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Abstract

Background: Two Bayesian methods, BayesCπ and BayesDπ, were developed for genomic prediction to address
the drawback of BayesA and BayesB regarding the impact of prior hyperparameters and treat the prior probability
π that a SNP has zero effect as unknown. The methods were compared in terms of inference of the number of
QTL and accuracy of genomic estimated breeding values (GEBVs), using simulated scenarios and real data from
North American Holstein bulls.

Results: Estimates of π from BayesCπ, in contrast to BayesDπ, were sensitive to the number of simulated QTL and
training data size, and provide information about genetic architecture. Milk yield and fat yield have QTL with larger
effects than protein yield and somatic cell score. The drawback of BayesA and BayesB did not impair the accuracy
of GEBVs. Accuracies of alternative Bayesian methods were similar. BayesA was a good choice for GEBV with the
real data. Computing time was shorter for BayesCπ than for BayesDπ, and longest for our implementation of
BayesA.

Conclusions: Collectively, accounting for computing effort, uncertainty as to the number of QTL (which affects the
GEBV accuracy of alternative methods), and fundamental interest in the number of QTL underlying quantitative
traits, we believe that BayesCπ has merit for routine applications.

Background
High-density single nucleotide polymorphisms (SNPs)
covering the whole genome are available in animal and
plant breeding to estimate breeding values. First, indivi-
duals having SNP genotypes and trait phenotypes are
used to estimate SNP effects (training), and then geno-
mic estimated breeding values (GEBVs) are obtained for
every genotyped individual using those effects. Cur-
rently, the number of SNP genotypes per individual
amounts to tens of thousands, but, owing to the rapid
advances in genomics, it will soon exceed millions at
comparable costs. The statistical challenge is to estimate
SNP effects in a situation where the number of training
individuals is much smaller than the vast number of
SNPs. For this purpose, Meuwissen et al. [1] presented
two hierarchical Bayesian models, termed BayesA and
BayesB, that are discussed extensively in animal and
plant breeding research (e.g., [2-6]). The reason for their

popularity is that their implementation as single site
locus sampler is straightforward, computing time is rea-
sonable, and both simulations [1,7,8] and real data ana-
lyses [9,10] have shown that linkage disequilibrium (LD)
between SNPs and quantitative trait loci (QTL) is
exploited better than with least-squares or ridge-regres-
sion; hence, accuracies of GEBVs were higher for these
Bayesian methods. Gianola et al. [11] pointed to statistical
drawbacks of BayesA and BayesB that center around the
prior for SNP effects. A priori, a SNP effect is zero with
probability π, and normally distributed having mean zero
and a locus-specific variance with probability (1-π). This
locus-specific variance has a scaled inverse chi-square
prior with few degrees of freedom and a scale parameter,
S2a, that is often derived from an assumed additive-genetic
variance under certain genetic assumptions [11,12]. It can
be shown that the full-conditional posterior of a locus-spe-
cific variance has only one additional degree of freedom
compared to its prior regardless of the number of geno-
types or phenotypes. This conflicts with the concept of
Bayesian learning, and as a consequence, shrinkage of
SNP effects depends strongly on S2a as detailed by [11].
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This problem becomes even more important with increas-
ing SNP density as shown later. There are at least two pos-
sibilities to overcome this drawback: First, a single effect
variance that is common to all SNPs is used instead of
locus-specific variances. Then, as shown later, the influ-
ence of S2a is smaller. Second, the scale parameter of the
inverse chi-square prior for locus-specific variances is trea-
ted as an unknown with its own prior. The first strategy is
referred to as BayesC in the following and the second as
BayesD.
Another drawback of BayesA and BayesB is that the

probability π that a SNP has zero effect is treated as
known. In BayesA, π = 0 so that all SNPs have non-zero
effect, whereas in BayesB, π > 0 to accommodate the
assumption that many SNPs have a zero effect. The
shrinkage of SNP effects is affected by π, and thus should
be treated as an unknown being inferred from the data. In
the following, π is treated as an unknown in BayesC and
BayesD, which will be referred to as BayesCπ and
BayesDπ, respectively. Finally, the question arises how the
estimated π is related to the number of QTL.
The objective of this study was to present two Baye-

sian model averaging methods that address the draw-
back of BayesA and BayesB regarding the impact of S2a
on shrinkage of SNP effects, and treat π as an
unknown by using BayesCπ and BayesDπ. Simulations
were conducted to analyze estimates of π for the abil-
ity to infer the number of QTL depending on the
genetic architecture of a quantitative trait and training
data size. Field data from North American Holstein
bulls were used to estimate π for milk production
traits, and to compare accuracies of GEBVs obtained
by BayesA, BayesB, BayesCπ, BayesDπ, and ridge-
regression. Cross-validations were applied in a setting
where the additive-genetic relationships between train-
ing and validation bulls were low so that the accuracies
of GEBVs were dominated by LD information. This
criterion reveals the potential of genomic selection bet-
ter than accuracy obtained by using training data sets
that contain close relatives of validation bulls such as
parents, full and half sibs. The reason is that future
selection candidates in cattle breeding programs may
not have close relatives in training when genomic
selection is applied early in life [9].

Methods
Statistical Model
The general statistical model can be written as

y = Xβ + u +
K∑
k=1

zkak + e

where y is an N × 1 vector of trait phenotypes, X is an
incidence matrix of the fixed effects in b, u is a vector

with polygenic effects of all individuals in the pedigree,
K is the number of SNPs, zk is an N × 1 vector of geno-
types at SNP k, ak is the additive effect of that SNP, and
e is a vector of residual effects. In this study, the only
fixed effect in b was the overall mean μ, and SNP geno-
types were coded as the number of copies of one of the
SNP alleles, i.e., 0, 1 or 2.

Prior specifications
The prior for μ was a constant; the prior for u|A, σ 2

u

was normal with mean zero and variance Aσ 2
u , where A

is the numerator-relationship matrix and σ 2
u is the addi-

tive-genetic variance not explained by SNPs. The prior
for ak depends on the variance, σ 2

ak, and the prior prob-
ability π that SNP k has zero effect:

ak|π , σ 2
ak =

{
0 with probability π ,
∼ N(0, σ 2

ak) with probability (1 − π). (1)

The models of this study differed in their specifica-
tions for π and σ 2

ak. In BayesA, BayesB and BayesDπ, σ 2
ak

denotes that each SNP has its own variance. Each of
these variances has a scaled inverse chi-square prior
with degrees of freedom νa and scale S2a, and thus with
probability (1-π) the marginal prior of ak|νa, S2a is a uni-
variate student’s t-distribution, t(0, νa, S2a). This is the
model hierarchy proposed by [1], where S2a was derived
here from the expected value of a scaled inverse
chi-square distributed random variable,

E(σ 2
ak) =

νas2a
νa − 2

= σ̃ 2
a ; hence,

S2a =
σ̃ 2
a (νa − 2)

νa
, (2)

where νa was 4.2 as in [1], and σ̃ 2
a is the variance of

the additive effect for a randomly sampled locus, which
can be related to the additive-genetic variance explained
by SNPs, σ̃ 2

s , as

σ̃ 2
a =

σ̃ 2
s

(1 − π)
∑K

k=1 2pk(1 − pk)
, (3)

where pk is the allele frequency of SNP k [11-13].
BayesCπ and BayesDπ are constructed as follows to
address the lack of Bayesian learning in BayesA and
BayesB.
In BayesCπ, σ 2

ak = σ 2
a , i.e., the priors of all SNP effects

have a common variance, which has a scaled inverse
chi-square prior with parameters νa = 4.2 and S2a, where
S2a is derived as for BayesA and BayesB. As a result, the
effect of a SNP fitted with probability (1-π) comes from
a mixture of multivariate student’s t-distributions,
t(0, νa, IS2a). For example, assume that only 3 SNPs are
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used in the analysis, resulting in 4 possible models in
which the effect of SNP 1, say, is not zero (Table 1).
Each of these models has a different multivariate t-prior,
where the univariate t-distribution is regarded here as a
special case of the multivariate distribution. Thus, across
the 4 models, the effect of SNP 1 comes from a mixture
of multivariate t-distributions.
In BayesDπ, the degrees of freedom for the scaled

inverse chi-square prior of the locus-specific variances, νa,
are treated as known with a value of 4.2 as in all other
models, but the scale parameter, S2a, is treated as an
unknown with Gamma(1,1) prior. Thus, for a SNP fitted
with probability (1-π), its effect comes from a mixture of
univariate student’s t-distributions. In this case, the mix-
ture is due to treating S2a as unknown with a gamma prior.
The other parameter that must be specified for the

prior of ak in (1) is π, which is treated as known with π
= 0 for BayesA and, in this paper, with π = 0.99 for
BayesB. In BayesCπ and BayesDπ, in contrast, π is trea-
ted as an unknown with uniform(0,1) prior.
The prior for the residual effects is normal with mean

zero and variance σ 2
e , and the priors for σ 2

u and σ 2
e are

scaled inverse chi-square with arbitrarily small value of
4.2 for the degrees of freedom, and scale parameters S2u
and S2e , respectively. These scale parameters were

derived by the formula σ̃ 2(4.2 − 2)
4.2

, where σ̃ 2 is the a

priori value of σ 2
u or σ 2

e .

Inference of model parameters
Two Markov Chain Monte Carlo (MCMC) algorithms
were implemented to infer model parameters: one for
BayesA, BayesB, and BayesDπ and the other one for
BayesCπ. The differences between these two algorithms
result from how the variances of SNP effects are mod-
eled and lead to different strategies for including a SNP
in the model.

Algorithm for BayesA, BayesB and BayesDπ
BayesA is a special case of BayesB with π = 0. The vari-
ables μ, ak, u, σ 2

u , σ 2
e , as well as S

2
a and π of BayesDπ are

sampled by Gibbs-steps using their full-conditional pos-
teriors, whereas the decision to fit SNP k into the model

and the value of its locus-specific variance, σ 2
ak, are

sampled by a Metropolis-Hastings (MH) step. In con-
trast to Meuwissen et al. [1], who implemented BayesA
using Gibbs sampling, BayesA is implemented here as
BayesB with π = 0 and a reduced number of MH steps.
The MH step used in this study differs from that

described for BayesB in [1]. In their implementation, the
candidate for σ 2

ak is sampled from the scaled inverse chi-
square prior with probability (1 - π), whereas a model
without SNP k is proposed with probability π. In the lat-
ter case both ak and σ 2

ak are equal to zero. The accep-
tance probability for the candidate sample in iteration t
from the currently accepted variance, σ

2(t−1)
ak

, to the can-

didate value, σ 2(t)
ak

, is

min{1, p(y|σ 2(t)
ak , ELSE)

p(y|σ 2(t−1)
ak , ELSE)

},

where p(y|σ 2(t)
ak , ELSE) and p(y|σ 2(t−1)

ak , ELSE) denote

densities of the data model given σ
2(t)
ak

and σ
2(t−1)
ak

,
respectively, and all other model parameters denoted by
ELSE as in Sorensen and Gianola [14], except for ak
which is integrated out here. Values of π close to 1 lead
to candidate samples that are mostly 0, and thus in poor
mixing. To increase the probability of non-zero candi-
dates, the MH step is repeated 100 times in each itera-
tion of the MCMC algorithm.
The proposal distribution for σ

2(t)
ak

used here is differ-
ent from the prior. Regardless of π, the candidate for

σ
2(t)
ak is sampled with probability 0.5 from a scaled

inverse chi-square, and with probability 0.5 from a point
mass on zero, which reduces the number of MH steps
required for mixing. The number of MH steps used
here was 10. Further, the scale parameter S̃2a of the can-
didate is chosen depending on whether SNP k was in
the model in the previous iteration t - 1 or not, i.e.,
whether σ

2(t−1)
ak > 0 or equals to zero:

S̃2a |σ 2(t−1)
ak =

⎧⎪⎨
⎪⎩
S2a σ

2(t−1)
ak = 0, a(t−1)

k = 0,

σ
2(t−1)
ak (νa − 2)

νa
σ
2(t−1)
ak > 0.

The acceptance probability is

min{1, p(y|σ 2(t)
ak , ELSE)p(σ 2(t)

ak |π)q(σ 2(t−1)
ak |σ 2(t)

ak )

p(y|σ 2(t−1)
ak , ELSE)p(σ 2(t−1)

ak |π)q(σ 2(t)
ak |σ 2(t−1)

ak )
},

where the prior for σ
2(t)
ak is

p(σ 2(t)
ak |π) =

{
(1 − π)νaS2aχ

−2
νa

σ
2(t)
ak > 0,

π σ
2(t)
ak = 0, a(t)k = 0,

Table 1 Model configurations in which SNP 1 has
non-zero effect for an example using three SNPs in the
analysis

Model

SNP effect 1 2 3 4

a1 ≠0 ≠0 ≠0 ≠0

a2 ≠0 0 ≠0 0

a3 ≠0 ≠0 0 0
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and its proposal is

q(σ 2(t)
ak |σ 2(t−1)

ak ) =

{
0.5νaS̃2aχ

−2
νa

σ
2(t)
ak > 0,

0.5 σ
2(t)
ak = 0, a(t)k = 0.

This proposal is expected to have better mixing than
that of [1] for extreme values of π. The acceptance
probability is equivalent to equation 2.4 in Godsill
(2001) [15].
After σ

2(t)
ak has been updated, ak is sampled from

ak|σ 2(t)
ak =

⎧⎨
⎩∼ N(

x′
krk
ck

,
σ 2
e

ck
) σ

2(t)
ak > 0,

0 σ
2(t)
ak = 0.

(4)

where rk = y − u − ∑K
k′ �=k xk′ak′ and ck = x′

kxk +
σ 2
e

σ 2
ak

.

After σ
2(t)
ak and ak have been updated for all K SNPs, the

polygenic effects in u are sampled by the technique of
[16] as described in [14] using an iterative algorithm to
solve the mixed model equations; σ 2

u is sampled from a
scaled inverse chi-square with degrees of freedom
ν̃u = νu + nu and scale S̃2u = (νuS2u + u′A−1u)/ν̃u, where nu
is the number of individuals in the pedigree; σ 2

e is
sampled from a scaled inverse chi-square with ν̃e = νe + n
and S̃2e = (νeS2e + e′e)/ν̃e, where n is the number of train-
ing individuals. In BayesDπ, S2a is sampled from a gamma

with shape α = 1 +
m(t)νa

2
and scale β = 1 +

∑K
k=1

1

2σ 2
k
,

where m(t) is the number of SNPs fitted in the model for
iteration t. The parameters of this gamma posterior show
that information from all loci contributes to the posterior
of the unknown scale parameter and therefore through it
to the posteriors of the locus-specific variances. Finally, π
is drawn from Beta(K - m(t) + 1, m(t) + 1). The starting
value for π was 0.5.

Algorithm for BayesCπ
The MCMC algorithm for BayesCπ consists of Gibbs
steps only, where those for μ, u, σ 2

u , σ 2
e , and π are iden-

tical to those in BayesDπ. In contrast, the decision to
include SNP k in the model depends on the full-condi-
tional posterior for the indicator variable δk, which is
introduced for this very purpose. This indicator variable
equals 1 if SNP k is fitted to the model and is zero
otherwise. Following general Bayesian rules, the full-
conditional posterior probability that δk = 1 is

p(δk|y, ELSE) = p(y|δk = 1, σ 2
a , ELSE)p(δk = 1|π)
p(y|ELSE) ,

where p(y|ELSE) = p(y|δk = 0,
ELSE)p(δk = 0|π) + p(y|δk = 1, σ 2

a , ELSE)p(δk = 1|π);

p(y|δk = 1, σ 2
a , ELSE) denotes the density of the data

model given that SNP k is fitted with common effect
variance σ 2

a and the currently accepted values of all
other parameters, p(y|δk = 0, ELSE) is the density of the
data model without SNP k, p(δk = 0|π) = π is the prior
probability that SNP k has zero effect, and correspond-
ingly p(δk = 1|π) = 1 - π. The posterior for ak is identi-
cal to (4) except that σ 2

a replaces the locus-specific

variance in ck so that ck = x′
kxk +

σ 2
e

σ 2
a
. The common effect

variance is sampled from a full-conditional posterior,
which is a scaled inverse chi-square with degrees of
freedom ν̃a = νa +m(t) and scale

S̃2a = (νaS2a +
∑K

k=1 a
2
k)/ν̃a, where m(t) is the number of

SNPs fitted with non-zero effect in iteration t.
The starting value for π, π0, determines S2a as can be

seen from equations (2) and (3). However, S2a can affect
to what extent π is used to shrink SNP effects, hence the
estimate of π. As S2a increases with π0, less shrinkage is
expected through S2a, but shrinkage can be increased with
larger π values, which can be regarded as a compensation
for the lower shrinkage through S2a. To examine the effect
of π0 in BayesCπ, results are given for π0 equal to 0.5, 0.8
and 0.95. The degrees of freedom of the scaled inverse
chi-square prior, νa, also determine S2a through formula
(2), and thus can affect π estimates. However, in this
study νa was not varied, but held constant at 4.2.

Impact of S2a on shrinkage in BayesCπ compared to
BayesA and BayesB
The parameters of this full-conditional distribution can
be used to contrast the impact of S2a on shrinkage in
BayesCπ compared to that in BayesA and BayesB. In the
latter, the posterior of the locus-specific variance of SNP
k is a scaled inverse chi-square distribution with degrees
of freedom ν̃ak = νa + 1 and scale S̃2ak = (νaS2a + a2k )/ν̃k[11].
That is, that posterior has only one more degree of free-
dom than the prior. In contrast, the full-conditional of
the posterior of the common effect variance in BayesCπ
will have more degrees of freedom when m(t) > 1 and
the scale is less influenced by S2a and more a function of

the information contained in the data through
∑K

k=1 a
2
k.

The impact of S2a on the shrinkage of SNP effects,
especially for BayesA, increases with SNP density. The

scale parameter, S2a =
σ̃ 2
a (νa − 2)

νa
, decreases with

increasing number of SNPs in the analyses due to

σ̃ 2
a =

σ̃ 2
s

(1 − π)	K
k=12pk(1 − pk)

, which depends on π.

Hence, small SNP effects are regressed more towards
zero than with a smaller number of SNPs in the model.
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Consider a chromosomal segment where a QTL is sur-
rounded by many SNPs that are all in LD with the
QTL. In the worst case, all these SNPs are collinear,
which might occur for low effective population sizes.
The QTL effect, even if large, will be distributed to all
SNPs such that each SNP effect is small. As these effects
are strongly regressed towards zero, the QTL effect can
be completely lost.

Software implementation
These Bayesian model averaging methods were imple-
mented in GenSel software [17] and are available for
web-based analysis of genomic data. It is accessible
through BIGS.ansci.iastate.edu, and a user manual is
attached to this manuscript in additional file 1.

Simulations
Simulations were conducted to analyze estimates of π
from BayesCπ and BayesDπ depending on the genetic
architecture of an additive quantitative trait, and train-
ing data size. Two types of scenarios were simulated in
this study. The first was an ideal scenario in which all
loci were in mutual linkage equilibrium and genotypes
of both SNPs and QTL were available for training and
validation. The true value of π is the number of QTL
divided by the total number of loci in this analysis. The
second was a realistic scenario in which the loci were in
LD and only SNPs were modeled. As a consequence the
true value of π was unknown. In both scenarios, loci
were biallelic with initial allele frequency of 0.5, and
QTL effects were sampled either from a standard nor-
mal or from a gamma with shape 0.4 and scale 1.66 as
in [1]. Figure 1 depicts the cumulative distribution

functions of these two distributions to illustrate the dif-
ferent effect sizes simulated. The sampled QTL effects
were standardized before training to exhibit the addi-
tive-genetic variance calculated from a specified herit-
ability and a residual variance of 1. Trait phenotypes
were simulated by adding residual effects sampled from
a standard normal to the sum of the genotypic values.
Simulations were varied with different numbers of QTL
and training data sizes, which was either 1,000 or 4,000
individuals. The MCMC algorithms were run for 50,000
iterations with a burn-in of 20,000 iterations. A higher
number of iterations did not change the results.
In the ideal simulations, a total of 2,000 loci were simu-

lated as if they were all located on different chromosomes
to ensure linkage equilibrium. The number of QTL
among those loci was 10, 200, or 1,000 and trait heritabil-
ity was 0.5. The realistic simulations started with a base
population of 1,500 individuals that were randomly
mated over 1,000 generations to generate LD from muta-
tions and drift. Individuals of generation 1,000 were used
as founders of a real pedigree from the North American
Holstein population, which included 7,094 bulls used in
the real data analysis. This simulated LD similar to that
in real livestock populations [9]. Individuals from the last
generation of pedigree individuals were parents of the
training individuals, with each parent represented once.
The simulated genome consisted of a single chromosome
of length 1 M that had 4,000 evenly-spaced SNPs and
either 10, 20, or 40 QTL that were randomly distributed
on the chromosome. The mutation rate was 2.5•10-5 for
both SNPs and QTL, which is larger than estimates of
actual mutation rates to ensure that a sufficient number
of loci was segregating after 1,000 generations of random
mating; it can be shown that mutation rate has only a
small effect on LD in this simulation using the formula
derived by [18]. Recombinations were modeled according
to a binomial map function, where the maximum num-
ber of uniformly and independently distributed cross-
overs on a chromosome of 1 M was 4 [19], i.e., assuming
interference. The proportion of segregating loci after
1,000 generations of random mating was 0.98, hence the
number of segregating QTL in the scenarios with 10, 20
and 40 QTL was 9.8, 19.6 and 39.2 on average, respec-
tively. To select 2,000 SNPs for training and validation,
the chromosome was first divided into 2,000 evenly-
spaced bins and then one SNP with minor allele fre-
quency greater than 0.05 was randomly selected in each
bin. The heritability was varied with the values 0.03, 0.2
and 0.9 to modify the size of QTL effects. All simulations
were repeated 24 times.

Real data analyses
Data from North American Holstein bulls were used to
gain information about the number of QTL affecting
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0.4 and scale 1.66 and absolute standard normal.
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quantitative traits in real populations and to compare
the different Bayesian methods with respect to GEBV
accuracy that results mainly from LD information.

Genotyped bulls
The data set consisted of 7,094 progeny tested North
American Holstein bulls that were genotyped for the
Illumina Bovine50K array, excluding bulls that had more
than 5% missing genotypes. De-regressed breeding
values obtained from the official genetic evaluation of
the USDA in August 2009 were used as trait phenotypes
and were available for the quantitative traits milk yield,
fat yield, protein yield and somatic cell score. The de-
regressed proofs of the bulls used had a reliability
greater than 0.7 and the square root of the reliability
was used to weight residual effects [20]. The average
reliability of milk, fat and protein yield was 0.89 and
that of somatic cell score 0.81. Furthermore, a pedigree,
containing the bulls in cross-validation and their ances-
tors born after 1950, was available to model polygenic
effects and to quantify additive-genetic relationships
between training and validation bulls.

SNP data
SNPs were selected for the analyses based on minor
allele frequency (> 3%), proportion of missing genotypes
(< 5%), proportion of mismatches between homozygous
genotypes of sire and offspring (< 5%) and Hardy-Wein-
berg equilibrium (p < 10-10). The total number of SNPs
in the analyses was 40,764.

Training and validation data sets
Bulls born between 1995 and 2004 were used for train-
ing, whereas 113 bulls born before 1995 and with addi-
tive-genetic relationships to the training bulls smaller
than 0.1 were used for validation. The reason for gener-
ating this cross-validation scenario was that LD rather
than additive-genetic relationships was to determine the
accuracy of GEBVs. The contribution of LD information
to the estimates of SNP effects is sensitive to the size of
the training data set, and thus 1,000, 4,000 and 6,500
training bulls were randomly selected from the bulls
born between 1995 and 2004.
The MCMC algorithms were run for 200,000 itera-

tions with a burn-in of 150,000 iterations for 1,000
training bulls, 100,000 iterations with a burn-in of
50,000 iterations for 4,000 training bulls, and 50,000
iterations with a burn-in of 20,000 iterations for 6,500
training bulls. These numbers of iterations were suffi-
cient in that a higher number did not change the
results. Posterior distributions were visually inspected
for convergence. In addition to the GEBVs obtained by
the Bayesian model averaging methods, breeding values
for the validation bulls were estimated using an animal

model with the numerator-relationship matrix [21,22],
which provided standard pedigree-based BLUP-EBVs (P-
BLUP) to quantify the genetic-relationship information
from the pedigree. An animal model with a genomic
relationship matrix [13] was used to obtain GEBVs (G-
BLUP), which is equivalent to ridge-regression.

Evaluation criteria
Estimates of π were studied as K(1 − π̂), where K is the
number of loci used in the statistical analysis. This
represents the posterior mean of the number of loci
fitted in each iteration of the MCMC algorithm (NSNP),
which is more practical than π for comparisons of sce-
narios that differ in the number of simulated QTL. The
reason is that the true value of π is usually unknown
unless QTL are among the loci in the model. The accu-
racy of GEBVs was estimated by correlation between
GEBVs and de-regressed proofs divided by the average
accuracy of de-regressed proofs of the validation bulls.
The GEBV of validation bull i was calculated as

GEBVi =
K∑
k=1

zikâk

where zik is the genotype score (0, 1, or 2) for bull i at
SNP k and âk is the posterior mean of the effect at that
locus. The EBVs from P-BLUP and G-BLUP were
obtained from solutions of the animal model.

Results
Ideal scenario
Table 2 depicts the posterior number of SNPs fitted in
the model (NSNP) estimated by BayesCπ and BayesDπ
starting with π = 0.5 according to the number of train-
ing individuals, number of QTL (NQTL) and distribution
of QTL effects, which all had a considerable effect on
the results. A sufficiently large set of training data

Table 2 Posterior mean of (1-π) multiplied by K = 2,000
loci used in the analyses (se) according to the Bayesian
method, number of QTL, distribution of QTL effects and
training data size

QTL effect distribution and training data size

Gamma Normal

Method No. of QTL 1,000 4,000 1,000 4,000

BayesCπ 10 7 (1) 7 (0.8) 13 (0.9) 12 (0.8)

200 69 (5) 86 (3) 236 (13) 204 (3)

1,000 312 (40) 315 (8) 1,230 (91) 1,007 (19)

BayesDπ 10 165 (11) 59 (3) 229 (9) 81 (4)

200 645 (22) 343 (7) 952 (24) 564 (6)

1,000 984 (39) 747 (10) 1,169 (36) 1,227 (12)

The starting value for π was 0.5. Results are based on 24 replicates of the
ideal simulation in which all loci were in linkage equilibrium and both SNPs
and QTL were modeled.
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would include in the model only QTL and no spurious
SNPs. With normal distributed QTL effects, BayesCπ
was more accurate in this regard than BayesDπ, espe-
cially as training data size increased. BayesDπ fitted sub-
stantially more loci than NQTL in the scenarios with 10
and 200 QTL; in addition, NSNP did not approach NQTL

as training data size increased in the scenario with 1,000
QTL. With gamma distributed QTL effects, NSNP was
always lower than NQTL with BayesCπ; BayesDπ, in con-
trast, overestimated NQTL when 10 and 200 QTL were
simulated, but underestimated it for 1,000 QTL. Starting
with π = 0.8 or 0.95 hardly changed NSNP from BayesCπ
(results not shown); the only notable change was
obtained for normal distributed QTL effects and NQTL =
1,000, where NSNP increased with training data size from
640 to 957.

Realistic scenario
Table 3 shows NSNP estimated by BayesDπ for h2 = 0.9.
Although NSNP declined with decreasing NQTL, NSNP over-
estimated NQTL considerably, and the training data size
did not have an effect on NSNP. The overestimation was
even higher for heritabilities of 0.03 and 0.2 (not shown),
but NSNP decreased somewhat with increasing training
data size. BayesCπ with a starting value of π = 0.5
(Table 4) overestimated NQTL less than BayesDπ for h2 =
0.9, and significant trends were obtained for NSNP with
increasing training data size, which depended on the dis-
tribution of QTL effects, NQTL, and h2. For h2 = 0.9, NSNP

increased with training data size and the overestimation of
NQTL decreased with NQTL. For h

2 = 0.2, in contrast, the
overestimation was higher with 1,000 training bulls, and
NSNP decreased significantly with training data size. For h2

= 0.03, NSNP was generally high, and decreased with train-
ing data size except for 20 and 40 QTL with normally dis-
tributed effects. However, the trend with training data size
for h2 = 0.03 was smaller than for the other two h2 values
relative to the high NSNP with 1,000 training individuals.
Starting with π values of 0.8 and 0.95 (results not shown)
did not change results for h2 = 0.9, but decreased the

decay of NSNP with training data size for h2 = 0.2, because
estimates for NSNP were smaller with 1,000 training indivi-
duals. The latter was also observed for h2 = 0.03 along
with a decreasing trend for NSNP.

Real data analyses
Additive-genetic relationships between training and vali-
dation bulls were small: No validation bull had an addi-
tive-genetic relationship to a training bull exceeding
0.092. The distribution of the maximum additive-genetic
relationships between training and validation bulls had a
lower quartile, median, and upper quartile of 0.016, 0.05
and 0.07, respectively. The main cause of the low addi-
tive-genetic relationships was a separation of about three
generations between the bulls of both data sets, because
90% of the validation bulls were born before 1975. Table
5 shows accuracies of P-BLUP, G-BLUP, and the Baye-
sian model averaging methods according to the quantita-
tive trait and training data size. The accuracies of
P-BLUP for fat and protein yield as well as somatic cell
score were close to zero as expected, but the accuracy for
milk yield was unexpectedly high with 0.15 and 0.24 for
1,000 and 4,000 training individuals, respectively.
Accuracies of GEBVs were similar for the different

methods with the following exceptions: BayesB with π =
0.99 had the lowest accuracies for all traits but fat yield,
and G-BLUP had the lowest accuracies for fat yield.
Furthermore, the accuracies for milk yield obtained by
BayesCπ tended to be lower than for G-BLUP, BayesA
and BayesDπ. In general, BayesA tended to give the high-
est accuracies for all traits except for fat yield. The accura-
cies of BayesCπ did not differ depending on the starting
values for π (results only shown for starting π = 0.5).

Table 3 Posterior mean of (1-π) multiplied by K = 2,000
SNPs used in the analyses (se) obtained by BayesDπ
according to the number of QTL, distribution of QTL
effects and training data size

QTL effect distribution and training data size

Gamma Normal

No. of QTL 1,000 4,000 1,000 4,000

10 243 (14) 253 (14) 375 (23) 395 (21)

20 278 (24) 293 (25) 546 (31) 538 (29)

40 461 (30) 465 (26) 779 (31) 771 (19)

Results are based on 24 replicates of the realistic simulation in which
heritability was 0.9, loci were in linkage disequilibrium, and only SNPs were
modeled.

Table 4 Posterior mean of (1-π) multiplied by K = 2,000
SNPs used in the analyses (se) obtained by BayesCπ
according to the heritability (h2), number of QTL,
distribution of QTL effects and training data size

QTL effect distribution and training data size

Gamma Normal

h2 No. of
QTL

1,000 4,000 1,000 4,000

0.9 10 52 (5) 99 (9) 73 (5) 147 (7)

20 65 (6) 127 (11) 112 (7) 210 (10)

40 115 (11) 198 (13) 202 (19) 343 (17)

0.2 10 421 (137) 37 (5) 532 (115) 54 (5)

20 654 (140) 62 (8) 917 (131) 133 (35)

40 1006 (97) 174 (57) 1178 (42) 434 (109)

0.03 10 1083 (80) 933 (130) 1045 (59) 1081 (108)

20 1162 (69) 1103 (58) 1035 (50) 1099 (62)

40 1043 (83) 1206 (42) 1149 (54) 1331 (39)

Starting value for π was 0.5. Results are based on 24 replicates of the realistic
simulation in which loci were in linkage disequilibrium and only SNPs were
modeled.
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The accuracy of GEBVs improved markedly with
training data size for milk yield, fat yield and somatic
cell score from 1,000 to 4,000 bulls, but improved only
slightly or reduced from 4,000 to 6,500 bulls. The
increase in accuracy with training data size for protein
yield was less than for the other traits from 1,000 to
4,000 bulls, but tended to be more from 4,000 to 6,500
bulls. Somatic cell score had the highest relative
increase in accuracy of all traits because accuracies
were lowest for 1,000 training bulls. Interestingly, G-
BLUP had the lowest accuracy for somatic cell score
with 1,000 training bulls, but the increase was largest
such that the accuracy for 6,500 bulls was as high as
for BayesA.
The posterior distributions for NSNP (not shown) were

unimodal, symmetric, and standard deviations decreased
notably with increasing training data size as in Table 6.
Exceptions were the posterior distributions for protein
yield and somatic cell score of BayesCπ with 1,000
training bulls, which were bimodal and rather flat.
Although the accuracies of BayesCπ and BayesDπ were
very similar, they fitted very different numbers of SNPs
(Table 6). As in the realistic simulations, NSNP from
BayesDπ was insensitive to training data sizes for all
traits, whereas BayesCπ showed clear trends with train-
ing data size that differed across traits; NSNP was com-
paratively low for milk and fat yield and increased with
training data size, and estimates were very similar for
the different starting values of π, π0. NSNP always
decreased with training data size for protein yield, but
estimates increased for all training data sizes as π0

decreased. For somatic cell score, however, the trends
changed depending on π0; NSNP increased with training
data size for π0 = 0.95, but decreased with lower π0

values.

Discussion
Two Bayesian model averaging methods that address the
statistical drawbacks of BayesA and BayesB were devel-
oped for genomic prediction. These two models were
termed BayesCπ and BayesDπ to emphasize that the
prior probability π that a SNP has zero effect was trea-
ted as an unknown. The objectives of this study were to
evaluate the ability of these methods to make inferences
about the number of QTL (NQTL) of a quantitative trait
by simulated and real data, and to compare accuracies
of GEBVs from these new methods compared to exist-
ing methods.

Simulations
In ideal simulations, all loci were in linkage equilibrium
and both SNPs and QTL were modeled. BayesCπ was
able to distinguish the QTL that had non-zero effects
from the SNPs that had zero effects as training data size
increased and when QTL effects were normally distribu-
ted. In contrast, when QTL effects were gamma distrib-
uted many QTL remained undetected. This may have
been because the gamma distribution generated fewer
large effects and more small effects than the normal
(Figure 1). Further, the prior of SNP effects in BayesCπ
given the common effects variance was normal and not
gamma; a gamma prior may produce better results and
should be investigated in a subsequent study. In conclu-
sion, even in this ideal case the estimate of K(1 − π̂)
obtained from BayesCπ is a poor indicator for NQTL,
unless the QTL distribution is normal. BayesDπ was
insensitive to NQTL and inappropriate to estimate NQTL.
In realistic simulations, SNPs and QTL were in LD

and only the SNP genotypes were known. As expected,
BayesCπ fitted more SNPs than there were QTL,
because every QTL was in LD with several SNPs.

Table 5 GEBV accuracy of 113 Holstein Friesian bulls born between 1953 and 1994 according to the Bayesian method,
quantitative trait and number of Holstein Friesian bulls born between 1995 and 2004 used for training

Trait Training data size P-BLUP G-BLUP BayesA BayesB, π = 0.99 BayesCπ BayesDπ

Milk yield 1,000 0.15 0.38 0.39 0.22 0.35 0.38

4,000 0.24 0.46 0.46 0.41 0.43 0.46

6,500 0.10 0.48 0.48 0.40 0.43 0.47

Fat yield 1,000 -0.05 0.41 0.48 0.51 0.48 0.47

4,000 0.04 0.49 0.54 0.55 0.58 0.56

6,500 -0.15 0.51 0.56 0.52 0.54 0.57

Protein yield 1,000 0.02 0.13 0.14 0.05 0.14 0.13

4,000 0.03 0.17 0.17 0.13 0.17 0.16

6,500 -0.02 0.21 0.22 0.17 0.21 0.20

Somatic cell score 1,000 0.03 0.04 0.06 0.06 0.06 0.05

4,000 -0.11 0.14 0.18 0.12 0.15 0.16

6,500 -0.04 0.17 0.17 0.12 0.14 0.14

Starting value of π in BayesCπ was 0.5.

standard error,
√
(1 − ρ̂2)/(113 − 2) : 0.08 - 0.09.
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However, the number of SNPs fitted per QTL depended
on both training data size and effect size of a QTL,
which was varied here by the distribution of QTL
effects, h2 and NQTL; the size of simulated QTL effects
increased with h2 and decreased with NQTL. If QTL
effects were generally large and easy to detect (Table 4,
h2 = 0.9), NSNP was small with 1,000 training individuals
and increased with training data size. In addition, the
larger a QTL effect, the more SNPs were fitted per QTL
(Table 4, h2 = 0.9, 10 vs. 20 NQTL). The cause for these
findings may be that SNPs in low LD with the QTL
were more likely to be fitted as either QTL effect size or
training data size increased. The increase in NSNP with
training data size could also have been the result of
detecting QTL with smaller effects. If QTL effects were
smaller and less easy to detect (Table 4, h2 = 0.2), NSNP

was larger with 1,000 training individuals, which may be
explained by false positive SNPs in the model, because
the power of detection was likely to be low. In contrast
to h2 = 0.9, NSNP decreased substantially with training
data size. However, the fact that NSNP increased with
training data size for h2 = 0.03, normally distributed
QTL effects, and a starting value of π = 0.5 (S2a small)
points to another explanation why many SNPs were
fitted with small QTL effect size or small training data
size: a higher number of SNPs explains differences
between training individuals better than a smaller num-
ber, and thus more SNPs were required to explain those
differences as training data size increased. In conclusion,
BayesCπ overestimates NQTL, the extent depending on
the size of QTL effects, which makes inference difficult.
However, information about NQTL can be gained by
analyzing the trend of NSNP with training data size, and
starting with different π values. Furthermore, as SNP

density increases in the future, overestimation of NQTL

is expected to be smaller, because LD between SNPs
and QTL will be higher such that fewer SNPs are mod-
eled per QTL. Sufficiently high SNP density guarantees
near perfect LD between at least one SNPs and each
QTL in which case the scenario of the ideal simulations
will be approached.

Real data analysis
Number of QTL and size of QTL effects
In agreement with the realistic simulations, estimates of
π from BayesDπ were insensitive to both trait and train-
ing data size (Table 6). BayesCπ, in contrast, showed
clear differences for both: NSNP increased with training
data size for milk and fat yield, and decreased for protein
yield and somatic cell score. Thus, milk and fat yield may
have more QTL with large effects than protein yield and
somatic cell score, which can be derived from the trends
of NSNP in the realistic simulations. This is also sup-
ported by the accuracies of GEBVs where milk and fat
yield had a higher accuracy than protein yield and
somatic cell score. Furthermore, fat yield may have more
QTL with large effect than milk yield, because both the
increase of NSNP from 1,000 to 4,000 training bulls and
accuracy of GEBVs was higher for fat yield.
The number of SNPs in the model estimated by

BayesCπ may primarily result from the QTL with the
largest effects, assuming that QTL with small effects
were not detectable. The rather low accuracies of
GEBVs and especially the low increase in accuracy from
4,000 to 6,500 bulls may also point to this conclusion,
because many more training individuals seem to be
necessary to estimate small QTL effects. Another reason
may be that LD between SNPs and QTL was still too

Table 6 Posterior mean (μ̂) and standard deviation (σ̂) of (1-π) obtained by BayesCπ (Starting value of π was 0.5) and
BayesDπ multiplied by K = 40,764 SNPs used in the analyses, and average number of SNPs (x̄) fitted by BayesB with
π = 0.99 and standard error (se) according to the quantitative trait and the number of Holstein Friesian bulls used for
training

BayesB, π = 0.99 BayesCπ BayesDπ

Trait Training data size x̄(se) μ̂ σ̂ μ̂ σ̂

Milk yield 1,000 402 (1.5) 2,119 545 13,982 1,793

4,000 436 (1.6) 2,315 398 13,329 896

6,500 518 (1.6) 2,555 326 14,768 750

Fat yield 1,000 401 (1.1) 562 201 13,533 1,752

4,000 441 (1.3) 1,488 210 13,513 895

6,500 504 (1.3) 2,058 229 13,703 631

Protein yield 1,000 403 (0.9) 10,986 3,970 14,430 2,201

4,000 438 (1.1) 9,500 1,756 13,512 774

6,500 514 (1.1) 5,503 970 14,496 694

Somatic cell score 1,000 398 (1.2) 5,644 3,105 12,962 1,948

4,000 428 (1.3) 3,624 1,043 13,941 954

6,500 466 (1.3) 2,723 508 13,464 741
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low, but this will change as SNP density increases; QTL
with large effects will be estimated with fewer SNPs and
additional QTL with smaller effect will be detected.
As mentioned earlier, a possible overestimation of

NQTL results from the fact that several SNPs are in LD
with a QTL, where each of these SNPs explains a part
of the QTL effect. These SNPs are likely to surround
the QTL on the chromosome, and thus NQTL can be
estimated more precisely by calculating the variance of
GEBVs explained by the effects of all SNPs in a specified
chromosomal region. This can be done by defining a
window containing a certain number of consecutive
SNPs that are used to calculate this variance. By sliding
the window over the chromosome and observing peaks
that are higher than for single SNPs, NQTL may be
inferred better. This can be done with all methods that
estimate SNP effects.
Comparison of the accuracy of GEBVs
North American Holstein bulls were partitioned into
training and validation data sets such that bulls of both
data sets were as unrelated as possible. As a result, the
contribution of additive-genetic relationships to the
accuracy of GEBVs was negligible for fat yield, protein
yield and somatic cell score as demonstrated by the low
accuracy of P-BLUP. However, that accuracy was unex-
pectedly high for milk yield, which might be an artifact
of previous selection for milk yield because genotypes in
the validation data set were only available from selected
parents. Accuracies of GEBVs were similar for the dif-
ferent methods, and no one outperformed all the others
across all traits or training data sizes. Nevertheless,
BayesA performed remarkably well for this SNP density
despite the statistical drawback of BayesA as described
by [11]. However, as demonstrated in [11], it is impor-
tant that the degrees of freedom used for the scaled
inverse chi-square prior of the locus-specific variances
express little prior belief. BayesA always fits all SNPs,
hence the shrinkage of SNP effects results completely
from the locus-specific variances, and, in contrast to the
other methods, SNP effects are not fully shrunk to zero.
Thus, even SNPs that truly have zero effects are
expected to have small estimated effects adding noise to
the GEBVs. This applies also to G-BLUP, which is
equivalent to ridge-regression fitting all SNPs with equal
variance. This did not seem to affect the accuracy of
GEBVs here, but in the simulations of [1] BayesB per-
formed better than BayesA and ridge-regression. The
explanation may be that the traits analyzed here are
determined by many more QTL than in those simula-
tions. Thus, BayesA may be inferior to BayesCπ and
BayesDπ for traits that are determined by only a few
QTL and when many more SNPs effects are modeled as
SNP density increases. Applying BayesA to the data sets

of the realistic simulations with only 10 QTL confirmed
its inferiority to BayesCπ and BayesDπ.
Treating π as known with a high value as in BayesB

may be a poor choice. This agrees with Daetwyler et al.
[23] who reported that G-BLUP outperformed BayesC
with a fixed π when the number of simulated QTL was
large. This can be explained partly by the fact that [23]
considered the GEBV accuracy of the offspring of train-
ing individuals, meaning that genetic-relationships were
important; these were captured better by the SNPs,
when more SNPs were fitted as in G-BLUP [7]. Note
further that BayesC with π = 0 is similar to G-BLUP.
Consider ridge-regression as the equivalent model of G-
BLUP to see this similarity. Both methods are equivalent
either 1) if the single effect variance of BayesC is treated
as known, 2) if νa is very large and S2a equals to the sin-
gle effect variance of ridge regression, or 3) if the single
effect variance of ridge regression is treated as unknown
with own scaled inverse chi-square prior. Thus the
lower accuracy for BayesC in that study results most
likely from treating π as known. Another reason may be
that the scale parameter of the inverse chi-square prior
for the common effect variance in [23] did not depend
on the additive-genetic variance nor on the fixed π
value as proposed by [1].
The finding that BayesCπ and BayesDπ give similar

accuracies but different π values reveals that the two
methods have different mechanisms for shrinking SNP
effects. BayesDπ primarily used the locus-specific var-
iances, whereas BayesCπ was only able to vary the
shrinkage at different SNPs by using δk; if a SNP is not
fitted to the model the effect is shrunk completely to
zero, otherwise they are all shrunk using the same ratio
of residual to common effect variance. In principle,
BayesDπ is expected to be more flexible in shrinking
SNP effects because it could use both locus-specific var-
iances and δk for this purpose. The poor mixing of π in
BayesDπ indicates that locus-specific variances domi-
nated over δk, which may explain why π is not an indi-
cator for NQTL.
Effect of training data size on Bayesian model averaging
Another insight into the mechanisms of Bayesian model
averaging comes from the large increase in accuracy of
GEBVs with training data size obtained by BayesB for
milk yield. The parameter π was treated as known with
value 0.99 resulting in about 400 SNPs fitted in each
iteration of the MCMC algorithm for both 1,000 and
4,000 training bulls (Table 6). This indicates that π is a
strong prior for δk = 0. Therefore, setting π = 0.99 is
analogous to searching for models that fit about 400
SNPs in each iteration of the algorithm and to average
them. These models change from one iteration to
another as some SNPs are removed from the model,
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while others are included. This interchange of SNPs,
however, is expected to be more frequent with a small
training data size, because the power to detect signifi-
cant SNPs is low. On the other hand, if the training
data size is large, fewer SNPs are interchanged less often
so that models differ less from one iteration to the
other. This becomes most apparent in the increasing
number of SNPs having moderate to high model fre-
quency as training data size increased from 1,000 to
4,000 bulls as shown in Figure 2. The implication is that
the effects of those SNPs were less shrunk with larger
training data size, whereas effects of all other SNPs were
shrunk more.
Comparison of GEBV accuracy with other studies
Accuracies of GEBVs reported by [24] and [2] for the
North American and Australian Holstein populations,
respectively, are not comparable to the accuracies found
here. Accuracies for the milk production traits were
higher in those studies, because validation bulls were
closely related to those comprising the training data as
demonstrated by [9]. In that study, accuracy of GEBVs
due to LD was estimated from 1,048 and 2,096 German
Holstein bulls using BayesB with π = 0.99. Most of
those bulls were born between 1998 and 2004, and 60%
were offspring of North American Holstein bulls reveal-
ing the high genetic relationships between the German
and the North American Holstein population. The strat-
egy used to estimate the accuracy due to LD was a
regression approach based on pairs of training and vali-
dation data sets with different additive-genetic relation-
ships between the bulls of both data sets. That strategy
is very time-consuming when several methods must be
compared, and therefore a different approach was cho-
sen here. GEBV accuracies obtained by BayesB com-
pared to those in [9] were similar for milk yield,

comparable for fat yield when the training data size was
greater than 1,000, but lower for protein yield and
somatic cell score. The increase of accuracy with train-
ing data size tended to be higher in [9]. Moreover, in
contrast to the present study, G-BLUP was inferior in
[9]. The difficulties in comparing the accuracies found
here to those in [9], apart from the standard errors, is
that there might be genotype-environment interactions,
because the environment in which the daughters of the
bulls born before 1975 have been tested might be differ-
ent from the environment of the last decade relevant to
the daughters of the training bulls. In addition, selection
and genetic drift may have changed the LD structure in
the population so that the accuracies of this study may
not represent the GEBV accuracies due to LD in the
current population.
Computing time
Computing time, which may become more important as
SNP density increases, is an advantage of BayesCπ,
because its Gibbs algorithm is faster than the Metropo-
lis-Hastings algorithm of the other methods. The reason
is that the MH step for sampling the locus-specific var-
iances in this implementation of BayesA, BayesB and
BayesDπ is repeated in each iteration to improve mix-
ing; the Gibbs step for fitting a SNP in BayesCπ is only
performed once. Furthermore, computing time depends
largely on the number of SNPs fitted in each iteration,
because the following two computation steps are the
most demanding ones in the algorithm: The phenotypes
have to be unadjusted for the genotypic effects of a SNP
if that SNP was fitted in the previous iteration; similarly,
if a new SNP effect was sampled in the current iteration,
the phenotypes have to be adjusted for the genotypic
effects of that SNP. BayesCπ was more sensitive to both
the genetic architecture of a trait and training data size
than BayesDπ, and thus computing time was shorter for
BayesCπ. In this implementation, BayesA always had the
longest computing time because all SNPs were fitted.
For example, using 1,000 training bulls for milk yield
and a 2.4 GHz AMD 280 Opteron processor, computing
time for 100,000 iterations was 10.3, 14.1, 18 and 21.3
hr for BayesCπ, BayesB, BayesDπ and BayesA,
respectively.

Conclusions
BayesCπ and BayesDπ that address the drawback of
BayesA and BayesB regarding the impact of the prior
hyperparameters on shrinkage of SNP effects and that
treat as an unknown the prior probability π that a SNP
has zero effect were developed for genomic prediction.
Estimates of π from BayesCπ, in contrast to those from
BayesDπ, are sensitive to training data size and SNP
density, and provide information about the genetic
architecture of a quantitative trait; the traits milk yield

0.15 0.35 0.55 0.75 0.95

Training data size:

1,000 bulls
4,000 bulls

Model frequency

Fr
eq

ue
nc

y
0

10
20

30
40

50
60

70
80

Figure 2 Histogram of model frequencies > 0.1 obtained by
BayesB with π = 0.99 using 1,000 and 4,000 training bulls.
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and fat yield measured in North American Holsteins
have QTL with larger effects than protein yield and
somatic cell score. The statistical drawback of BayesA
and BayesB did not impair the GEBV accuracy that is
mainly due to LD information. Accuracies of the alter-
native Bayesian methods were similar and none of them
outperformed all others across all traits and training
data sizes. Therefore the best method must be deter-
mined for each quantitative trait separately. In contrast
to simulation studies, BayesA was a good model choice
for genomic prediction in the North American Holstein
population at this current SNP density. Treating π as
known with a high value is not recommended as alter-
native methods such as BayesCπ or BayesDπ gave better
accuracies. In general, computing time is shorter for
BayesCπ than for BayesDπ, and longest for BayesA. Col-
lectively, accounting for computing effort, uncertainty as
to the number of QTL (which affects the GEBV accu-
racy of alternative methods), and fundamental interest
in the number of QTL underlying quantitative traits, we
believe that BayesCπ has merit for routine applications.
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