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Abstract

pathways.

Background: Signal transduction is an essential biological process involved in cell response to environment
changes, by which extracellular signaling initiates intracellular signaling. Many computational methods have been
generated in mining signal transduction networks with the increasing of high-throughput genomic and proteomic
data. However, more effective means are still needed to understand the complex mechanisms of signaling

Results: We propose a new approach, namely CASCADE_SCAN, for mining signal transduction networks from
high-throughput data based on the steepest descent method using indirect protein-protein interactions (PPIs). This
method is useful for actual biological application since the given proteins utilized are no longer confined to
membrane receptors or transcription factors as in existing methods. The precision and recall values of
CASCADE_SCAN are comparable with those of other existing methods. Moreover, functional enrichment analysis of
the network components supported the reliability of the results.

Conclusions: CASCADE_SCAN is a more suitable method than existing methods for detecting underlying signaling
pathways where the membrane receptors or transcription factors are unknown, providing significant insight into
the mechanism of cellular signaling in growth, development and cancer. A new tool based on this method is
freely available at http://www.genomescience.com.cn/CASCADE_SCANY/.

Background

Signal transduction plays an essential role in cell
response to environment changes. This biological pro-
cess is usually characterized by phosphorylation/depho-
sphorylation of some key proteins (e.g. kinases) and
generally involves a signal cascade. The signal transduc-
tion process often starts from a membrane protein
(usually a membrane surface receptor), spans a series of
intercellular signaling proteins and then transfers to
transcription factors in the nucleus, subsequently raising
the expression of downstream genes. Studies demon-
strate that many important cellular processes such as
cell proliferation, differentiation, cell cycle control and
cellular responses to nutrient limiting conditions are
involved in different signaling pathways [1,2]. For
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example, Yokoi et al [3] demonstrated that hyperglyce-
mia mediates endothelial cell senescence through the
ASK1 signaling pathway. Tang et al [4] showed that the
receptor kinase BRI1 and BR-signaling kinases (BSKs)
mediate growth regulation related signal transduction in
Arabidopsis. The Toll-like receptor (TLR) signaling cas-
cade plays an essential role in recognizing and eliciting
responses upon invasion of pathogens [5]. Recent high-
throughput genomic and proteomic techniques, such as
large-scale yeast two-hybrid (Y2H) [6], Co-Immunopre-
cipitation (Co-IP) [7,8], tandem affinity purification-
mass spectrometry (TAP-MASS) [9,10], protein chip
[11-14] and microarray experiments [15,16] have gener-
ated enormous amounts of data for uncovering signal
transduction networks. This abundance of information
brings increasing complexity to network analysis, which
is a major obstacle to understanding the mechanisms of
cell signaling.
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Recently, computational methods have been intro-
duced in mining signal transduction network. Steffen et
al [17] developed a static model, NetSearch, to recon-
struct the signal transduction network from PPI and
gene expression data. For a given membrane protein
and transcription factor, NetSearch will search for all
possible linear paths that link the two proteins. By
employing a depth first search (DFS) algorithm [17-20],
paths of a specified length are kept, and then a statistical
score is assigned to each path. Top scoring pathways are
then assembled into the final branched signal transduc-
tion network. Liu et al [21] have worked on determining
the order of signal transduction network components.
They calculated the correlations between each gene pair
and recorded the significance using a hypergeometric
test to specify the correlation threshold. A score func-
tion is constructed to determine the final signal trans-
duction network. Zhao et al [18,22] proposed a novel
computational approach aimed at finding an optimal
signal transduction network using an integer linear pro-
gramming (ILP) and mixed integer linear programming
(MILP) model. Similar approaches have also been pro-
posed in more recent studies [20,23]. All those existing
methods mainly use integrated PPI and gene expression
data, which have been widely adopted in many related
studies. They all aim at finding an optimal signal trans-
duction network starting from a given membrane recep-
tor and ending at a specific transcription factor.
However, in most situations, we even do not know
which membrane receptor or transcription factor is
involved in a certain signaling pathway. In fact, most
intermediate proteins are more easily available for their
dominant position in quantity, which is neither a mem-
brane receptor or transcription factor. These proteins
could also be used in mining signal transduction net-
works. Besides, the datasets utilized in these methods
are primarily based on experiments. Though the interac-
tions are more reliable compared with computationally
predicted interactions, the data is deficient. Some com-
putational methods, e.g. gene co-expression [24] and
semantic similarity of Gene Ontology (GO) annotations
[25], indicate that genes with high scored interactions
may be involved in the same signaling pathway [21].
However, this information either is limited or has not
been incorporated in most databases constructed from
experimental data. Though these interactions may not
necessarily be direct interactions, using this information
may help to improve prediction of signal transduction
networks. We define “direct interaction” as a direct phy-
sical association between two proteins and “indirect
interaction” as no direct physical association between
two proteins in the actual state. Two proteins with
indirect interaction must function through at least one
medial protein.
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Here, we present a novel computational method,
named CASCADE_SCAN, under Linux system, to detect
signal transduction networks from high-throughput data
based on a customized steepest descent method (SDM)
[26]. We do not mean to find a signal transduction net-
work starting and ending from two specific proteins, but
to find a high scored network within the top largest
densities that contain a series of given proteins, also
referred to as seed proteins, which are the supposed
known components of a specific signaling pathway.
These given proteins may also include the membrane
receptor and the transcription factor. In addition, by
searching for additional high related proteins automati-
cally, indirect interactions are used effectively. This pre-
processing is demonstrated below to be very useful. The
well studied yeast MAPK signaling pathways (Figure 1),
which have been widely used in previous studies, were
also employed here to test our model. All figures were
generated by Cytoscape [27]. The results indicate that
the precision and recall values are comparable with
those of other existing methods, even though the dataset
we used is much larger than those previously utilized.

Results

Since the yeast MAPK pathways have been well studied
and widely used as reference standards in previous stu-
dies [17,18,21,23], we thus used those pathways (Figure
1) downloaded from the KEGG database [28] to validate
the reliability of CASCADE_SCAN. In the following
steps, we discuss the results of the pheromone response
and the filamentous growth pathway, respectively. It is
worth noting that the seed proteins we used were not
restricted to membrane receptors and transcription fac-
tors, as in previous studies.

Detecting the pheromone response pathway

The pheromone response pathway (Figure 2) mediates
cell signaling in response to extracellular peptide phero-
mones. In the current KEGG database, there are about
twenty proteins present in the pheromone response
pathway, as shown in Figure 2A. We randomly selected
four seed proteins and varied the score threshold from
0.800 to 0.950 with an interval of 0.050. Different para-
meters were tested (Additional file 1). Table 1 shows the
results of the performance evaluation mentioned above
compared with other methods (color-coding, NetSearch,
PathFinder, ILP). We can see that CASCADE_SCAN
obtains ~76% recall after 20 independent experiments,
which is comparable with color-coding, NetSearch and
PathFinder, though the ~54% precision is lower (Table 1
and Additional file 2). The p-values detected by both
the hypergeometric test and Fisher’s exact test from
DAVID are less than or equal to 2.43E-16 (Table 2),
indicating the effectiveness of our method.
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Figure 1 The MAPK signaling pathways in yeast. The data were obtained from the KEGG database.
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Figure 2B shows the results detected by CASCADE_S-
CAN. Though our dataset included many computation-
ally predicted interactions, the precision and recall
reached a high level. It can be seen that 15 proteins in
the KEGG pheromone response signaling pathway are
detected by our method except for STE2, STE3, BNII,
MSG5 and MCML1 (Figure 2A and 2B). However, several
additional proteins, KSS1, STE50 and CLA4, are also
detected by our method (Figure 2B).

We note, however, that some of those proteins not in the
KEGG pheromone response signaling pathway were also
detected by some of the other methods (color-coding, Net-
Search, PathFinder, ILP). For example, KSS1 (mitogen-acti-
vated protein kinase) was also presented in the pheromone
response pathway by our method (Figure 2B). In a previous
study, KSS1, together with FUS3, was demonstrated to reg-
ulate the signal transduction cascade of the pheromone
response and filamentous growth pathways [29]. KSS1 also
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Figure 2 The pheromone response pathway. (A) The pheromone response pathway obtained from KEGG. The darker nodes indicate nodes in
the KEGG pheromone response pathway but not detected by CASCADE_SCAN. (B) The CASCADE_SCAN output for the pheromone response
pathway (74% recall and 82% precision). The darker nodes indicate detected by CASCADE_SCAN but not in the KEGG pheromone response
pathway. (PPl score threshold: 0.800, credible PPI score threshold: 0.980, DFS path length: 2, seed proteins: CDC24, DIG1, FART and STE4).
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activates the transcription factor STE12 as well as phos-
phorylates DIG1, DIG2 and STE12, which are involved in
both the pheromone response and filamentous growth
pathways [30,31]. Moreover, KSS1 was also detected by all
of the other four methods. CLA4 is a member of the
STE20 subfamily, which belongs to the STE Ser/Thr

protein kinase family. CLA4 may play a role in the phos-
phorylation of alpha-factor-arrested yeast [32]. STE50 was
reported to interact with the MAPKKK STE11 through the
respective SAM domain [33,34], and is required in growth
arrest during conjugation at an early step in yeast mating
[35]. We, therefore, can draw the conclusion that those
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Table 1 Performance comparison between different
methods in precision and recall for pheromone response
pathway

Method Precision (%) Recall (%)
CASCADE_SCAN 54 76
color-coding 83 75
NetSearch 74 70
PathFinder 88 75
ILP (A = 0.50) 47 80

The results of CASCADE_SCAN were obtained from 20 independent
experiments using four seed proteins (PPI score threshold: 0.800, credible PPI
score threshold: 0.980, DFS path length: 2). Note, the results of color-coding
algorithm, NetSearch, PathFinder and ILP were obtained from Zhao's paper.

proteins indeed have some association with the yeast pher-
omone response pathway, though they are not included in
the KEGG pheromone response pathway.

BNI1, which was not detected by most of the other
methods (color-coding, NetSearch, PathFinder, ILP), was
also not detected by CASCADE_SCAN. This may be
because it has both weaker and fewer interactions with
other proteins in this pathway, which may also have
been the case for the other proteins STE2, STE3, MSG5
and MCM1.

Detecting the filamentous growth pathway

The filamentous growth pathway (Figure 3) regulates
cellular response to nutrient limiting conditions. For
this pathway (Figure 3A), there are many common pro-
teins with other MAPK pathways (Figure 1). So, we ran-
domly selected three or four seed proteins only from
SSU81(SHO1), TEC1, RAS2 and KSS1. Different para-
meters were also tested (Additional file 3). After five
independent experiments, we obtained an average of
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~89% recall and ~36% precision (Table 3 and Additional
file 4). Table 3 shows the performance of CASCADE_S-
CAN in detecting the filamentous growth pathway com-
pared with that of NetSearch, PathFinder and ILP.
CASCADE_SCAN clearly shows both higher recall and
precision than all the other methods. In addition, the p-
values detected by both the hypergeometric test and
Fisher’s exact test from DAVID are less than or equal to
4.42E-23 (Table 4), indicating that our method is
effective.

Figure 3B shows the output of CASCADE_SCAN when
using SSU81, RAS2 and KSS1 as seed proteins. CASCA-
DE_SCAN identified a total of 18 proteins (Figure 3B).
The 11 proteins in the KEGG filamentous growth path-
way are shown in Figure 3A, nine of which were
detected by CASCADE_SCAN except for CDC42 and
TEC1 (Figure 3B). We investigated the nine additional
proteins, and found most of them were identified in the
pheromone response pathway, including STE4, STES5,
FUS3 and FUSI1. This sharing proteins phenomenon was
also observed in previous studies [18,23]. In addition,
PEA2, SPA2, KAR4, STE50 and FUS2, which are not
mentioned in any KEGG MAKP pathway, were newly
detected by our method (Figure 3B). Those proteins
were detected mainly because the integrated database
contains computationally predicted PPIs with high
scores and no protein activity data were utilized.

Detecting the cell wall remodeling and high osmolarity
pathways

We also evaluated the cell wall remodeling (Figure 4)
and high osmolarity (Figure 5) MAPK pathways. These
two KEGG pathways are shown in Figure 4A and 5A.
After 20 independent experiments by randomly selected

Table 2 P-values of functional enrichment for pheromone response pathway

GO Term Proteins annotated by Proteins annotated by P-value P-value
DAVID in our method DAVID in SGD (total: (hypergeometric (DAVID
(total: 18) 4870) test) Fisher test)

GO:0000750~pheromone-dependent signal 13 29 4.18E-27 8.61E-25

transduction involved in conjugation with cellular

fusion

G0:0032005~signal transduction involved in 13 29 4.18E-27 8.61E-25

conjugation with cellular fusion

G0O:0019236~response to pheromone 16 105 9.89E-26 4.74E-24

G0:0031137~regulation of conjugation with 13 36 141E-25 2.06E-23

cellular fusion

GO:0046999~regulation of conjugation 13 36 141E-25 2.06E-23

GO:0000749~response to pheromone during 14 69 9.51E-24 641E-22

conjugation with cellular fusion

GO:0000747~conjugation with cellular fusion 15 119 2.06E-22 7.92E-21

GO:0000746~conjugation 15 125 4.49E-22 1.64E-20

GO:0019953~sexual reproduction 16 277 nan 1.78E-17

GO:0048610~reproductive cellular process 15 243 nan 243E-16

Note: “nan” is beyond the computer’s capability.
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Figure 3 Filamentous growth pathway. (A) The filamentous growth pathway obtained from the KEGG database. The darker nodes indicate
nodes in the KEGG filamentous growth pathway but not detected by CASCADE_SCAN. (B) The CASCADE_SCAN output for the filamentous
growth pathway (82% recall and 50% precision). The darker nodes indicate nodes detected by CASCADE_SCAN but not in the KEGG filamentous
growth pathway. (PPl score threshold: 0.900, credible PPI score threshold: 0.950, DFS path length: 5, seed proteins: KSS1, RAS2 and SSU81).

three seed proteins each time, CASCADE_SCAN
obtained ~69% recall and ~21% precision for the cell
wall remodeling pathway (Table 5 and Additional files 5
and 6), and ~77% recall and ~20% precision for the
high osmolarity pathway (Additional files 7 and 8),
using a default network size threshold of 50. Though
the recall values are relatively high (Table 5), the preci-
sion seems to be very low. Generally speaking, the more

complex the organism is, the more components a signal-
ing pathway contains. Through our investigation of all
the KEGG signaling pathways, the number of signaling
pathway components usually does not exceed 50 in
higher organisms (e.g. human), and 30 in relatively
lower organisms (e.g. yeast and fly). Therefore, we also
evaluated the two pathways with a network size thresh-
old of 30. CASCADE_SCAN obtained ~64% recall and
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Table 3 Performance comparison between different
methods in precision and recall for filamentous growth
pathway

Method Precision (%) Recall (%)
CASCADE_SCAN 36 89
NetSearch 33 64
PathFinder 28 82
ILP (v = 0.50) 29 73

The results CASCADE_SCAN were obtained from four independent
experiments using three seed proteins, and one experiment for four seed
proteins. (PPl score threshold: 0.900, credible PPI score threshold: 0.950, DFS
path length: 5). Note, the results of color-coding algorithm, NetSearch,
PathFinder and ILP were obtained from Zhao's paper.

~32% precision for the cell wall remodeling pathway
(Table 5), and ~82% recall and ~39% precision for the
high osmolarity pathway, showing significant improve-
ment in the precision at a relative high level. Moreover,
all of the p-values are less than or equal to 8.58E-17
(Table 6) and 5.85E-11 (Table 7), respectively, indicating
that our method is effective.

Figures 4B and 5B show the results of the cell wall
remodeling and the high osmolarity pathways detected
by CASCADE_SCAN. As we can see in the figures,
most components of the two pathways are detected by
CASCADE_SCAN. However, the integrated database
contains many more interactions, so several other pro-
teins were also detected. In addition, CASCADE_SCAN
seems to predict fewer edges between the proteins in
the predicted signal transduction networks comparing
with other methods. Hence, even though the membrane
receptor and transcription factor are not known, we still
know where the signal is from and to among those pro-
teins, since most proteins have only one link to the pre-
ceding and succeeding element in the predicted
network. In fact, if we require the order between the
proteins to be more intuitive, fewer edges should be
kept in the predicted network. We achieved this goal by
maximizing the average weight of the network while
keeping most of the reliable interactions, as described
by equation (3).

Discussion

Generally, some potential proteins involved in a signal-
ing pathway stimulated by environmental factors are
easily available through various reliable means, such as
manual literature curation and biological experiments.
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But in most situations, not all or none of these proteins
are membrane receptors or transcription factors. More-
over, the proteins we obtained may be more than just
two proteins (a membrane receptor and a transcription
factor). Therefore, CASCADE_SCAN is more suitable
for actual biological application compared with existing
methods such as color-coding, NetSearch, PathFinder
and ILP. Nevertheless, although those methods utilize a
more reliable dataset, the data is limited. However,
using computationally predicted interactions may make
up for the deficiency of experiment data, which is also
one of our original aims.

In addition, we used a different but both a reasonable
and effective data pre-processing scheme for CASCA-
DE_SCAN. Firstly, we used a customized DEFS algorithm
to search for common nodes within a certain path
length. We found that, in the integrated database (incor-
porating the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) and Biological General Repo-
sitory for Interaction Datasets (BioGRID) databases),
more than 90% nodes can link with any other nodes
within a six-path length, and proteins in the same path-
way often within a two-path length, which is different
from the previously reported 6-9 steps. This is primarily
because the integrated database stores many more indir-
ect PPIs that were primarily generated by computational
methods. The indirect interaction weights are often
lower than the direct interaction weights but much
higher than the weights between two unrelated nodes.
Therefore, the path length between any two nodes
would become correspondingly shorter, and we used a
relatively shorter path length for the DFS algorithm
here. Secondly, proteins involved in the same signaling
pathway usually have a similar gene expression profile,
so there are usually more and stronger interactions
among them than others in the integrated database.
And vice versa, many computationally predicted and
high scored PPIs also indicate that the corresponding
proteins may be involved in the same signaling pathway.
Our approach-searching for additional seed proteins—
was based on this hypothesis. When detecting the pher-
omone response pathway, by providing only four seed
proteins, CDC24, DIG1, FARI and STE4, seven other
proteins were detected in the pre-processing step (PPI
score threshold: 0.800, credible PPI score threshold:
0.980, DFS path length: 2), including CDC42, BEM1,

Table 4 P-values of functional enrichment for filamentous growth pathway

GO Term Proteins annotated by DAVID in our Proteins annotated by DAVID in P-value P-value (DAVID
method (total: 17) SGD (total: 4870) (hypergeometric Fisher test)
test)
G0O:0030447~filamentous 16 113 3.96E-26 1.84E-24
growth
GO:0040007~growth 16 138 1.19E-24 442E-23
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Figure 4 Cell wall remodeling pathway. (A) The cell wall remodeling pathway obtained from the KEGG database. The darker nodes indicate
nodes in the KEGG cell wall remodeling pathway but not detected by CASCADE_SCAN. (B) The CASCADE_SCAN output for the cell wall
remodeling pathway (87% recall and 43% precision). The darker nodes indicate nodes detected by CASCADE_SCAN but not in the KEGG cell
wall remodeling pathway. (PPl score threshold: 0.800, credible PPI score threshold: 0.980, DFS path length: 5, network size threshold: 30, seed

SLT2

STE12, STE11, FUS3, STE18 and STES5, all of which are
in the KEGG pheromone response pathway. When
determining the filamentous growth pathway, by only
giving three seed proteins KSS1, RAS2 and SSU81, three
other proteins including FUS1, STE12 and STE11 were
detected in the pre-processing step (PPI score threshold:
0.900, credible PPI score threshold: 0.950, DES path

length: 5), of which STE12 and STE11 are in the KEGG
filamentous growth pathway except for FUSI. In all,
these pre-processing schemes were demonstrated to be
effective in inferring signaling pathways when using the
integrated database.

Recent studies have indicated that genes involved in
the same signaling pathway tend to have similar gene
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MSN2, PBS2 and SLNT).

Figure 5 Osmolyte synthesis pathway. (A) The osmolyte synthesis pathway obtained from the KEGG database. The darker nodes indicate
nodes in the KEGG osmolyte synthesis pathway but not detected by CASCADE_SCAN. (B) The CASCADE_SCAN output for the osmolyte
synthesis pathway (83% recall and 67% precision). The darker nodes indicate nodes detected by CASCADE_SCAN but not in the KEGG osmolyte
synthesis pathway. (PPl score threshold: 0.800, credible PPI score threshold: 0.980, DFS path length: 5, network size threshold: 30, seed proteins:

CASCADE_SCAN

Table 5 Performance comparison between different
methods in precision and recall for cell wall remodeling
pathway

Method Precision (%) Recall (%)
CASCADE_SCAN (s = 50) 21 69
CASCADE_SCAN (s = 30) 32 64
ILP (A = 0.15) 56 63
NetSearch 50 56

The results CASCADE_SCAN were obtained from 20 independent experiments
using three seed proteins. (PPl score threshold: 0.800, credible PPI score
threshold: 0.980, DFS path length: 5). Note, the results of NetSearch and ILP
were obtained from Zhao's paper.

expression profiles, which is especially notable regarding
adjacent pathway components [21]. Moreover, signal
transduction usually shows different activation under
different situations [18]. Based on those hypotheses,
microarray expression data [36,37] were employed in
previous studies as a complement to PPI data. Recently,
studies have reported that using fold change criterions
in the pre-processing schemes removes genes without
significant change [18]. However, this process may also
eliminate some important genes without significant
quantity change in mRNA level, but showing activity
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Table 6 P-values of functional enrichment for cell wall remodeling pathway

GO Term Proteins annotated by DAVID in our Proteins annotated by DAVID in  P-value P-value (DAVID

method (total: 26) SGD (total: 4595) (hypergeometric Fisher test)
test)

GO:0030427~site of 22 235 nan 334E-24

polarized growth

GO:0044463~cell 15 13 1.72E-18 4.57E-17

projection part

GO:0042995~cell 15 118 3.39E-18 8.58E-17

projection

Note: “nan” is beyond the computer’s capability.

changes in protein level. Therefore, fold change was not
incorporated in this study. However, fold change criter-
ion of gene expression data could be easily incorporated
into the filtering process. Besides, an appropriately big-
ger score threshold, a relatively shorter DES path length
and a more stricter PPI scoring system would be helpful
for excluding most irrelevant proteins as well as most
indirect interactions.

When we attempted to compare the results of color-
coding, NetSearch, PathFinder and ILP obtained from
Zhao's paper [18], we found the results are actually
incomparable because we used a different dataset and
method. Firstly, the integrated dataset we used contained
5,717 yeast proteins and 322,084 yeast protein interac-
tions, much larger than the previously used dataset.
Moreover, most of these interactions are indirect interac-
tions, while the previously used dataset contains mostly
direct interactions. Secondly, the seed proteins used in
our method are not confined to membrane receptors or
transcription factors, and are usually more than just two
proteins. Using different seed proteins may also lead to
different precision and recall values. Therefore, it is diffi-
cult to say which method is better. Furthermore, the PPI
scoring system is of the most importance, for which we
combined the topological clustering semantic similarity
(TCSS) scoring and STRING scoring systems. The TCSS
scoring system predicts PPI from semantic similarity
based on GO annotations [38]. The STRING scoring sys-
tem method predicts PPI from various methods, such as
the neighbourhood method, fusion events, co-occur-
rence, co-expression, experimental methods and text-

mining. The combined scoring system seems to be stric-
ter, and may be one of the reasons for our better perfor-
mance. Nevertheless, we still recommend using other
methods as complements for predicting signal transduc-
tion networks because no single method is perfect. More
work needs to be done in this field as well as controlling
for network size.

We note that the precision values are much lower for
the other three pathways (filamentous growth, cell wall
remodelling, and high osmolarity pathways) compared
to the pheromone response pathway. This is primarily
because most proteins in each of the other three path-
ways also have strong interactions with other proteins
that are in other pathways. Therefore, more proteins are
predicted than for the other three pathways. For
instance, CDC42, STE20, STE11, STE7, DIG1, DIG2
and STE12 in the filamentous growth pathway could
interact with BEM1, PBS2, FUS3, MCM1, STE4, STES5,
STE18 and CDC24 in the pheromone response pathway,
STE11 could interact with PBS2 in the high osmolyte
pathway, and RAS2 could interact with CYR1 in the
meiosis pathway. This is the sharing proteins phenom-
enon as mentioned in previous studies [18,23]. Though
all the methods predicted mostly true proteins, i.e., with
high recall values, the other three pathways contain
fewer proteins than the pheromone response pathway.
Thus, the precision for determining these signal trans-
duction networks is relatively lower. Another reason
may be there is less sufficient PPI information available
for the other three pathways compared with the well
studied pheromone response pathway.

Table 7 P-values of functional enrichment for osmolyte synthesis pathway

GO Term Proteins annotated by DAVID in our Proteins annotated by DAVID in P-value P-value (DAVID

method (total: 14) SGD (total: 4870) (hypergeometric Fisher test)
test)

GO:0006970~response to 13 104 1.23E-21 6.01E-20

osmotic stress

G0:0009628~response to 14 344 nan 8.80E-16

abiotic stimulus

GO:0033554~cellular 13 562 nan 5.85E-11

response to stress

Note: “nan” is beyond the computer’s capability.
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Conclusions

In this paper, we reported a new method, named CAS-
CADE_SCAN, to detect signal transduction networks
from high-throughput data. A new tool based on this
method is freely available from the website http://www.
genomescience.com.cn/CASCADE_SCANY/. Different
from previous methods, in CASCADE_SCAN, the SDM
is employed for inferring the signal transduction net-
work and the given proteins utilized are not confined to
membrane receptors or transcription factors. We also
demonstrated that indirect interactions (e.g. the most
computationally predicted interactions) can be effec-
tively used in mining signaling transduction networks.
This is particularly useful because all databases will
include more and more indirect interactions as the data
accumulates.

Methods

Data preparation

Widely used datasets often include PPI data and gene
expression data. Here, only the PPI dataset was
employed. The Yeast Proteome Database (YPD) [39,40],
Saccharomyces Genome Database (SGD) [41] and Data-
base of Interacting Proteins (DIP) [42,43] are the most
frequently used PPI databases, but the interaction data-
set in those databases is very limited, which may lead to
misconnections due to deficient data. In this study, we
constructed a PPI dataset from the STRING database
(Version 8.3) [24,44] and BioGRID database (Version
3.1.74) [45]. The current STRING database contains
6,015 yeast proteins and 245,782 yeast protein interac-
tions, and the BioGRID database contains 6,063 yeast
proteins and 168,599 yeast protein interactions. Our
combined database contains both direct and indirect
PPIs derived from both computational methods and bio-
logical experiments, providing more comprehensive
information than previously used.

PPI scoring system

To score the PPI pairs in the combined database, we
integrated the STRING scoring system and the TCSS
method [25]. The STRING database infers PPIs through
various approaches, including the neighbourhood
method, fusion events, co-occurrence, co-expression,
experimental methods and text-mining. It integrates all
probabilities of those methods and assigns each PPI pair
a reasonable score [24]. The original PPI score in
STRING database is from 0 to 999, which is subse-
quently normalized from 0.000 to 0.999 by dividing by
1000. For all the PPI pairs in the combined database,
the TCSS algorithm was implemented to give each PPI
pair a score with a default biological processes cutoff of
3.5. The score is normalized from 0.000 to 0.999 by
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multiplying by 0.999. However, not all of the proteins
would have a corresponding GO term in the annotation
file. PPI pairs having neither a score in the STRING
database nor a TCSS score were removed. Finally, we
obtained 5,717 yeast proteins and 322,084 yeast protein
interactions. The combined score (the weight of an
edge) of each PPI pair is calculated as:

S=1—+/(1-Srcss) - (1 — Sstrinc) (1)

where, S7css is the normalized score calculated by
TCSS and Sgrring is the normalized STRING score.
Note, if there is a PPI pair only in the STRING database
or could not be scored by TCSS, Szcss would be 0, and
if the PPI pair is not presented in the STRING database,
SSTRING would be 0.

Data pre-processing

To reduce the false positive rate, two pre-processing
steps were carried out to exclude obviously irrelevant
proteins but to keep the high correlated proteins as
much as possible.

Firstly, given several seed proteins, which we assumed
to be known components in a signaling pathway, a simi-
lar but different DFS algorithm was realized. Our DFS
algorithm would search for all proteins connected with
each seed protein within a certain path length. The
common proteins within this scope were kept.

In addition, given an interaction score threshold and
several seed proteins, CASCADE_SCAN searches for
additional proteins having common association with the
seed proteins. If a protein (the nodes in the network
graph) possesses at least three interactions (the edges in
the network graph) with the given seed proteins, this
protein would be selected as a new seed protein, which
would also be considered as a component of the signal
transduction network. Besides, a protein, with at least
two high credible interactions with the given seed pro-
teins, would be also selected as a new seed protein. All
of the seed proteins would be included in the calcula-
tion of the distance or score when we selected the stee-
pest descent nodes or edges, as described in the
following steps.

These steps were carried out by CASCADE_SCAN
automatically. The parameters are adjustable. By default,
the path length is set as 10 and the credible edge weight
threshold 0.980.

Customized steepest descent method for detecting
signaling transduction networks

Given PPI information, our model is based on the fol-
lowing hypotheses: Firstly, proteins in the same signaling
pathway have stronger interactions than that in different
signaling pathways. Secondly, proteins have more
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interactions with each other in the same signaling path-
way than in different signaling pathways. Thus, nodes in
the same network usually have shorter distances to each
other than nodes in different networks, and an “actual
network” usually processes a higher density than net-
works containing more unrelated nodes. The density of
a network is calculated as shown in equation (2). How-
ever, there is still a problem: networks composed of
parts of the “actual network” may also have a similar or
even much higher density. To resolve this problem, we
adopted a strategy to balance the network density and
size. We selected the top five networks sorted by net-
work density in descending order, and the network of
the largest size from among the five as the most possible
one containing the most components of the “actual net-
work”. Generally, the more and stronger the interac-
tions, the higher the total score. Our goal was to find a
compact network with the highest score. The score of a
network is calculated as shown in equation (4).

To achieve our goal, the SDM, which is the simplest
of the gradient methods, was employed to remove
obviously irrelevant nodes. The basic idea of the method
is choosing a direction where the objective function
decreases most quickly. The optimization process starts
at a certain point and slides along the direction until the
result get close enough to the final solution. We detail
this process below. Firstly, the interaction score between
two proteins is converted to a distance. An interaction
score below the score threshold is reassigned as O,
which denotes there is no interaction between the two
proteins, and the corresponding distance will be consid-
ered as an infinite number. Otherwise, if the interaction
score is above the score threshold, the corresponding
distance will be assigned as 1 - score. Then, the graph
search algorithm Dijkstra [46] is employed to calculate
the distance between any two proteins. Given the initial
node, this algorithm will find the shortest path between
this node and any other node in the graph. Hence, it is
often used in solving routing related problems. Conse-
quently, the distances between each protein and any
seed protein are obtained. Generally speaking, if the dis-
tance of a node to the “actual network” is maximal, the
node represents the steepest descent direction. However,
the “actual network” is unknown, we simply use the dis-
tance of the node to any of the given nodes (i.e. seed
proteins) as the distance to the “actual network”. Hence,
the node corresponding to the maximal distance will be
selected as a candidate steepest descent node to remove
from the network. While, if removing the candidate
steepest descent node leads to a disconnection between
given nodes, the node corresponding to the next maxi-
mal distance is selected as a candidate steepest descent
node, and so forth.
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However, there still may be many nodes with short
distances to some of the given nodes. So, when the net-
work size is reduced to a certain extent, using the dis-
tances will no longer be able to distinguish the
differences among those nodes. Moreover, proteins in
the same pathway usually have more than one high
scored interaction predicted by a computational method.
Futhermore, the aggregate scores, which represent the
contributions of a certain node to all of the given nodes,
are obviously distinct from distances to distinguish
which node should be selected as the candidate steepest
descent node. For instance, suppose there are two
nodes, N1 and N2, and three given nodes, G1, G2 and
G3. The edge weight (interaction score for two proteins)
between N1 and G1, N1 and G2, and N1 and G3 are
0.850, 0.900 and 0.95, respectively. While, there is no
edge between N2 and G3, the edge weights between N2
and G1, and N2 and G2 are 0.950 and 0.900, respec-
tively. Therefore, the distance between N1 and the given
nodes (G3 corresponding to the maximal distance) is
0.050, and the distance between N2 and the given nodes
(G1 corresponding to the maximal distance) is also
0.050. That is to say, there is no difference between N1
and N2 in distance. However, the aggregate contributing
score of N1 (2.700) is much higher than the aggregate
contributing score of N2 (1.850). So, when all of the
remaining nodes have at least one edge with the given
nodes, the aggregate scores are employed to select the
candidate steepest descent node.

When the network size is below a specific threshold
(by default, the maximal network size is restricted to
50), the top five largest density networks are recorded.
However, these networks include many false negative
edges, which represent mostly indirect interactions in
the networks. To remove these false negative edges as
much as possible, we use a maximal average weight con-
trolling strategy, and the steepest descent method is
employed here again. If an edge weight in the current
network is minimal, removing this edge would maximize
the average weight the most quickly. So, the least
weighted edge is selected to be removed from the net-
work until the average weight peaks. The average weight
of a network is calculated as shown in equation (3).
However, there may be more than one edge having the
same weight, and all of them would be minimal. In this
situation, we randomly select an edge from among them
as the candidate steepest descent edge. If the removal of
the edge leads to disconnection of the network compo-
nents, the next least weighted edge is selected immedi-
ately. Finally, the aggregate score of each network is
calculated, the network with the highest score being the
most possible one. The formulas to illustrate the process
are shown in detail below:



Wang et al. BMC Bioinformatics 2011, 12:164
http://www.biomedcentral.com/1471-2105/12/164

n—-1 n
> D wie
i1 joirl 2)

n

D, =

n—1 n
D D wie
i=1 jeitl
Wn = (3)

n—1 n

> D e

i=1 j=itl

n—1 n
Sp = Z Z wij e;j (4)

i=1 j=i+l

eije{o,l},i,j=1,2,"',n (5)

where, i is the i-th node, j is the j-th node and # is the
total number of nodes in a signal transduction network,
respectively, and each node in the signal transduction
network represents a protein. e; is the edge between
node i and j, which represents whether the interaction
between node i and j is selected as part of the network
or not. If the edge between node i and j is selected, e;; is
1, otherwise, e; is 0. w;; is the interaction weight of edge
e;, which is represented by the PPI score. We consider
the network as an undirected graph here. Therefore,
interaction weights w;; and w;; are the same in nature.
D,, is the density of a network with a specific size of .
W, is the average weight of a network with a specific
size of n. Each time a least weighted edge is removed
from the network, the average weight becomes larger. S,
is the score of the network with a specific size of n
when the average weight peaks.

To date, the network with the highest score has been
obtained. For comprehensive consideration, we extended
this restriction to the top N highest scored network.

Performance evaluation
We employed precision and recall rates to evaluate the
performance of our model. Precision is defined as the
rate of the number of correctly predicted nodes to the
total number of nodes determined in the signal trans-
duction network. The recall rate is defined as the cor-
rect number of predicted proteins to the total number
of proteins in the corresponding KEGG pathway. Statis-
tical significance was also measured by functional
enrichment analysis of the network components. These
test methods are recognized as common evaluation cri-
teria for signal transduction networks [17,18,23].
Different from previous repeat experiments, we ran-
domly selected several proteins in the same pathways as
seed proteins, rather than using the same membrane
receptor and transcription factor as the seed proteins.
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GO functional enrichment analysis was performed by
DAVID [47,48]http://david.abcc.ncifcrf.gov/. We also
employed hypergeometric distribution to calculate the
statistical significance of the enriched network compo-
nents, as described by:

M N-M
" o\x n—x
p=> (6)
x=1 N
n

where N represents the total number of proteins in
the SGD database, n represents the number of proteins
with the specific function annotated by DAVID in N
proteins, M denotes the network size and « is the num-
ber of proteins with the specific function annotated by
DAVID in M proteins. Fisher’s exact test p-values were
also obtained from DAVID functional enrichment
analysis.
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