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dimensional classifiers
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Abstract

Background: High-throughput functional genomics technologies generate large amount of data with hundreds or
thousands of measurements per sample. The number of sample is usually much smaller in the order of ten or
hundred. This poses statistical challenges and calls for appropriate solutions for the analysis of this kind of data.

Results: Principal component discriminant analysis (PCDA), an adaptation of classical linear discriminant analysis
(LDA) for high-dimensional data, has been selected as an example of a base learner. The multiple versions of PCDA
models from repeated double cross-validation were aggregated, and the final classification was performed by
majority voting. The performance of this approach was evaluated by simulation, genomics, proteomics and
metabolomics data sets.

Conclusions: The aggregating PCDA learner can improve the prediction performance, provide more stable result,
and help to know the variability of the models. The disadvantage and limitations of aggregating were also
discussed.

Background
The mining of high-dimensional data in which the num-
ber of features is much larger than the number of sam-
ples, has become increasingly important, especially in
genomics, proteomics, biomedical imaging and other
areas of systems biology [1]. The availability of high
dimensional data along with new scientific problems
have significantly challenged traditional statistical theory
and reshaped statistical thinking [2].
The high dimensionality of functional genomic data

sets poses problems to build classifiers. Because of the
sparsity of data in high dimensional spaces, many classi-
cal methods of classification break down. For example,
Fisher discrimination rule will be inapplicable because
the within scatter matrix become singular if the number
of variables is larger than the number of samples [3,4].
Another problem is caused by the small sample size.

The number of samples is usually not adequate to be
representative of the total population. Moreover classi-
fiers built on small sample sets are often not stable and
may have a large variance in the number of misclassifi-
cation [5]. One common approach for this problem is to

aggregate many classifiers instead of using a single one.
There has been considerable interest recently in the
application of aggregating methods in the classification
of high-dimension data [6-11]. The most well-known
method in this class of techniques is perhaps bootstrap
aggregating (bagging). Breiman found that gains in accu-
racy could be obtained by bagging when the base learner
is not stable [6]. However, Vu and Braga-Neto argued
that the use of bagging in classification of small-sample
data increases computational cost, but is not likely to
improve overall classification accuracy over other sim-
pler classification rules [10]. Moreover, if the sample
size is small, the gains achieved via a bagged ensemble
may not compensate for the decrease in accuracy of
individual models [11].
Cross-validation is probably the most widely used

method for estimating prediction error. In small
sampled high dimension data modeling, k-fold cross-
validation is often used [1]. The k-fold cross-validation
estimate is a stochastic variable that depends on the par-
tition of the data set. Full cross-validation, that means
performing all-possible ways of partitioning, will give an
accurate estimation, but is computationally too expen-
sive. Therefore, repeating k-fold cross-validation multi-
ple times using different splits provides a good Monte-
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Carlo estimate of the full cross-validation [12]. This
repeating procedure results in a lot of classifiers.
In this paper, we aggregated the classifiers obtained

from principal component discriminant analysis (PCDA)
with a double cross-validation scheme [13]. PCDA is an
adaptation of Fisher’s linear discriminant analysis
(FLDA) for high-dimensional data. In PCDA, the dimen-
sionality of the data is reduced by principal component
analysis (PCA). In the reduced dimensional space the
within scatter matrices is nonsingular and classical LDA
can be performed [13-16]. A double cross-validation
scheme was used to estimate both the number of princi-
pal components and the predictor error of the PCDA
model [17]. The classifiers that were obtained from the
different cross-validation loops are aggregated to make a
single classifier. This approach is tested on simulated
data, gene expression, proteomics and metabolomics
data. The results obtained from the research may pro-
vide insights into the use of aggregating learner in low
sample, high dimensional biological data.

Methods
PCDA
Given a high dimensional data set A of size m × n,
where m is the number of samples and n is the number
of features (m << n), classical FLDA [18] finds the dis-
criminating direction dn × 1 that maximizes the ratio of
the between-class scatter Sb against the within-class
scatter Sw.

argmax
d

dTSbd

dTSwd
, (1)

Sb =
r∑

i=1

mi(ci − c)(ci − c)T , (2)

Sw =
r∑

i=1

∑

j∈Mi

(aj − ci)(aj − ci)T , (3)

Here r is the number of classes, and each class has mi

samples. Mi is the index set of samples in each class i.

ci = (1/mi)
∑

j∈Mi

aj and c = (1/m)
m∑

j=1

aj are the class cen-

troids and the global centroid respectively.
The discriminating direction d is the eigenvector cor-

responding to the largest eigenvalue of the matrix S−1
w Sb.

Because the number of features n is larger than the
number of samples m in high dimensional data, the
matrix Sw is singular. This means that S−1

w does not
exist and FLDA cannot be applied directly.
To overcome the difficulties imposed by the singular

covariance matrices, the data can be first projected onto

a low dimension PCA subspace, and LDA is then applic-
able in this PCA subspace. The main goal of PCA is to
reduce the dimensionality of a data, whilst retaining as
much as possible of the information present in the origi-
nal data. This reduction is achieved by a linear transfor-
mation to a new set of variables, the principal
component (PC) scores. The combination of LDA with
PCA yields principal component discriminant analysis
(PCDA).

Aggregating PCDA with double cross-validation
The optimal number value of reduced dimensions of
PCA is usually determined by cross-validation. The sim-
plest form of cross-validation is to split the data ran-
domly into K mutually exclusive parts, building a model
on all but one part, and to evaluate the model on the
omitted part. This strategy allows for estimating the
optimal model complexity; however, the resulting pre-
diction performance estimate is often too optimistic
since the same samples were also used to find the best
number of PC’s and thus they are not completely inde-
pendent. It is therefore recommended to use a double
cross-validation approach [13,17,19,20]. As shown in
Figure 1, first the original data set was divided into two
parts, training set and test sets. The test set was not
used in double cross-validation scheme and it was
employed afterwards to evaluate how good the built
classifier really is. The training set was partitioned into
K parts. Of the K parts, a single part is retained as the
outer validation set, and the remaining K-1 subsamples
are used as inner training data and inner validation set.
On the remaining K-1 parts, a K-1-fold cross-validation
is performed to find the best number of PC compo-
nents. This is a nested validation scheme. The inner
validation set is used to determine the optimal number
of principal components, and the outer validation set is
used to find the cross-validation error of the method. In
summary, the double cross-validation with PCDA is
summarized in the following pseudo code
Divide the training data set into K parts:
For i= 1 to K

For j= 1 to K-1
Build PCDA models with different PCs

End
Find an optimal PC number
Build PCDA model with the optimal PC number

End
Obtain cross-validation error.

Since the cross-validation error accuracy would
depend on the random assignment samples, a common
practice is to stratify the folds themselves [12]. In strati-
fied K-fold cross-validation, the folds are created in a
way that they contain approximately the same propor-
tion of classes as the original dataset. With randomly
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chosen partitions of inner and outer validation set, we
can repeat the double cross-validation scheme to pro-
duce a lot of PCDA classifiers. The multiple versions of
the predictors can be aggregated by majority voting, i.e.,
the winning class is the one being predicted by the lar-
gest number of predictors.

Data
Simulation
The simulated data contain two classes. Each class Li (i=
1, 2) consists of 100 objects and each object has 590 fea-
tures, and it is sampled from a multivariate normal dis-
tribution N (vi, Ω) respectively, i = 1, 2. Here vi is the
mean of class Li, and Ω represents the covariance of the
simulated data. To make the simulation more closely to

real data, we constructed the simulated data from the
Gaucher proteomics data (see below). Suppose the
means and covariances of two classes in the auto-scaled
Gaucher data are represented by vector u1, u2, matrix
Ω1, and Ω2 respectively, and the mean v1 and v2 and
covariance matrix Ω of the simulated data were calcu-
lated by the following equations.

v1 = (u1 × 10 + u2)/11 (4)

v2 = (u1 + u2 × 10)/11 (5)

� = (�1 + �2)/2 (6)

Equation 4 and 5 are to ensure the separability of two
classes, and equation 6 is to make two classes have the
same common covariance matrix Ω.
By following the above procedure, we obtain the simu-

lated data set of size 200 × 590. Before building PCDA
classification model by double cross-validation on the
simulated data set, we separated the simulated data set
into training set and test set as shown in Figure 1. In
order to form training sets of differ sample sizes, we
randomly selected 12, 30, 50, 75, 100 objects from 200
objects. In the test set, 100 objects were random
selected without replacement from the data set after
removing the training set. The whole selection proce-
dure was repeated 100 times randomly. To make a rea-
sonable comparison, we fix the random seeds in each
selection procedure. In single PCDA, a double cross-
validation with ten-fold in the outer loop and nine-fold
in the inner loop were used to obtain the optimal PC
number and cross-validation error. In aggregating
PCDA, the PCDA approach was repeated 51 times with
different cross-validation splits to obtain an aggregated
classifier. Besides, we also constructed a single PCDA
model with double cross-validation in the simulated
data sets to compare the classification performance of
PCDA with aggregating PCDA.

Leukemia gene expression data
Leukemia data from high-density Affymetrix oligonu-
cleotide arrays were previously analyzed in Golub and
Tibshirani [21,22], and are available at http://www.
broad.mit.edu/cgi-bin/cancer/datasets.cgi. There are
7129 genes and 72 samples coming from two classes: 47
in class ALL (acute lymphocytic leukemia) and 25 in
class AML (acute mylogenous leukemia). Among these
72 samples, 38 (27 in class ALL and 11 in class AML)
are set to be training samples and 34 (20 in class ALL
and 14 in class AML) are set as test samples. The data
is mean-centered before classification. It should be
noted that the pretreatment step such as mean-center-
ing and auto-scaling was always performed on the

Figure 1 The partition of a data set for model selection and
the estimation of the cross-validation error and prediction
error. In the inner loop cross-validation, inner training set and inner
validation set are used to determine the number of principal
components (PC), and the model is fit on the inner training set. In
the outer loop cross-validation, the model is built on the inner
training set and the inner validation set, and an outer validation set
are used to estimate the cross- validation error. In prediction, the
model is built on the inner training set and the inner validation set,
and the test set is used to obtain the prediction error.
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training data and then the test data was pretreated with
by the mean and standard deviation obtained from the
training set. Auto-scaling means mean-centering the
data and scaling each column by its standard deviation.

Gaucher proteomics data
The data consist of serum protein profiles of 20 Gaucher
patients and 20 controls [13]. Serum samples were sur-
veyed for basic proteins with SELDI-TOF-MSS making
use of the anionic surface of CM10 PrtoeinChip. All pre-
processing (spot-spot calibration, baseline subtraction,
peak detection) of the SELDI-TOF-MS data was per-
formed using Ciphergen software. The data set of size 40
× 590 is available at http://www.bdagroup.nl/content/
Downloads/datasets/datasets.php. One Gaucher sample (a
female receiving enzyme replacement therapy) has been
detected as an outlier and was removed. The spectra pro-
files were first normalized by dividing each profile by its
median to arrive at comparable spectra. Subsequently, the
data sets were auto-scaled before classification.

Grape extract metabolomics data
The data set is from Unilever Food and Health
Research, Vlaardingen, Netherlands, Thirty five healthy
males were recruited to investigate the effect of grape
extract supplementation on vascular function and other
vascular health markers. The study has a double-blind,
placebo controlled randomized full crossover design
with 3 treatments, a run-in period, 3 interventions- and
2 washout periods. 1D 1H NMR spectra of plasma: D2O
(1:1 v/v) samples were recorded on a Bruker Advance
600 MHz NMR spectrometer according to a Standard
Operating Procedure with a pulse sequence. All data
were processed in Bruker XWIN-NMR software version
3.0 (Bruker BioSpin GmbH, Rheinstetten, Germany) and
imported in AMIX software from Bruker. Due to some
missing data, the final NMR data of 276 plasma samples
were bucketed in the spectral region 0-9 ppm using a
bucket-width of 0.02 ppm.
The data set of size 276 × 412 of two classes was

divided into two subsets, 200 samples in training set
and 76 samples in prediction set, using the Kennard-
Stone method [23]. The Kennard-Stone method was
used to select objects to model such that they are uni-
formly scattered over the experimental space. In the
training set and test set, the samples were assigned in
such a way that the ratio of class membership is similar
to the original data. The data sets were auto-scaled
before classification.

Results and Discussion
When aggregating works
Breiman [6] has noticed that the efficiency of aggregat-
ing depends on the stability of the prediction or

classification rule. Each cross-validation PCDA classifiers
are constructed on different samples, so it is expected
that there will be some variance in the prediction error.
First, we applied aggregating PCDA on the simulated
data sets. As shown in Figure 2, the classification perfor-
mance of aggregated PCDA is usually better than that of
PCDA itself. Here, the single PCDA itself uses ten fold
outer cross-validation to determine the cross-validation
errors and a nine fold inner cross-validation to deter-
mine the optimal number of principal components. The
aggregated PCDA was constructed by repeating single
PCDA 51 times. The simulation results in Figure 2
themselves are a pro of aggregating. As the training sets
and prediction sets follow same distribution, the cross-
validation error and prediction error are quite similar in
Figure 2. A close look on Figure 2 also tells us, when
the number of sample size is increasing, the classifica-
tion rate is increased and the variation of the prediction
error is reduced.
We further applied PCDA and aggregated PCDA on

three real data sets. Figures 3 and 4 illustrate the varia-
tion of misclassification rate of the data sets in training
and predictions.
The aggregated PCDA was constructed by repeating

PCDA 1000 times. As shown in Figures 3 and 4, the
median of the misclassification rate is indicated by the
center line, and the first and third quartiles are the
edges of the box area, which is known as the inter-quar-
tile range. The extreme values (within 1.5 times the
inter-quartile range from the upper or lower quartile)
are the ends of the lines extending from the inter-quar-
tile range. Points at a larger distance from the median
than 1.5 times the inter-quartile range are plotted indivi-
dually as plus sign. Due to the low sample size in the
Gaucher data, a separate test set was not created. There
are only two data sets giving the performance of the
prediction of the test set in Figure 4. Obviously, the var-
iations in the error rate of the PCDA models are quite
large in the data sets, especially when ratio of feature to
sample is high. The most stable case is from the grape
data, and the ratio of feature to sample is the lowest
among all three data sets. Table 1 and Table 2 also
show that aggregating PCDA model often gives an
improved performance over a single PCDA model in the
three real data sets. In Table 1 and Table 2, the perfor-
mance of a single PCDA is represented by the median
of the misclassification rate.
The aggregated PCDA can make a good PCDA clas-

sifier better since the variance of misclassification rate
can be reduced [24-27]. A heuristic explanation is that
the variance of the prediction error of the aggregated
classifier is equal to or smaller than the error of the
original classifier since majority voting is modeling
averaging.
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The dimension reduction step by PCA can not be
guarantied to preserve all directions that contain discri-
minative information [28]. But in an aggregated PCDA
model, the discarded discriminant information of one
PCDA model can be re-modeled from other PCDA
model with different partition of training data sets by

cross-validation. So, aggregating PCDA itself may con-
tain more discrimination information than single PCDA.
We also compared PCDA with the Support Vector

Machine (SVM) classifier [29], and the results are
shown in Table 1, 2, 3, 4. We found that the single
PCDA classifier has a comparable result to the single

Figure 2 Learning curves of aggregating PCDA and PCDA. With the increasing of sample size for 12 to 100, the classification performance of
aggregating PCDA and PCDA is increased significantly, and the variation of classification models also tends to be reduced. The classification
performance is represented by 1 minus misclassification rate, and the variation of classification performances is represented by an error bar. The
upper error ranges for each point in error bar is obtained with adding standard deviation of mean of classification performance and lower error
ranges is obtained with subtracting standard deviation of mean of that. The figure shows that aggregating PCDA usually gives a better
classification performance than PCDA. The classification of validation sets and test sets are quite similar since two sets follow the same
distribution.
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SVM classifier. However, aggregating PCDA achieves
better results than SVM, PCDA, and aggregating SVM
classifiers.

When aggregating does not work
Aggregating may increase the bias of a learner since
only a part of the training data are sampled by cross-
validation or bootstrapped for modeling. That is to say,
the use of K-fold cross-validation may have a negative
effect on the accuracy of individual PCDA models. As

shown in Figure 2, when the sample size is twelve, the
performance of PCDA classifier is relatively bad and not
stable. After aggregating, the classification performance
did not achieve expected training and prediction perfor-
mance yet, since basically in such case more samples are
needed to build a precise model. Another situation
which does not favor aggregating is case of very weak
learners. A very weak learner means that the perfor-
mance of learner is even worse than random guess.
Aggregating such learner will make prediction even
worse because averaging such learners will result in a
learner that will give a wrong prediction in all cases. For
example, if an observation is classified as a success
about four times out of ten. After the majority voting, it
will give 100% wrong.

Further notes
Although the efficiency of aggregating depends on the
stability of the prediction, aggregating does not defi-
nitely make the predictor stable, and it stabilizes to a
certain extent. As shown in Figure 5, there is a small
margin of sample 3 and sample 20 of the Gaucher pro-
teomics data. The difference between the fractions of
times a case is correctly classified and the fraction of
times it is incorrectly classified is called the “margin” for
that case [28]. Larger margins are desirable because a
more stable classification of that sample is implied. As
seen in Figure 5, some samples are always corrected
predicted and also some samples (10 and 22) are always
wrongly predicted. On the other hand, the small mar-
gins in sample 3 and 20 tell us that these two samples
have almost half chances to be corrected classified, and
half chances to be incorrectly classified. These two
“instable samples” result in an aggregating classifier that
is not stable. Figure 6 also supports such findings as the
misclassification rates fluctuate greatly with different
numbers of aggregation.
Another question about aggregating PCDA is how

many times resampling is enough? Figure 6 gives the
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Figure 3 Boxplot of cross-validation errors for three real data
sets. Misclassification rates are obtained from 1000 times repeating
10 fold double cross-validations. The ratios of feature to samples in
training sets are 38/7129 (Leukemia), 39/500(Gaucher) and 200/412
(Grape). The most stable case is from grape data, and the ratio of
feature to sample is the lowest among all three data sets.
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Figure 4 Boxplot of prediction errors for two real data sets.
Misclassification rates are obtained from 1000 times repeating 10
fold double cross-validations. The ratios of features to samples in
test sets are 34/7129 (Leukemia) and 76/412 (Grape). The model of
grape data is more stable since the ratio of feature to sample is
lower.

Table 1 Cross-validation errors evaluated by outer
validation sets with PCDA

Misclassification rate PCDA Aggregating PCDA

Leukemia 2/38 1/38

Gaucher 4/39 4/39

Grape 15/200 12/200

Table 2 Prediction errors evaluated by test sets with
PCDA

Misclassification rate PCDA Aggregating PCDA

Leukemia 3/34 0/34

Grape 2/76 2/76
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misclassification rate in training with increasing number
of aggregation. The number of aggregation starts from
20 to 1000, and increases by 20 each time. We observe
in Figure 6 that the aggregated misclassification rate will
keep stable after 100 replicas in leukemia and grape
data. For Gaucher data, 200 replicas also give a reason-
able estimation. To our experience, 50-200 replicas are
usually enough to get a stable value. Aggregating learner
in this paper is obtained from cross-validation, which is
resampling without replacement. The conventional bag-
ging is obtained from bootstrapping, which is resam-
pling with replacement. As stated by Buja and Stuetzel
[30], there is an equivalence between bagging based on
resampling with and without replacement. So, the con-
clusion obtained in this paper in our opinion also holds
in bagging approaches.
Another concern is whether aggregating PCDA can

apply to multi-classification problem. Because the discri-
mination in PCDA is performed by LDA, the properties
of LDA for multi-classes also hold. Since the decision
boundaries in LDA are constructed in a pair wise man-
ner [1], the conclusions drawn in this paper in principle
are also valid for a multi-class problem. However, many
discriminative methods are often most accurate and effi-
cient when dealing with two classes only, but usually at
reduced accuracy and efficiency for multi-classification
[31]. The effects of aggregating multi-classifier still need
further careful studies.
In addition, an interpretable model is usually required

as it is important to identify which genes, proteins and
metabolites contribute most to classifiers. The PCDA
model has been already combined with rank products
[13,16,32] to find important variables. In aggregating
PCDA, we can repeat the same strategy too. For exam-
ple, we aggregate 100 PCDA learners together. As a sin-
gle PCDA yields 10 discriminant vectors in a 10 fold
cross-validation; 100 runs gives 1000 discriminant vec-
tors in total. Then for all features the products of the
1000 ranks are calculated. After sorting, the features

with the lowest rank products are the ones with the lar-
gest discriminative power.

Conclusions
The use of cross-validation to study the performance of
a classifier is an established method. If performed in a
proper way cross-validation provides roughly unbiased
estimates of the prediction measures. However, the dif-
ferent partitions in cross-validation can give rise to high
variability of the model predictions. In this paper we

Table 3 Cross-validation errors evaluated by outer
validation sets with SVM

Misclassification rate SVM Aggregating SVM

Leukemia 2/38 2/38

Gaucher 4/39 4/39

Grape 16/200 15/200

Table 4 Prediction errors evaluated by test sets with SVM

Misclassification rate SVM Aggregating SVM

Leukemia 3/34 3/34

Grape 3/76 3/76
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Figure 5 Margins plot of thirty-nine samples in Gaucher data.
The margin plot tells the difference between the fractions of times
a case is correctly classified and the fraction of times it is incorrectly
classified. Sample 3 and Sample 20 have small margins, and it
means these two samples have half of chances to be corrected
classified and half of chance to be incorrectly classified.
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Figure 6 The cross-validation errors in different number of
aggregation. In leukemia data, the misclassification rate keeps
stable when the number of aggregating is more than 50. In grape
data, the misclassification rate keeps stable when the number of
aggregating is more than 100. In Gaucher data, the aggregating
model is not stable.
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show a way to overcome the variability by building one
aggregated classifier from all the classifiers that were
build in the repeating cross-validations.
Aggregating learners can have several important bene-

fits. Aggregating over a collection of fitted values can
help compensate for overfitting. That is, the majority
voting tends to cancel out results shaped by idiosyn-
cratic features of the data. One can then obtain more
stable and more honest assessments of how good the fit
really is.
Aggregating learners also have some limits. When the

sample size is very small, aggregating learner may have
a large bias. So it is important for us to visualize the
data to see if aggregating will be helpful or not.
In conclusion, we recommend the use of aggregating

learner in high dimensional data analysis, but a careful
look on data structure and comparison with base learner
result.
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