
compounds were used as an internal test set to measure
the efficiency of the pharmacophore model; no outliers

were removed to achieve unrealistic higher correlation
values. These compounds also covered a wide range of
activity of 4 nM ≤ IC50 ≤ 50000 nM.
For every training set compound, all possible confor-

mers were enumerated and a spreadsheet was prepared
with the corresponding activity data and conformers.
Additional specifications were made to select desired
features, such as hydrogen bond donors, hydrogen bond
acceptors, hydrophobes and aromatic rings. The spread-
sheet was input to the Catalyst program and in a rea-
sonable time-frame, 10 hypotheses were generated. The
best pharmacophore model was selected based on high-
est correlation, lowest RMSD and the most significant
cost values.

Decision tree generation
The RP method of the Cerius2 program was used to
generate a decision tree. RP is a classification structure-
activity relation (CSAR) method that enables rapid clas-
sification of large databases, is non-parametric and
captures nonlinear relationships automatically per-
formed based on the Classification and Regression Trees
(CART) algorithm [18]. The working principle behind
the RP is assembling a set of descriptors, converting
them into a data object to reflect the presence or
absence of useful features, assembling the data objects

Figure 4 The compounds having an inhibition rate > 20% at 10μM and their IC50 values.

Figure 5 TR-FRET analysis of IKKb phosphorylation inhibition
by VH01 and Bayer-5a, a known compound used as a positive
control.
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into vectors and then into a matrix. Finally, the matrix is
divided into two daughter sets, based on the presence/
absence of certain useful features. The process is
repeated until each member of the matrix has been
designated to a terminal node based on the presence/
absence of specified features. The RP model is found to
be sensitive to the descriptors used, and diversity of the
data sets can radically change the property of the deci-
sion tree. The method is applicable to structurally
unique compounds with activity data to uncover sub-
structural rules that govern the biological activity [19].
The RP classification tree is often of great interest to
visualize the distribution of potencies at the node and to
see how a split at a node divides the potencies at two
daughter nodes. This method has been repeatedly used
by researchers of bioinformatics and chemoinformatics,
either to classify genes or to differentiate active and
inactive compounds [20-23]. However, the limitation of
the RP method is its inability to extrapolate beyond the
range of observed responses. The main objective of
incorporating the RP method in the virtual screening
process is to rapidly classify unknown compounds based

on a small number of readily interpretable descriptors;
therefore, for screening compounds.
The recursive partition decision tree model was con-

structed using a QSAR module of Cerius2 version
4.10.17[24]. The splits were scored using the Gini
Impurity scoring function, which minimizes the impur-
ity of the nodes resulting from the split. The tree was
set to prune backward through a moderate pruning pro-
cess, to avoid over splitting. Every node should contain
1% of the samples to qualify for further splits. The knot
value was limited to a threshold of 20 per variable and
maximum tree depth was set to 10. The best RP tree
was generated with these parameters.

Training and test sets of the RP model
A total of 225 compounds collected from the literature
[10,15,16,25-29] were classified into two categories: the
active class (0), which includes the compounds having
an activity range below or equal to 500 nM; and the
inactive class (1), which covers the activity range of
more than 500 nM in the IKKb enzyme inhibition assay.
Two-dimensional and three-dimensional descriptors of

Figure 6 (a) Surface view of the ATP binding site and the docked conformation of the hit compound. (b) 2 D representation of the
hydrogen bond formed between hit compound and the adjacent residues.

Figure 7 Similarity between the BMS compound and the VH02 compound, the pink regions depicting the core scaffold similarity.
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Cerius2 were used for the RP tree generation. The
descriptors were optimized by means of removing those
with constant values and 95% of the zero values, while
some of the descriptors were deleted on the basis of the
correlation threshold > = 0.9. Totally, 37 descriptors
were retained in the RP study that comprised 31 two-
dimensional and 6 three-dimensional descriptors (Table
3). In the RP study, we defined the activity class (0 or 1)
column as a dependent variable (Y) and the descriptors
used as independent variables (X).
A total of 84 compounds were used as an external test

set compounds, collected from a different set of pub-
lished articles, with none of the compounds or similar
scaffolds included in the training set. External test set
compounds have been reported by two groups [4,30].
The first set of compounds are derivatives of the imida-
zothienopyrazine core [30], with a series of compounds
having imidazoquinoxaline [15] synthesized by same
group included in training the model. Another set of
compounds reported by Chiristoper et al. [4], was
synthesized based on the benzimidazole core to specifi-
cally inhibit IKKμ, but instead inhibited IKKb. The
external test sets were combined to serve as an indepen-
dent test set to asses the generality of the model.
Dependent and independent variables were calculated as
explained before.

Docking procedure
The third filter used in the VS scheme was molecular
docking. To date, there is no crystal structure reported
for IKKb. Hence, we modeled the protein based on four
other closely related kinase proteins, based on the proce-
dure of homology modeling detailed elsewhere [11]. The
templates (Table 4) are human calmodulin-dependent
protein kinase (PDB: 2JC6), rat calmodulin-dependent

protein kinase (PDB: 1A06), kinase and ubiquitin-asso-
ciated domains of MARK3/Par-1 (PDB: 2QNJ) and
Proetin kinase A-fivefold mutant model of Rho-kinase.
The FlexX docking program [31] was employed in the

structure-based VS. Prior to docking, hydrogen atoms
were added to the protein, and it was minimized using
the steepest descent algorithm for about 500 steps. The
amino acids Phe26, Val29, Ala42, Lys44, Met65, Val74,
Ala76, Glu97, Tyr98, Cys99, Lys106, Val152, and Gly168
and the surrounding residues within the distance range
of 6.5 Å were defined as active site. FlexX uses an incre-
mental construction algorithm to place flexible ligands
into a fully specified active site, while its empirical scor-
ing function estimates the binding free energy based on
physicochemical properties. The FlexX-Pharm [32] mod-
ule was used to define the constraints and direct the
FlexX docking of several compounds into the specified
active site simultaneously. FlexX-Pharm ensures that an
interaction is formed between the specified interacting
group in the active site and the ligand in a valid docking
solution. There are many research groups, who have
successfully employed constraints in structure-based VS
to increase the enrichment factor [33-36] of active com-
pounds. As we know, most of the ATP competing
kinase protein inhibitors make two or three hydrogen
bonding interactions with the hinge region [37-39].
Hence, we applied hydrogen bonding as constraints to
select compounds that can possibly make hinge interac-
tions. In the docking simulation, two different sets of
constraints were applied; namely, ‘heavy’ and ‘light’. The
heavy constraint method is very strict in choosing com-
pounds. According to this method, compounds forming
three hydrogen bonds with the hinge region (Acceptor
(Glu97)-Donor (Cys99)-Acceptor (Cys99)) were alone
reported as hits. In the light constraint method, the

Table 3 Molecular descriptors used for recursive partition model development

Descriptor class Descriptors

Structural 2D MW, Rotlbonds, Hbond acceptor, Hbond Donor

Electrotopological (E-state
key)

2D S_sCH3, S_ssCH2, S_aaCH, S_sssCH, S_tsC, S_dssC, S_aasC, S_sNH2, S_ssNH, S_tN, S_aaN, S_sssN, S_sOH,
S_dO, S_ssO, S_sBr

Electronic 2D/3D Apol, Dipole-mag

Spatial 3D RadOfGyration, Area, Vm, Density, PMI

Thermodynamic 2D AlogP98, logP, Molref, Fh2O, Foct

ADME 2D ADMET_Abos, ADMET_Solu, ADMET_Hepatox, ADMET_CYP2D6, ADMET_PPB

Table 4 The templates used to model IKKb protein

PDB Identity Protein function Resolution in Å

2JC6 31% Crystal Structure of Human Calmodulin-dependent protein kinase 1 D. 2.30

1A06 29% Calmodulin-dependent protein kinase from rat. 2.50

2QNJ 32% Kinase and Ubiquitin-associated domains of MARK3/Par-1 2.70

2GNG 29% Protein kinase A - fivefold mutant model of Rho-kinase 1.87
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middle donor interaction is essential and at least one
acceptor hydrogen bonding interaction is essential. A
maximum of 30 conformers were retained for each
compound, passing the constraints criteria. In our pre-
vious work [40], we demonstrated that the f-scoring
function was good enough to discriminate IKKb inhibi-
tors from decoys and so, the same scoring function has
been applied in this VS scheme.

In vitro analysis: IKKb enzyme inhibition assay
IKKb-TR-FRET reactions for the search of IKKb inhibi-
tors were carried out based upon the suggestions of the
IMAP-TR-FRET system (MDS Analytical Technologies,
Sunnyvale, Calif., USA). IKKb kinase reactions were per-
formed in a reaction buffer (10 mM Tris-HCl, pH 7.2,
10 mM MgCl2, 0.05% NaN3), containing 1 mM DTT
and 0.01% Tween-20 (Sigma-Aldrich Co., St. Louis, Mo.,
USA) to help stabilize the enzyme. The reactions were
done at room temperature for 2 h in white standard 384
plates (3572, Corning Life Sciences, Lowell, Mass.,
USA), using 0.5 μg/ml IKKb (Millipore Co., Billerica,
Mass., USA), 1 μM IKBa-derived substrate (5FAM-
GRHDSGLDSMK-NH2; R7574, MDS Analytical Tech-
nologies), and 3 μM ATP (Sigma-Aldrich Co.) unless
otherwise noted. The total reaction volumes were 20 μl
and 10 μM, and compounds were preincubated with the
IKKb enzyme for 10 min before the substrate and ATP
were added. For the TR-FRET reaction, 60 μl of the
detection mixture (1:600 dilution of IMAP binding
reagent and 1:400 dilution of Terbium donor supplied
by MDS Analytical Technologies) were added 15 h
before reading the plate. The energy transfer signal was
measured in a multilabel counter with a TR-FRET
option (Victor II, PerkinElmer Oy, Turku, Finland). The
counter setting was 340 nm excitation, 100 μs delay,
and dual-emission collection for 200 μs at 495 and 520
nm. The energy transfer signal data were used to calcu-
late the percentage inhibition and IC50 values. To moni-
tor the assay system and to compare the hit
compounds, Bayer compound[10] (Bayer -5a) was used
as a positive control.
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