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Abstract

Background: The rational design of modified proteins with controlled stability is of extreme importance in a
whole range of applications, notably in the biotechnological and environmental areas, where proteins are used for
their catalytic or other functional activities. Future breakthroughs in medical research may also be expected from
an improved understanding of the effect of naturally occurring disease-causing mutations on the molecular level.

Results: PoPMuSiC-2.1 is a web server that predicts the thermodynamic stability changes caused by single site
mutations in proteins, using a linear combination of statistical potentials whose coefficients depend on the solvent
accessibility of the mutated residue. PoPMuSiC presents good prediction performances (correlation coefficient of
0.8 between predicted and measured stability changes, in cross validation, after exclusion of 10% outliers). It is
moreover very fast, allowing the prediction of the stability changes resulting from all possible mutations in a
medium size protein in less than a minute. This unique functionality is user-friendly implemented in PoPMuSiC and
is particularly easy to exploit. Another new functionality of our server concerns the estimation of the optimality of
each amino acid in the sequence, with respect to the stability of the structure. It may be used to detect structural
weaknesses, i.e. clusters of non-optimal residues, which represent particularly interesting sites for introducing
targeted mutations. This sequence optimality data is also expected to have significant implications in the
prediction and the analysis of particular structural or functional protein regions. To illustrate the interest of this new
functionality, we apply it to a dataset of known catalytic sites, and show that a much larger than average
concentration of structural weaknesses is detected, quantifying how these sites have been optimized for function
rather than stability.

Conclusion: The freely available PoPMuSiC-2.1 web server is highly useful for identifying very rapidly a list of
possibly relevant mutations with the desired stability properties, on which subsequent experimental studies can be
focused. It can also be used to detect sequence regions corresponding to structural weaknesses, which could be
functionally important or structurally delicate regions, with obvious applications in rational protein design.

Background
The availability of computational tools yielding reason-
ably accurate estimations of the impact of amino acid
substitutions on the stability of proteins is of crucial
importance in a wide range of applications. In particular,
such tools have the potential to stimulate and support
protein engineering and design projects dedicated to the
creation of modified proteins that remain active in non-
physiological conditions, or that present enhanced

functional properties [1,2]. On the other hand, advances
in the ability to predict and rationalize the functional
effect of naturally occurring amino acid variants and
their relationship to disease will have tremendous impli-
cations in medicine. Indeed, they can be expected to
lead to significant improvements in the understanding
of the mechanisms of various diseases, to the develop-
ment of enhanced diagnostics, new therapeutic
approaches, and more personalized treatment options
[3,4]. Although approaches based on multiple sequence
alignments remain predominant in this context, predic-
tions of stability changes upon mutation have been
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recognized as a relevant input in the identification of
deleterious and disease-causing mutations [4-7]. On a
more fundamental level, the analysis of the predicted
distributions of stabilizing or destabilizing mutations in
sets of natural or engineered proteins may be extremely
valuable to refine our understanding of the relationships
between protein sequence, structure, and function
[8-11], or to probe the evolutionary dynamics of protein
sequences [11-14].
Over the last decade, several methods have been

developed to predict the effects of mutations on the sta-
bility of proteins. Many of these methods rely primarily
on an energy function describing the interactions
between residues, within a simplified structural repre-
sentation. We may distinguish the approaches based on
statistical potentials extracted from datasets of protein
structures [15-19], from those based on empirical poten-
tials built from optimised combinations of various physi-
cal energy terms [20-23]. Several predictors were set up
with the help of machine learning technologies, through
the establishment of an empirical relationship between
the stability change upon mutation and a large number
of sequence and/or structural features of the mutated
and mutant amino acids [24-27]. More recently,
approaches combining the advantages of statistical
energy functions and machine learning tools have also
been described [28,29].
Three recent studies independently assessed and com-

pared the performances of several of those predictors,
using datasets of experimentally characterized mutants
that had not been used to train any of the predictive
models [22,29,30]. Overall, the conclusions were mixed:
all methods show a correct trend in the predictions, but
the accuracies often remain moderate. PoPMuSiC was
however shown to be a standout and to perform quite
well in comparison with several other methods [29]. It
should be considered that most of these methods are
extremely fast with respect to more detailed approaches,
such as free energy perturbation [31] or thermodynamic
integration [32]. In particular, PoPMuSiC allows the
estimation of the stability changes resulting from all
possible point mutations in an average-sized protein in
a matter of seconds.
This advantage was exploited to predict the stability

changes induced by all possible point mutations in sev-
eral globular proteins [10], using the FoldX algorithm
[20]. The results were in good agreement with previous
experimental studies, in that a large majority of muta-
tions appear to have a destabilizing effect on protein
structures. Moreover, the overall distributions of pre-
dicted stability changes were shown to be very similar in
different globular proteins. However, it has to be
stressed that although this trend holds true - on average

- for whole proteins, some local regions may present a
different behavior. For example, residues belonging to
the active site of a protein have been selected during
evolution so as to ensure proper functioning, and are
thus generally less optimal with respect to stability
[33,34]. Specific protein regions associated with peculiar
patterns of stability changes upon mutation correspond-
ing to structural weaknesses were also suggested, using
the PoPMuSiC algorithm, to be involved in the occur-
rence of conformational changes, such as 3D domain
swapping [35] or amyloid fibril formation [15]; the latter
structural weaknesses were supported by experimental
analyses [36].
We present here the PoPMuSiC-2.1 web server, which

allows fast and accurate predictions of the stability
changes resulting from point mutations in globular pro-
teins. Besides its top-level performances, our server also
distinguishes itself from other available tools by an
important advantage in terms of computational speed,
and by the ability to perform a systematic scan of all
possible mutations in a protein. A new functionality of
the current PoPMuSiC web server is that it gives the
opportunity to obtain easily an estimation of the optim-
ality of each residue in a protein’s sequence, with
respect to the stability of its structure. To illustrate the
general interest of this unique feature, we performed a
large-scale investigation of the optimality of residues
involved in catalytic sites, and discuss the possibility of
using such data to improve methods aiming at predict-
ing functional sites in proteins.

Implementation
Prediction of protein stability changes upon mutations
The stability change resulting from a given point muta-
tion in a protein is computed on the basis of the struc-
ture of the wild-type protein and a set of energy
functions, which are used to estimate the folding free
energy change upon mutation of a residue sw into sm,
noted ΔΔGP(sw, sm). More precisely, ΔΔGP is expressed
as a linear combination of 13 statistical potentials
(ΔΔWi, i = 1, 13), two terms that depend on the volume
of the wild-type and mutant amino acids (ΔV±), and an
independent term:

��GP =
13∑
i=1

αi(A)��Wi + α14(A)�V+ + α15(A)�V− + α16(A). (1)

The coefficients ai depend on the solvent accessibility
A of the wild-type amino acid sw. The potentials ΔWi

are derived from a dataset of known protein structures
and describe the correlations between various sequence
or structure descriptors of the same amino acids or of
neighboring ones, according to the previously described
formalism [37]. The descriptors considered are, for each
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residue: the amino acid type s, the torsion angles defin-
ing the backbone conformation t and the solvent acces-
sibility a, and, for each pair of residues: the spatial
distance between the average geometric centers of their
side chains d. The 13 potentials ΔWi are denoted in
terms of these descriptors as ΔWst, ΔWas, ΔWsd, ΔWsds,
ΔWstt, ΔWsst, ΔWaas, ΔWass, ΔWast, ΔWasd, ΔWstd, ΔWas-

das, ΔWstdst. The terms of the type ΔWvw and ΔWvwx are
defined as:

�Wvw = −kT ln
(

P(v,w)
P(v)P(w)

)
; �Wvwx = −kT ln

(
P(v,w, x) P(v)P(w)P(x)
P(v,w)P(w, x)P(x, v)

)
, (2)

where v, w, x are any of the descriptors s, t, a and d, k is
the Boltzmann constant and T the absolute temperature.
The terms ΔWasdas and ΔWstdst are defined in a similar
way [37]. Higher order coupling terms are not taken into
account, since they were shown to yield no improvement
in the prediction of stability changes upon mutation [29].
In addition to the statistical potentials, two terms in eq.
(1), i.e. ΔV±, are related to the volume difference between
the mutant and wild-type amino acid: ΔV = Vm-Vw. They
are defined as ΔV± = ΔV H(± ΔV), where the H is the
Heaviside function. They provide a coarse description of
the impact of creating of a cavity (if ΔV<0) or accommo-
dating a larger side-chain within the protein structure (if
ΔV>0). Statistical potentials cannot be expected to
describe correctly such effects, since they are derived
from a dataset of native structures of wild-type proteins,
with very few packing defects.
The weighting coefficients ai(A) (i = 1, 16) were cho-

sen to be sigmoid functions of the solvent accessibility
(A) of the mutated residue:

αi(A) = fi
1

1 + e−ri(A−ci)
+ bi, (3)

where ci is the inflection point of sigmoid i, ri its
slope, fi its scaling factor and bi its vertical shift. The
reason for this choice is that it enables the description
of a smooth transition between two different environ-
ments: the protein core and the protein surface. Indeed,
it was shown previously that the relative weights of the
different types of interactions vary according to whether
they concern residues at the surface or in the core [38].
Our predictive model thus includes 64 different para-

meters (16 cj, 16 rj, 16 fi, and 16 bi). The values of these
parameters were estimated with the help of a neural
network model minimizing the mean square error (s)
on the ΔΔG predictions for a dataset of N experimen-
tally characterized protein mutants [29]:

σ =

√√√√ 1
N

N∑
m=1

(��GM,m − ��GP,m)
2, (4)

where ΔΔGM, m is the experimentally measured fold-
ing free energy change of mutant m and ΔΔGP, m its
predicted value, obtained with eqs. (1)-(3). An iterative
parameter reduction procedure was devised to eliminate
the parameters that present a large uncertainty, which
reduced their number from 64 to 52 [29].
The dataset used to train and validate the model con-

tains 2648 different single-site mutations, in 131 pro-
teins of known structure, whose impact on the folding
free energy of the protein has been experimentally
determined [29]. The data was originally extracted from
the the ProTherm database [39], and thoroughly
checked to correct or eliminate erroneous inputs. Muta-
tions introduced in heme proteins or in pseudo-wild
type constructs were not considered. Mutations that
involve a proline or destabilize the structure by more
than 5 kcal/mol were also rejected, since they are likely
to induce structural modifications that are not taken
into account by PoPMuSiC. The distribution of the
measured changes in folding free energy caused by the
mutations that are present in our dataset is given in Fig-
ure 1, and is very similar to previously published and
discussed distributions of free energy changes upon
mutations [10].

Estimation of protein sequence optimality
PoPMuSiC is fast enough to estimate within seconds the
stability changes resulting from all possible mutations in
an average-sized protein. It is therefore possible to esti-
mate how robust the structure of a given protein is
against mutations in its sequence. It is also possible to
identify positions that are particularly poorly optimized
with respect to protein stability, i.e. positions for which
the predictions suggest that several possible mutations

Figure 1 Distribution of the measured values of ΔΔG in the
dataset of 2648 mutants used to train and validate PoPMuSiC.
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would improve stability. The ability to identify such
positions in a protein sequence may be of substantial
interest. Indeed, they obviously constitute attractive tar-
gets for protein engineering applications. They may also
be involved in the mechanisms of protein function [33],
the occurrence of structural switches or the develop-
ment of conformational diseases [15,35].
For each position i in the sequence of a protein, we

define a score Γi that quantifies the degree of non-
optimality of the amino acid at this position, with
respect to the overall stability of the protein:

�i =
19∑
m=1

��GP,wi→m H(−��GP,wi→m), (5)

where H is the Heaviside function, m is one of the 19
possibilities of mutation of the amino acid w in position
i, and ΔΔGP,wi®m is the corresponding predicted stabi-
lity change. The score Γ is thus the sum of the predicted
stability changes of all stabilizing mutations at a given
position in the sequence. Since the large majority of
mutations have a destabilizing effect on the protein, Γ
can be expected to be close to zero for many positions
in the sequence. In contrast, very negative values of Γ
point out particularly interesting positions, where some
mutations are strongly stabilizing and/or many muta-
tions mildly stabilizing.

Web interface
PoPMuSiC is called by a user-friendly PHP/MySQL web
interface. Since the predictions of PoPMuSiC are based
on the structure of the target protein, all queries require
a structure file to be specified. The user may either pro-
vide the 4-letter code of the Protein DataBank (PDB)
structure, which will then be automatically retrieved
from the PDB server [40], upload his own structure file,
or select a previously uploaded file. The user may
choose to provide a structure file generated by a model-
ing approach, as long as it complies with the PDB for-
mat. Note, however, that the performances of
PoPMuSiC were evaluated on the basis of experimen-
tally resolved protein structures and are likely to be
lower for modeled structures. Obviously, the accuracy of
the predictions will depend on the quality of the model.
Three types of queries may be performed:

• The “Single” query allows the prediction of the sta-
bility change resulting from one given mutation, spe-
cified by the user, in the protein of interest.
• The “File” query allows the stability change predic-
tion of a list of single-site mutations in a protein of
interest. A (plain text) file containing the list of
mutations must be uploaded. The server will output

a (plain text) file containing the predicted stability
change resulting from each mutation.
• The “Systematic” query allows the prediction of the
stability changes resulting from all possible single-
site mutations in the protein of interest. The server
will output a (plain text) file containing the pre-
dicted stability change resulting from each mutation.
The user may choose how the results will be
ordered: either sequentially or on the basis of the
value of the predicted ΔΔGPs.

The sequence optimality scores (Γ) are automatically
computed for each “Systematic” query. A second plain
text file, containing the Γ-values for each position in the
sequence is then given as output. In addition, an inter-
active figure is created, which allows the user to view
the distribution of Γ-values along the sequence, and to
easily identify the individual contribution of each muta-
tion (Figure 2A).

Results and Discussion
Comparison of predicted and measured stability changes
The performances of PoPMuSiC in predicting the
changes in folding free energy resulting from single-site
mutations were evaluated using a 5-fold cross validation
procedure [29]. In a first step, the values of the para-
meters of the ai(A) functions (eq. (3)) were identified so
as to minimize the root mean square error between pre-
dicted and measured ΔΔG values (eq. (4)) on a learning
set containing 4/5 of the whole dataset of 2648 mutants,
chosen at random. In a second step, these parameter
values were applied to predict the ΔΔGP values for the
test set containing the remaining 1/5 of the dataset. Five
different runs were performed, so that every 1/5 of the
dataset was considered once as test set and that each
mutant was included once in a test set. A graphical
comparison of the measured values of ΔΔG with those
predicted during one of these five runs is given in Figure
3, for both the training and the validation set. The Pear-
son correlation coefficient R and the root mean square
error s (eq. (4)) between measured and predicted stabi-
lity changes, in the training and validation sets, are
reported in Table 1 for each of these five runs. The
results from direct validation, where the parameters
were identified and the predictions performed on the
learning set containing the same 4/5 of the data, are
also given for sake of comparison.
As expected, the performances are slightly better in

direct validation (on the training set) than in cross vali-
dation (on the validation set), but the differences are
quite small, indicating the absence of overfitting. On
average, the correlation coefficient Rc between predicted
and measured ΔΔG values is 0.62, and the root mean
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Figure 2 Sequence optimality in the active site of the PRAI-IGPS enzyme. A. Sample output of the PoPMuSiC-2.1 web server, corresponding
to residues 41-120 of the bifunctional enzyme PRAI:IGPS from E. Coli (PDB code: 1PIIpdb1PII). The sequence optimality score Γ is plotted as a
function of the position in the sequence. The elements of secondary structure are distinguished by the associated colour: helices in red, strands
in blue, and coils in green. B. Schematic representation of the PRAI:IGPS enzyme. The residues identified by PoPMuSiC as being non-optimal with
respect to the stability (Γ ≤ -5 kcal/mol) are highlighted in red (helix), blue (beta strand), or green (coil region). The residues recorded as catalytic
residues in the Catalytic Site Atlas are represented as spheres, while those identified by PoPMuSiC but not recorded in the Catalytic Site Atlas are
represented as sticks. Catalytic residues that are not identified by PoPMuSiC are colored in magenta.
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square error sc is 1.16 kcal/mol. These measures of per-
formance indicate a strong improvement over the ran-
dom predictor, which uses randomly shuffled ΔΔGM

values as predicted ΔΔGP values, and yields on average
a root mean square error of 2.08 kcal/mol (Table 1).
Setting all ΔΔGP values equal to the average of the
ΔΔGM values generates a root mean square error of
1.47 kcal/mol (Table 1), and is thus more efficient than
the random predictor, but still far from reaching the
performances of PoPMuSiC. The predictive power of
PoPMuSiC was also shown to surpass that of five pre-
viously published prediction tools, on an independent
dataset of 350 mutations. Indeed, these five methods
yielded a value of Rc comprised between 0.29 and 0.48,
as compared to 0.67 for PoPMuSiC, and a root mean
square error sc comprised between 1.43 and 4.12 kcal/

mol, as compared to 1.16 kcal/mol for PoPMuSiC [29].
A recently published prediction method, PEAT-SA, was
also benchmarked using the same dataset of 350 muta-
tions: a Rc value of 0.5 and a root mean square error of
1.92 kcal/mol were reported [23].
The values of R and s after removal of the 10% most

badly predicted mutations are also reported in Table 1.
These values provide relevant complementary informa-
tion to the performance indicators computed on the
whole dataset, since a number of poorly predicted muta-
tions may be related to experimental measurements
made in specific, non-physiological, conditions or
affected by a significant error, to a poorly resolved struc-
ture, to mistakes in the database indexing of the mea-
sured ΔΔG value, or to structural modifications that are
not taken into account by PoPMuSiC.
The last row of Table 1 corresponds to a second

round of parameter identification, performed after
removal from the training sets of all mutants for which
|ΔΔGP−ΔΔGM| is larger than 1.5 kcal/mol in each of
the five initial runs. The validation sets are left
unchanged, in order to obtain comparable results. This
induces a slight improvement of the performances in
cross-validation, indicating that the presence of outliers
in the training set had a negative impact on the identifi-
cation of the model.
It is also interesting to know whether the precision of

the predictions depends on the actual value of the free
energy change. On average, PoPMuSiC performs better
on mutations that fall in the most populated range of
ΔΔGM values, i.e. -0.5 kcal/mol < ΔΔGM < 2.0 kcal/mol
(Figure 4). As could be expected, the error is higher on
mutations with an uncommonly strong stabilizing
(ΔΔGM < -2.0 kcal/mol) or destabilizing (ΔΔGM > 4.0
kcal/mol) effect. However, it is important to notice that,
from the point of view of the user, it is the predicted
value of the free energy change (ΔΔGP) that matters. As

Figure 3 The predicted stability changes (ΔΔGP) are plotted
against the corresponding measured values (ΔΔGM) for the
2648 mutants of our dataset, after one of the 5 runs of cross-
validation. Mutations belonging to the training set are depicted in
black (o), while mutations belonging to the validation set are
depicted in red (+).

Table 1 Performances in 5-fold validation

All mutants Exclusion of 10% outliers

Rd/Rc
a sd/sc (kcal/mol)b Rd/Rc

a sd/sc (kcal/mol)b

ΔΔGP = <ΔΔGM > - 1.47 - 1.10

Random predictorc 0.00 (0.02) 2.08 (0.02) 0.22 (0.02) 1.60 (0.02)

Run 1 0.64/0.62 1.13/1.16 0.79/0.78 0.86/0.89

Run 2 0.63/0.64 1.15/1.08 0.79/0.78 0.87/0.85

Run 3 0.65/0.59 1.11/1.20 0.80/0.78 0.85/0.88

Run 4 0.64/0.61 1.12/1.18 0.80/0.77 0.85/0.88

Run 5 0.64/0.63 1.13/1.15 0.79/0.78 0.85/0.89

Average 1d 0.64/0.62 1.13/1.16 0.79/0.78 0.85/0.88

Average 2d, e -/0.63 -/1.15 -/0.79 -/0.86
a Correlation coefficient between predicted and measured ΔΔG’s, in the training (Rd) and validation (Rc) set.

b root mean square error between predicted and
measured ΔΔG’s, in the training (Rd) and validation (Rc) set.

e The random predictor is obtained by using a randomly shuffled set of ΔΔGM values as predicted
ΔΔG values. The average (standard deviation) values of R and s over 1000 runs are given. d Average values of R and s, over the five different runs. e Badly
modeled mutants are removed from the training sets before parameter identification, but they are maintained in the validation sets.
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can bee seen on Figure 4, the error on the predictions
does not show any clear dependency with respect to
ΔΔGP.
A frequent objective of protein engineering studies is

the increase of the structural stability of a protein, via
the introduction of mutations in its sequence. For such
applications, PoPMuSiC can be used to identify a small
subset of mutations that are likely to present the desired
properties, and can be tested experimentally. An impor-
tant indicator of the performances would then be the
proportion of mutations in this subset that actually sta-
bilize the structure, which is related to the specificity of
the predictions with respect to stabilizing mutations. In
this regard, PoPMuSiC appears as a very reliable predic-
tion tool. Indeed, in cross-validation, 70% of the

mutations predicted as mildly stabilizing (ΔΔGP < -0.5
kcal/mol), and 86% of the mutations predicted as
strongly stabilizing (ΔΔGP < -1.0 kcal/mol), are actually
stabilizing (ΔΔGM < 0.0 kcal/mol).
The good performances of PoPMuSiC were made pos-

sible by using a combination of statistical potentials,
whose relative weights were optimized via a simple
neural network. The total number of adjusted parameters
is 52, which remains very reasonable with respect to the
size of the training/validation dataset (2648 non-redun-
dant entries), and with respect to other prediction meth-
ods based on machine learning techniques [24-28]. Our
model also clearly distinguishes itself from a pure black
box, as the overall shapes of the optimized weighting
functions were shown to exhibit little dependence on the
training set, and possess biophysical significance [29].

Speed of the computations
In addition to its high level of performances, and in par-
ticular its good specificity to stabilizing mutations, the
ability of the PoPMuSiC-2.1 server to rapidly process all
possible mutations in a protein is a very significant prac-
tical advantage over competing algorithms. Indeed, as
shown in Table 2, PoPMuSiC is currently the only pre-
diction tool that allows a systematic scan of all possible
mutations via a single, simple, web-based query.
Furthermore, the overall speed of the predictions is one
to several orders of magnitude larger than that of other
web servers. These unique features make PoPMuSiC-2.1
an instrument of choice for obtaining support and gui-
dance in the design of protein engineering experiments.

Case study: sequence optimality scores in catalytic sites
To illustrate the relevance and usefulness of the
sequence optimality scores Γ computed by PoPMuSiC-
2.1, we investigated the relationship between the invol-
vement of residues in protein function and their

Figure 4 The root mean square error between predicted and
measured ΔΔG values in the validation sets (sc) is given as a
function of ΔΔGP (continuous line) and ΔΔGM (dashed line). The
dataset of mutations was divided in non-overlapping subsets
corresponding to intervals of ΔΔGP (or ΔΔGM) of 0.25 kcal/mol width,
and sc was computed on each subset separately using eq. 4.
Subsets containing less than 10 mutations were dismissed.

Table 2 Comparison of the practical features of different web servers

Maximal number of mutations per querya Number of mutations processed per minuted

1ag2
(N = 103)

3mbp
(N = 370)

1gog
(N = 689)

PoPMuSiC-2.1 19 × N b 6700 9000 4300

AutoMute [28] 19 × 5 13 4 1

CUPSAT [18] 19 600 600 600

D-mutant [17] 19 50 14 8

Eris [21] 1 < 0.1 < 0.1 < 0.1

I-mutant2.0 [24] 19c 8 7 6

Hunter [22] 1 0.4 0.3 0.2

PEAT-SA [23] N b 40 44 41
a N is the number of residues in the target protein. b These web servers also allow the submission of a mutation list. c This program is also available for
download, which allows the creation of scripts for batch computations. d Each presented value was obtained after averaging over three queries submitted to the
corresponding web server. Obviously, the speed of the computations may depend on the load of the server at the time of the query. The presented values
should therefore not be viewed as anything more than rough estimations.
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nonoptimality with respect to protein stability. More
precisely, we computed the Γ-score for each residue in a
dataset of proteins whose catalytic sites have been
experimentally identified and reported in the literature.
Our analysis is based on version 2.2.10 of the Catalytic
Site Atlas [41]. We selected only the “original” entries, i.
e. proteins for which evidence of the location of the cat-
alytic site comes directly from literature references, and
excluded the “homologous” entries found by sequence
alignment to one of the original entries. The resulting
dataset contains 964 proteins, with 3227 catalytic resi-
dues and approximately 3.7 105 other residues.
Table 3 shows that the proportion of catalytic residues

for which the computed optimality score Γ is lower than
a given threshold is consistently much larger than the
corresponding proportion for all other residues. In addi-
tion, the distinction between the catalytic residues and
the others is more pronounced when a more stringent
threshold value is chosen: e.g. with a threshold value of
-1 kcal/mol, the proportion of nonoptimal residues is
about two times larger in catalytic sites (28% versus
15%), whereas it is about four times larger with a
threshold value of -5 kcal/mol (9% versus 2%).
We also investigated the relationship between solvent

accessibility and sequence optimality. For that purpose,
the residues were distributed in two classes (Core and
Surface) according to whether their relative solvent
accessibility, computed with NACCESS [42], is smaller
or larger than 10%. Table 3 indicates that the overall
proportion of nonoptimal catalytic residues is larger in
the core than on the surface of proteins (53% versus
48%, for Γ < 0 kcal/mol), and that this difference gets
more striking when lower threshold values are consid-
ered (e.g. 14% versus 3%, for Γ < -5 kcal/mol). These
results denote a stronger trade-off between stability and
function in the core of proteins: selecting residue types
at specific positions along the sequence to ensure proper
functioning is on average more detrimental to protein

stability when these residues have a low solvent accessi-
bility. This can be related to the fact that many catalytic
residues are charged and/or polar, and thus more likely
to have a destabilizing impact when buried in the pro-
tein core.
In contrast, in the case of residues that are not

involved in catalytic sites, the overall proportion of non-
optimal residues is quite larger on the surface than in
the core (46% versus 27% for Γ<0 kcal/mol). It is how-
ever interesting to notice that this trend is inverted
when threshold values of Γ lower than -2 kcal/mol are
considered. These results are in good agreement with
previously published studies, which reported that muta-
tions of core residues are more likely to be detrimental
to protein stability, while the distribution of stability
changes induced by mutations on the surface is quite
narrow, with very few highly (de)stabilizing effects [10].
It may also be related to the fact that surface residues
have more often nonoptimal conformations because of
crystal constraints or interaction with ligands.
Figure 2A is an example of the results obtained with

PoPMuSiC on the bifunctional enzyme phosphoribulo-
seanthranilate isomerase:indoleglycerolphosphate
synthase (PRAI:IGPS) from E. Coli (PDB code 1PII)
[43]. According to the Catalytic Site Atlas, the residues
of the N-terminal domain (residues 1-255) involved in
the IGPS catalytic activity are Glu53, Lys55, Lys114,
Glu163, Asn184, and Ser215. With a threshold value of
-5 kcal/mol on the Γ-score, PoPMuSiC identifies only
nine non-optimal residues in this domain, including
four of the six catalytic residues. Interestingly, among
the five other residues that present a Γ-value lower than
-5 kcal/mol, four are located in the same cavity, in close
contact with the catalytic residues (Figure 2B). They
hold thus probably some importance with respect to the
affinity or the specificity of the interaction with the
ligand. In the C-terminal domain (residues 256-452)
that catalyses the PRAI reaction, PoPMuSiC identifies

Table 3 Γ optimality score for catalytic versus noncatalytic residues

Γ threshold
(kcal/mol)

Catalytic residuesa Other residuesa

All
(N = 3227)

Core
(N = 1784)

Surface
(N = 1443)

All
(N = 3.7 105)

Core
(N = 1.6 105)

Surface
(N = 2.1 105)

Γ < 0.0 50.7% 52.6% 48.4% 38.2% 27.3% 46.3%

Γ < -0.25 39.4% 43.5% 34.4% 26.9% 21.1% 31.2%

Γ < -0.5 33.6% 38.5% 27.6% 21.3% 18.2% 23.7%

Γ < -1.0 27.7% 33.5% 20.7% 15.0% 14.4% 15.6%

Γ < -2.0 20.1% 26.3% 12.7% 8.8% 9.9% 8.1%

Γ < -3.0 15.1% 21.1% 7.8% 5.5% 7.1% 4.5%

Γ < -5.0 9.2% 14.0% 3.4% 2.4% 3.9% 1.5%

Γ < -7.5 5.1% 8.2% 1.4% 0.9% 1.9% 0.4%

Γ < -10.0 2.5% 4.4% 0.4% 0.4% 1.0% 0.1%
a For each subset of our database, the fraction of residues whose optimality score Γ is lower than a given threshold is reported.
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11 residues with a Γ-value lower than -5 kcal/mol. The
catalytic residues of this domain are not recorded in the
Catalytic Site Atlas. However, as can be seen on Figure
2B, many of the residues pointed out by PoPMuSiC are
clustered together, in a region previously identified as
the PRAI active site [43]. Overall, it appears thus that a
large majority of the 20 residues identified as non-opti-
mal by PoPMuSiC in this protein are involved in its
enzymatic activity, even though only four of them were
recorded in the Catalytic Site Atlas [41].

Conclusions
We present a web server for the prediction of protein
stability changes upon mutations and for the estimation
of the optimality of each amino acid in a protein’s
sequence with respect to the stability of its structure.
The prediction performances were evaluated by a 5-fold
cross validation procedure, and turned out to be quite
impressive for a coarse-grained and very fast prediction
method: the correlation coefficient R between predicted
and measured ΔΔGs is 0.63 and the root mean square
error s = 1.15 kcal/mol. The performances increase up
to R = 0.79 and s = 0.86 kcal/mol after removal of 10%
outliers. PoPMuSiC was also shown to outperform sev-
eral other prediction tools, on an independent dataset of
350 mutations that were not included in the training
sets of the compared methods [23,29].
A significant advantage of PoPMuSiC-2.1 is that it

allows the rapid computation of the stability changes
resulting from all single-site mutations in a protein. It
can thus be used in the context of rational protein
design, to help identify, among the multitude of possibi-
lities, a small number of mutations that are likely to pre-
sent the desired stability properties. For example, the
different versions of PoPMuSiC [15,29] have been suc-
cessfully applied by several groups (including us) to pre-
dict mutations in the prion protein that stabilize the
soluble form and occur in a region that has since then
been shown to be determinant for the aggregation ten-
dencies [36], to modulate the polymerization propensity
of a1-antitrypsin [44], to increase the solubility of a
TEV protease by stabilizing the folded state relatively to
the aggregated form [45], to stabilize the folded dark
state of a photocontrolled DNA-binding protein in view
of modulating the degree of photo-switching [46], or to
identify mutations that stabilize various enzymes, such
as pyruvate formate-lyase [47] or feruloyl esterase [48].
PoPMuSiC has also been used to characterize in silico
the effect on stability of specific mutations, in view of
rationalizing their impact on a protein of therapeutic
interest. The considered mutations were for example
naturally occurring variants responsible for the develop-
ment of hereditary diseases [49-52], mutations related to
the acquisition of drug resistance in bacteria [53], or

spanning the natural genetic heterogeneity of a viral
protein [54].
Another consequence of the speed of the predictions

is that PoPMuSiC-2.1 can be used to evaluate the
optimality of the sequence of a protein with respect to
the stability of its structure. This optimality, which is
the result of evolution, is shown to be intimately
related to the mechanisms of protein function. We
indeed applied our prediction method to a large num-
ber of enzymes whose catalytic sites have been pre-
viously identified and recorded in the Catalytic Site
Atlas [41]. Our results indicate that catalytic residues
are on average significantly less optimal than other
residues, with respect to protein stability. Although the
same general trend is observed both on the surface
and in the core of proteins, it is much stronger in the
core, which is in agreement with previous studies of
protein stability.
Obviously, the distinction between catalytic and non-

catalytic residues is not perfectly clearcut. According to
our predictions, approximately half of the catalytic resi-
dues are nonoptimal with respect to protein stability,
which means that the other half are totally optimal and
thus that all possible mutations of these residues are
predicted as destabilizing. This observation indicates
that many residues playing an essential role in protein
function are not detrimental to stability, which some-
what relativizes the well-known trade-off between stabi-
lity and function [33,34,55]. On the other hand, a
number of noncatalytic residues were also identified as
not optimal with respect to stability. It is very likely that
many of these residues are somehow involved in protein
function without being actually part of the catalytic site.
They may for instance be close to this site and impor-
tant to ensure a proper binding affinity or specificity
with a ligand, or to generate a sufficient level of struc-
tural flexibility [56,57]. The example of the PRAI:IGPS
protein nicely illustrates this point, given that most of
the nonoptimal residues highlighted by PoPMuSiC were
clustered in the two active sites of this enzyme (Figure
2). Other nonoptimal residues may be present as a
result of a compromise between protein stability and
other constraints such as the kinetics of the folding or
binding process, the prevention of misfolding [9], or the
adjustment of the resistance to proteolysis [58]. Follow-
ing previously published arguments, we may also note
that evolution is a dynamic process, during which pro-
tein stability is kept in a near-optimal state by mutations
that slightly diminish stability without causing any dele-
terious effect [14]. Finally, the predictions are of course
not perfectly accurate, which may lead to incorrectly
label some residues as being not optimal, especially in
regions where the structure is poorly defined or subject
to crystal constraints.
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The inference of protein function is currently often
performed through the analysis of sequence conserva-
tion data derived from multiple sequence alignments,
despite the limitations inherent to this approach [59]. A
number of other computational methods have also been
developed to identify unknown functional sites in pro-
teins on the basis of structural features [60-62]. These
include geometry-based methods such as the detection
of pockets or cavities that could accommodate a ligand,
energy-based methods such as the identification of sites
that interact favorably with various types of probes, and
knowledge-based methods that typically involve struc-
tural comparisons with datasets or atlases of known
functional sites. Some studies were also conducted to
investigate the contribution of functional residues to the
overall stability of the protein, sometimes with a predic-
tive purpose [9,63-66]. Recent developments tend to be
more focused on the design of prediction schemes inte-
grating various types of information, such as structural
attributes and evolutionary sequence conservation, in
order to benefit from their complementary [67-69]. To
our knowledge, the optimality of the amino acids with
respect to protein stability is not explicitly taken into
account by any of these integrated methods.
Although further studies are necessary to clarify the

relationship between sequence optimality and protein
function, our results strongly support the idea that the
inclusion of sequence optimality data is likely to
improve the performances of methods that aim at iden-
tifying unknown catalytic sites or other function-related
residues. In addition, such sequence optimality data may
be of interest in various types of other applications,
such as the assessment of the quality of model protein
structures, or the investigation of the evolutionary
dynamics of proteins. This data may also provide com-
plementary information to that derived from other pre-
diction tools in view, for instance, of identifying hot
spots for molecular recognition [70,71] or protein aggre-
gation [72].
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