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Abstract

Background: In 2004, we presented a web resource for stimulating the search for novel RNAs, RNA-As-Graphs
(RAG), which classified, catalogued, and predicted RNA secondary structure motifs using clustering and build-up
approaches. With the increased availability of secondary structures in recent years, we update the RAG resource
and provide various improvements for analyzing RNA structures.

Description: Our RAG update includes a new supervised clustering algorithm that can suggest RNA motifs that
may be “RNA-like”. We use this utility to describe RNA motifs as three classes: existing, RNA-like, and non-RNA-like.
This produces 126 tree and 16,658 dual graphs as candidate RNA-like topologies using the supervised clustering
algorithm with existing RNAs serving as the training data. A comparison of this clustering approach to an earlier
method shows considerable improvements. Additional RAG features include greatly expanded search capabilities,
an interface to better utilize the benefits of relational database, and improvements to several of the utilities such as
directed/labeled graphs and a subgraph search program.

Conclusions: The RAG updates presented here augment the database’s intended function - stimulating the search
for novel RNA functionality - by classifying available motifs, suggesting new motifs for design, and allowing for
more specific searches for specific topologies. The updated RAG web resource offers users a graph-based tool for
exploring available RNA motifs and suggesting new RNAs for design.

Background
The RAG (RNA-As-Graphs) web resource was launched
in 2004 to classify and catalogue all possible RNA 2D
topologies, including existing and hypothetical motifs
http://www.biomath.nyu.edu/rna[1,2]. RAG’s construc-
tion was motivated by the increasing importance of
RNAs, structurally diverse molecules with significant
regulatory roles including protein synthesis, transcrip-
tional regulation and other integral biological functions
[3-8]. Many databases have been designed for classifying
existing RNAs. These include the NDB (nucleic acid
database) [9,10], Rfam (RNA families with consensus
secondary structures) [11,12], SCOR (structural classifi-
cations of RNAs) [13,14], RNA Strand (secondary struc-
tures) [15], and Pseudobase++ (RNAs containing
pseudoknots) databases [16,17].
To aid these classification efforts, RAG was designed

to enumerate and classify all possible RNA topologies

including both existing and missing motifs (Tables 1
and 2) [1,2]. Specifically, we utilized a graphical repre-
sentation of RNA secondary structure using elements of
graph theory, including tree and dual graphs, adjacency
matrices, and Laplacian eigenvalues. By representing
secondary structures as tree and dual graphs and classi-
fying them by their vertex number and eigenvalue spec-
trum, we hoped to facilitate the search for novel RNA
motifs. RNA graphs were enumerated by both analytical
and exhaustive computational approaches, and classified
into either “existing” graphs - those found in RNA data-
bases of solved structures or comparative structure ana-
lysis - and “missing” graphs - motifs that had not yet
been found. RAG has been used for classification and
prediction of non-coding RNAs [18-21], modification of
RNA graph representations into labeled and directed
graphs [18,22-24], and RNA structural analysis [25-29];
see recent reviews [30,31] and the Discussion section on
RAG’s application to RNA design.
In 2004, we expanded this work on RNA graphs to

predict sequences that fold into 10 candidate topologies
based on a modular approach using functional submotifs
taken from existing structures [32]. That work included
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a clustering analysis that partitioned all non-existing
RNA topologies with 3 and 4 vertices into two classes:
“RNA-like” and “non-RNA-like.” A recent search of the
experimentally verified non-coding RNA databases such
as the Rfam database indicated that 5 of the 10 designed
candidate topologies now exist in nature. Moreover,
they are found in multiple RNA families (see the Discus-
sion section on statistics of current existing topologies).
Since our 2004 work, RNA databases have grown sig-

nificantly. For example, the RNA family database
(Rfam), which displays consensus secondary structures
for different families of RNA, had 367 families in 2004,
and now contains 1,372 families (database 9.1, Decem-
ber 2008) [11,12]. The RNA Strand database, which cat-
alogues existing secondary structures from various
structure databases including NDB, PDB, and others,

now holds 4,666 structures that have been determined
from a variety of theoretical and experimental methods
such as comparative sequence analysis, NMR data, and
X-Ray crystallography [15].
This vast increase in the amount of RNA structural

data provides an opportunity to update RAG and to com-
pare our earlier “RNA-like” and “non-RNA-like” classifi-
cations to newly discovered RNA. Further, we propose an
improved classification of RNA-like and non-RNA-like
topologies using a supervised clustering algorithm based
on existing RNAs. In addition, we implement various
improvements to our RAG web resource such as
expanded search tools and a user-friendly interface.

Construction and Content
The original RAG database was designed with the fol-
lowing elements: graphical representations of RNA sec-
ondary topologies; Laplacian eigenvalues for quantitative
description of RNA graphs; prediction of candidate
RNA topologies using a clustering algorithm; and a pro-
gram for converting secondary structures into RNA tree
graphs. In the updated version, we improve upon the
database’s functionality, apply a supervised clustering
algorithm to suggest candidate topologies, and compile
the new RNA structures into a user-friendly interface.

RNA graphical representation
We utilize both tree and dual graphs to represent RNA
structure. Tree graphs offer a general description of
RNA structures, while dual graphs are more specific and
allow us to represent pseudoknot structures as well (see
Figure 1). The rules for expressing 2D RNA structure as
tree graphs are as follows [33-35]:

1) The 3’ and 5’ ends of a helical stem constitute a
single vertex (•).
2) An RNA stem with more than one complemen-
tary base pair is considered an edge (-); complemen-
tary base pairs are considered to be AU, GC, and
the special case of the GU wobble.
3) A bulge, hairpin, or internal loop is a vertex (•) if
there is more than one unpaired nucleotide or non-
complementary base pair.
4) An RNA junction is considered to be a vertex (•).

The rules for transforming RNA 2D topologies into
dual graphs are the opposite of those for tree graphs,
namely:

1) The 3’ and 5’ ends do not have any representation.
2) An RNA stem with more than one complemen-
tary base pair is represented as a vertex (•).
3) An edge (-) represents any single strand that has
more than one unpaired nucleotide and occurs in

Table 1 The current number of RNA tree topologies,
divided into existing and yet unreported, the latter
subdivided into RNA-like and non-RNA-like by PAM and
a supervised clustering algorithm (k-NN) based on
existing RNA

V, vertex no. Existing RNA-like Non-RNA-like Total

PAM k-NN PAM k-NN

2 1 0 0 0 0 1

3 1 0 0 0 0 1

4 2 0 0 0 0 2

5 3 0 0 0 0 3

6 6 0 0 0 0 6

7 9 2 2 0 0 11

8 15 3 5 5 3 23

9 11 22 32 14 4 47

10 10 60 87 36 9 106

Total 58 87 126 55 16 200

Table 2 The current number of RNA dual topologies,
divided into existing and yet unreported, the latter
subdivided into RNA-like and non-RNA-like by PAM and
a supervised clustering algorithm (k-NN) based on
existing RNA

V, vertex no. Existing RNA-like Non-RNA-like Total

PAM k-NN PAM k-NN

2 3 0 0 0 0 3

3 8 2 0 2 0 8

4 17 8 3 11 10 30

5 18 63 45 36 45 108

6 12 307 239 185 243 494

7 6 1,604 1,139 783 1,243 2,388

8 3 8,777 5,275 3,407 6,906 12,184

9 4 25,810 9,957 12,785 28,634 38,595

Total 71 36,571 16,658 17,209 37,081 53,810
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segments connecting secondary elements of the 2D
structure such as bulges, internal loops, junctions,
and stems.

The main advantage of such coarse-grained represen-
tations is their reduced space compared to the atomic-
level structural space or RNA sequence space. This facil-
itates addressing many problems in RNA structure and
allows cataloging of a finite set of graphs to represent all
existing and hypothetical RNA structures.

Topological descriptors of RNA graphs: Laplacian
eigenvalues
The graph connectivity is described by a Laplacian
matrix constructed from the adjacency and degree
matrices of each graph; the full eigenvalue spectrum of

the Laplacian matrix can then be computed [1,32]. The
spectrum is useful for differentiating between RNA
graphs; the number of zero eigenvalues indicates the
number of disconnected elements of the graph and the
value of the second smallest eigenvalue (l2) is a measure
of the complexity of the graph (a linear RNA molecule
has a smaller l2 value than a branched molecule). Thus,
two graphs with differing spectrum are dissimilar,
though the converse is not true [32]. Since motif com-
plexity is indicated by the second smallest eigenvalue
(l2) of the Laplacian matrix, the ordering of l2 values
for topologies within each vertex number (V) is used in
RAG to derive a motif identification number (ID) to dis-
tinguish the topological complexities among topologies
of a certain vertex number. In RAG, all possible tree
graphs up to 10 vertices and dual graphs up to 9

Structure Tree GraphDual Graph

Hammerhead Ribozyme
(PDB_00693)

   Secis RNA
(PDB_01270)

Ribosomal RNA
   (PDB_00133)

None

Bridge

Tree

Pseudoknot

Figure 1 A depiction of how to represent RNA secondary structures as both dual and tree graphs. All non-pseudoknot structures (the
first and second rows) can be translated into both dual and tree graphs while a pseudoknot structure (the third row) can only be depicted by a
dual graph. Each RNA in the first column exists in nature as a whole (Hammerhead ribozyme) or as a part of domain (mRNA - Secis element and
rRNA); their RNA Strand IDs are in parenthesis.
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vertices have been enumerated and classified through
this system of (V, ID, l2).

Predicted topologies: RNA-like and non-RNA-like graphs
We employed a clustering analysis in our previous work
[1,32] to determine the potential for our enumerated
topologies to be discovered in nature, i.e., to be “RNA-
like”. The Partitioning Around Medoids (PAM) [36] was
used in conjunction with a linear transformation of the
Laplacian eigenvalue spectrum of each topology to sepa-
rate RNA graphs into two distinct classes as follows:

1) The values from the Laplacian eigenvalue spec-
trum are transformed through a linear regression
into two variables - the intercept (a) and the slope
(b). Specifically, we transform the non-zero Lapla-
cian eigenvalues for a V-vertex graph (l2, l3,..., lV)
into two variables (a, b) by applying the least-
squares method regarding the index (2, 3,...,V). The
slope b and the intercept a represent the average
spacing between eigenvalues and the second eigenva-
lue (l2) adjusted by b, respectively.
2) (a, b) is normalized to (a, V*b), because b
decreases with the vertex number (V), and thus, V*b
can be considered graph-size independent.
3) A distance matrix is created from the variables (a,
V*b) corresponding to the pair-wise distance
between all RNA graphs.
4) Using the distance matrix in Step 3, PAM is
applied to cluster all RNA graphs into two groups.

Briefly, the PAM clustering algorithm for two clusters
functions by selecting in turn two representatives (also
called medoids) and assigning each member into the clo-
sest group among two groups based on the distance
matrix. These steps are repeated until the resulting two
groups of data points have both maximum dissimilarity
between groups and maximum similarity within groups.
This method allowed us to classify hypothetical topologies
as “RNA-like” or “non-RNA-like"; the former group of
topologies is considered more likely to be found in nature.
Since PAM does not treat existing data with greater

weight, we apply here an improved statistical method,
the k-nearest neighbor (k-NN) algorithm [37,38], to clas-
sify missing motifs as RNA-like or non-RNA-like based
on training data of known RNA topologies. Briefly, k-
NN is an instance-based supervised classification algo-
rithm for classifying objects based on k closest training
data in the description space: an object is classified by a
majority vote of its neighbors, with the object being
assigned to the class most common among its k nearest
neighbors. Here, neighbors are defined by the Euclidian
distance between graph descriptors - the transformation
of Laplacian eigenvalues. Typically, the parameter k is a

small number from 1 to 5. For our training sets, we use
partial sets of existing and missing graphs with 3-4 ver-
tices for dual graphs and 3-8 vertices for tree graphs.
We found that k = 3 yields reasonable accuracy when
the error rate is calculated by cross-validation analysis
for k = 1 to 5 (see Table 3). The assessment of k-NN
versus PAM is elaborated separately in the following
Discussion section.

RNA Matrix: a computer program to convert RNA 2D
topology to a tree graph
RAG contains the RNA Matrix program to assist struc-
tural and functional identification of RNA motifs. It
converts a user-supplied secondary structure file (in ‘ct’
format) into its graphical representation. Essentially, our
RNA Matrix program converts a tree secondary struc-
ture into an adjacency matrix through the following two
steps: (1) the secondary structure file (’ct’ file format) is
used to define paired (P) and unpaired (U) regions of
the RNA sequence. Each U region is associated with a
vertex label (1, 2, 3, ...). Regions with the same label
belong to the same structural elements (e.g., junctions,
bulges). Identifying the U and P regions involves apply-
ing the RNA graph rules and also requires careful con-
sideration of possible secondary structure configurations
(e.g., where the chain ends occur); (2) the adjacency
graph vertices are assigned by following the connecting
arrows (from left to right). For dual graphs, the roles of
U and P regions are reversed. RNA Matrix calculates
the RNA graph’s topological characteristics (vertex num-
ber, eigenvalues, order of junctions or degree of vertices,
etc). Such information directs the user to the corre-
sponding existing (or hypothetical) RNA motif in the
database, with links to other RNA sequence, structure
(2D and 3D) and function databases. Our RAG update
introduces three significant improvements to the RNA
Matrix program: first, we have now automated the clas-
sification of dual graph as well as tree graph topologies;
second, we have extended the limit of 200 nt to 1000 nt
and of 10 vertices to any number for tree graphs; third,
we added a function to specify the direction for the
graphs (5’ to 3’) and list common subgraphs between
two RNA secondary structures. To label vertices, RNA
Matrix compares the adjacency matrix of given struc-
tures to a set of standard adjacency matrices corre-
sponding to our labeled graphs (visible on the RAG
website). Subgraphs are determined by permuting all
square submatrices of the structures’ adjacency matrices
to identify smaller graphs shared by each structure.

Utilities and Discussion
RNA database searches
We determine and classify tree and dual graphs of avail-
able secondary structures according to our topological
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descriptors (Tables 1 and 2). To accomplish this, we use
secondary structure information from three comprehen-
sive RNA databases to produce RNA graphs: the Rfam
database, which contains the sequence alignments and
consensus secondary structures of RNA families; the
Pseudobase++ database, a catalogue of pseudoknot
structures; and the RNA Strand database, which collects
RNA secondary structures from many databases such as

the RCSB Protein Databank, Nucleic Acid Database, and
others. We use the following criteria for converting
database structures to RNA graphs: tree graphs and dual
graphs are limited to 10 vertices and 9 vertices, respec-
tively; only RNAs of 200 nt or less are considered. Addi-
tionally, only pseudoknot-containing structures are
considered by the dual graph representation, because
tree graphs cannot represent pseudoknots. The non-
pseudoknot structures are represented by both tree and
dual graphs.
We consider natural RNAs whose structures are

solved by experimental methods, such as NMR or X-ray
crystallography or identified by comparative analysis to
be existing RNAs. All comparative structures are cur-
rently derived from the Pseudobase++, Rfam and RNAS-
trand databases, while solved structures are from NDB,
PDB, and Pseudobase++. The secondary structure pre-
diction by homology modeling exploits multiple RNA
sequences to infer accurate conserved secondary struc-
tures: the homologous sequences are aligned to deter-
mine conserved residues and the common secondary
structure is detected by the co-variation of base pairs
[11]. In our earlier RAG, we also took account into
structures from comparative structure analysis. Indeed,
many comparatively analyzed structures have been veri-
fied by mutagenesis or chemical probing (see Table S1
in Additional file 1 for the list of Rfam IDs of families
whose comparatively analyzed secondary structures are
confirmed by mutagenesis or structure probing). Syn-
thetic RNAs are not regarded as existing topologies
because they were not found in nature, but designed to
have a specific structure or function in vitro. Still, in the
RAG resource, we show a list of synthetic RNA struc-
tures determined by experimental methods (X-ray crys-
tal structures or NMR), as listed in NDB, PDB or
Pseudobase++.
We use the RNA Matrix program (available on our

website for single-molecule use) to rapidly deduce tree
graph topologies from the available .ct files of RNA
Strand and dual graph topologies from the .bpseq sec-
ondary structure files of Pseudobase++. We manually
determine the topologies for the RNA families of Rfam,
if each topology can be represented by a tree graph of
10 vertices or less or a dual graph of 4 vertices or less,
because the database does not currently offer secondary
structure files. The tree and dual graph topologies are
then classified by motif class (existing, RNA-like, or
non-RNA-like) and the method used to determine the
structure.

Statistics of current existing topologies
In our 2004 work, 200 tree graph topologies were
enumerated for motifs up to 10 vertices, and 53,810
dual graph topologies were enumerated for motifs up to

Table 3 Cross-validation (CV) results for dual graphs with
k-NN (k = 1 to 5) and PAM

Training Set (2010) Error Rate

Dual graphs (V) Method (10-fold CV) [%]

3-4 1-NN 8

(25 existing and 25 missing graphs) 2-NN 6

3-NN 8

4-NN 6

5-NN 10

PAM 34

3-5 1-NN 14

(43 existing and 43 missing graphs) 2-NN 12

3-NN 15

4-NN 13

5-NN 14

PAM 26

3-6 1-NN 13

(55 existing and 55 missing graphs) 2-NN 13

3-NN 13

4-NN 13

5-NN 13

PAM 26

3-7 1-NN 13

(61 existing and 61 missing graphs) 2-NN 13

3-NN 13

4-NN 13

5-NN 12

PAM 31

3-8 1-NN 13

(64 existing and 64 missing graphs) 2-NN 14

3-NN 12

4-NN 13

5-NN 13

PAM 33

3-9 1-NN 13

(68 existing and 68 missing graphs) 2-NN 13

3-NN 13

4-NN 13

5-NN 12

PAM 36
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9 vertices (see the last columns of Tables 1 and 2).
RNAs corresponding to 24 of the tree graph topologies
and 29 of the dual graph topologies were found in struc-
tural databases of the time. These topologies were
placed into an “existing” classification. The remaining
topologies were considered “missing,” and subdivided
into RNA-like or “non-RNA-like” classifications by pre-
dictions made using PAM clustering. Because three of
the graphs reported as existing in the 2004 RAG data-
base could not be located currently (they were predicted
by Mfold but not confirmed experimentally), the 2004
existing data as reported has been corrected: the set of
24 existing trees have now been reduced to 21 tree
graphs. See Table S2 in Additional file 1 for these
corrections.
Our current database searches for solved and com-

paratively-analyzed structures have identified more than
twice as many topologies than were found in our 2004
searches: 58 tree graphs (21 in 2004) and 71 dual graphs

(29 in 2004). The first column of Tables 1 and 2 shows
the current numbers of existing tree and dual topologies
with vertex numbers 2 to 10 for tree graphs and 2 to 9
for dual graphs, respectively. There are 37 new tree and
42 new dual existing topologies that were previously
classified as missing topologies. Figure 2 shows the
breakdown of current existing tree and dual topologies
for each vertex number by their status in 2004 (existing,
RNA-like, or non-RNA-like). For tree graphs, 25 newly-
confirmed topologies (blue in Figure 2) were classified
as RNA-like in 2004 and 12 were classified as non-
RNA-like in 2004 (green in Figure 2). For dual graphs,
24 newly-confirmed topologies were classified as RNA-
like in 2004, and 18 were classified as non-RNA-like
topologies in 2004. Because these results clearly leave
room for improvement, we apply here a new clustering
approach, supervised clustering, which depends more
strongly on existing RNA (see also the previous subsec-
tion on predicted topologies).
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2 3 4 5 6 7 8 9
0
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Existing graphs in 2004

New existing graphs in 2010 (RNA-like in 2004)

New existing graphs in 2010 (Non-RNA-like in 2004)

(a)  Existing Tree Graphs in 2010

(b)  Existing Dual Graphs in 2010
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Figure 2 The current number of existing (a) tree graphs and (b) dual graphs in each graph vertex number (from 2 to 10 for tree
graphs and from 2 to 9 for dual graphs) in the updated RAG database. Each bar is divided by the topological classifications that were
constructed in 2004 (existing, RNA-like, and non-RNA-like) which are represented as red, blue and green, respectively. Since the launch of RAG in
2004, more than twice as many topologies have been identified, most of which have been confirmed from RNA-like topologies (see the second
column of Tables 1 and 2 for the distribution of existing motifs in each vertex number from 2 to 10 for tree graphs and from 2 to 9 for dual
graphs, respectively).
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For both tree and dual graphs, the accuracy of our
predictions of RNA-like motifs depends on the method
of structure discovery. Figure 3 shows the findings from
newly-confirmed topologies belonging to structures
determined by different methods: experimentally solved
natural RNAs, comparatively-analyzed natural RNA
sequences, and synthetically designed RNAs. Results
from each method are shown by their classification in
2004: RNA-like (blue in Figure 3) and non-RNA-like
(green in Figure 3). For tree graphs, when comparing
RNA-like vs. non-RNA-like classifications in 2004, the
numbers of topologies are 3 vs. 3 for solved structures,
23 vs. 9 for comparatively analyzed structures, and 2 vs.
1 for synthetic structures. For dual graphs, the numbers
are 20 vs. 9 for solved structures, 10 vs. 10 for compara-
tively analyzed structures, and 14 vs. 6 for synthetic
structures.
In particular, for the experimental structures, the dual

graph has a much higher prediction rate (20 vs. 9, the
first bar plot in Figure 3, lower) compared to tree
graphs (3 vs. 3, the first bar plot in Figure 3, upper).
This is because of the degeneracy of tree representations
(i.e., different secondary structures can be represented as

same tree topologies) and the higher sample size of
solved dual graph structures (527) in contrast to solved
tree structures (392) due to the addition of pseudoknot
structures from Pseudobase++. However, as shown in
the last two bar plot in Figure 3 (for all natural RNAs
and all RNAs), though PAM clustering predictions are
reasonable, there remains much room for improvement,
as we discuss below. Note that there is some overlap
among these topologies between different methods of
discovery, and therefore the numbers are not additive
for all natural RNAs (both experimental and compara-
tive structures) and all RNAs (both natural and synthetic
RNAs) as shown in the last two columns of Figure 3.
RNAs which were classified as RNA-like in 2004 and

now found in RNA databases include several regulatory
RNAs such as the GEMM cis-regulatory element (Rfam:
RF01051, tree graph ID: (6,1)), the Tobamovirus internal
ribosome entry site (Rfam:RF00225, tree graph ID:
(8,2)), the mammalian CPEB3 gene (Rfam:RF00622, dual
graph ID: (3,2)), the Tymovirus tRNA-like 3’ UTR ele-
ment (Rfam:RF00233, dual graph ID: (4,1)), and the
Tombusvirus 3’ UTR region IV (Rfam:RF00176, dual
graph ID: (4,2)). RNAs such as the SAM riboswitch

0
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Newly-confirmed RNA topologies  (RNA-like in 2004)

Newly-confirmed RNA topologies  (Non-RNA-like in 2004)

(a)  Current number of RNA tree topologies

(b)  Current number of RNA dual topologies
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       Natural 
    Structures 

  Comparatively 
     Analyzed 
Natural Structures 

All Natural 
  RNAs 

All Natural and Synthetic 
               RNAs

Figure 3 The current number of tree graphs (a) and dual graphs (b) which are newly confirmed according to method of discovery -
experimental (solved) natural structures, comparatively analyzed natural structures, all natural structures, and all RNAs (including
both national and synthetic structures) in the updated RAG database. Each number is divided by the topological classifications in 2004
(RNA-like and non-RNA-like) which are represented as blue and green, respectively.
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(Rfam:RF00162, tree graph ID: (6,5)), the Togavirus 5’
cis-regulatory element (Rfam:RF00470, tree graph ID:
(8,14)), and the viral 3’ UTR (Pseudobase++: PKB169,
dual graph ID: (4,29)) were misclassified as non-RNA-
like topologies in 2004. Figures 4 and 5 show a more

comprehensive selection of newly-confirmed topologies
for tree and dual graphs, respectively, with correspond-
ing second eigenvalues, secondary structures, topological
depictions, and functionalities. Figure 5a shows the five
identified RNAs that correspond to our candidate

StructureTree Graph FunctionsV, ID

6,1 0.2679
- GEMM cis-regulatory element (RF01051)
- mir-194 microRNA (RF00257)
- Signal recognition particle (SRP_00083)

6,3 0.3820
- Small nucleolar RNA (RF00425)
- B. Subtilis intergenic region (RF01411)
- DsrA RNA (RF00014)

7,5 0.2955
- BamV viral cis-regulatory element 
   (RF00290)
- Enterovirus 5' cis-acting replication 
element (RF00386)

7,7 0.3820
- SucA RNA motif (RF01070)
- Luteovirus cap-independent translation 
element (RF00434)
- yybP-ykoY leader (RF00080)

8,1 0.1522
- Signal recognition particle (SRP_00166)
- Small cajbal body specific RNA (RF00427)
- Small nucleolar RNA (RF00415)

8,2 0.1667
- Tobamovirus internal ribosome entry site
(RF00225)
- Bacterial regulatory element (RF00552)

9,14 0.1729 - Ribosomal RNA (PDB_00417, PDB_00830)

10,27 0.1479 - Signal recognition particle (SRP_00135)

StructureTree Graph FunctionsV, ID

0.4859
- U4 spliceosomal RNA (RF00015)
- SAM riboswitch (S box leader) (RF00162)
- Enteroviral 3' UTR element (RF00041)

1.0000

- GcvB RNA (RF00022)
- Togavirus 5' cis-regulatory element 
(RF00470)

7,11

0.2774

- tRNA (PDB_00473, PDB_00982, 
 PDB_01014)0.2087

8,14

9,23

- tRNA (PDB_01000)

10,80 0.2318 - Small  cajal body specific RNA (RF00231)

6,5

(a)

(b)

Figure 4 Examples of newly confirmed RNA tree graphs from RNA-like (a) or non-RNA-like (b) graphs classified in the 2004 RAG
database. The vertex number/ID (first column) and the second smallest eigenvalue (second column) are shown for each RNA tree graph (third
column). RNA secondary structures and their functions are shown in the fourth and fifth columns.
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topologies with 3 and 4 vertices in 2004 using PAM [32]
(C1, C2, C3, C4 and C7). Often, multiple sequences cor-
respond to a graph (for example, 6, 4 and 2 sequences
correspond to dual graphs (4, 1), (4, 2) and (4, 29),
respectively). Twenty-two out of 71 existing dual graphs
correspond to only one sequence. We classify all these
cases as existing topologies.

Assessment of k-NN versus PAM clustering methods
As discussed above, PAM clustering does not employ
existing data to weigh the results: PAM selects two
representatives and assigns each graph into the closest
group among the two groups based on the Euclidian
distance matrix of graph descriptors. These steps are
repeated until the resulting two groups of graphs

StructureDual Graph FunctionsV, ID 2
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Figure 5 Examples of newly confirmed RNA dual graphs from RNA-like (a) or non-RNA-like (b) graphs classified in the 2004 RAG
database. The vertex number, ID (first column) and the second smallest eigenvalue (second column) are shown for each RNA tree graph (third
column). RNA secondary structures and their functions are shown in the fourth and fifth columns. In (a), the five identified RNAs that correspond
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minimize the total distance between members in each
group as well as maximize the distance between the
groups. The members in the group containing more
existing graphs are classified as RNA-like topologies.
We now employ instead a supervised k-nearest neigh-

bor (k-NN) algorithm in conjunction with our RAG
update. In the k-NN classification, missing motifs are
assigned to RNA-like or non-RNA-like topologies based
on k closest training data points of existing RNAs; the
distances are measured by graph descriptors. The k-NN
approach classifies an object according to a majority
vote that depends on the object’s neighbors: the object
is assigned to the class most common among its k near-
est neighbors. Thus, no medoids per se are defined as in
PAM, and the classification changes as the data set of
known RNAs increases. Our reclassification thus yields
revised predictions of topologies that are more strongly
guided by existing data.
To compare the performance of PAM and supervised

clustering in terms of predicting RNA-like topologies,
we use a standard statistical procedure, 10-fold cross-
validation, in which the data are partitioned into 10 sub-
sets, one of which is used as a training set and the
others are used for prediction. Such a procedure is
repeated by shuffling the data in various ways, and all
predictions are averaged over these rounds. We perform
10-fold cross-validation for k-NN (with k = 1 to 5) and
PAM clustering based on different graph sets using the
R statistical package [39].
Table 3 shows that the error rate for classification of

dual graphs from 3 to 9 vertices is 6-15% for k-NN com-
pared to 26-36% for PAM. We find that k = 3 is a good
choice for the former method (see Table 3). The trend is
similar for tree graphs (Table S3 in Additional file 1).
In addition, we use partial sets (2004 data set plus 50%

of 2010 data) to define other training sets and again
compare the performance of k-NN. We have added
more existing data to define these partial sets since the
2004 data set is too small on its own. Table 4 shows the
results of dual graphs when the training set consists of
29 existing topologies in 2004, 21 additional existing
topologies in 2010, and 50 missing graphs. Tested
against all known existing motifs to date (21 new
motifs), the accuracy is 95% (k = 1) to 81% (k = 5) com-
pared to 62% for PAM. The trend is similar for tree
graphs (72%-83% for k-NN and 77% for PAM, see Table
S4 in Additional file 1).
Figure 6 compares the PAM and k-NN clustering of

146 dual graphs up to 5 vertices. PAM clusters 146
topologies without prior information of existing RNAs
and predicts 61 to be RNA-like (0, 5 and 56 topologies
with 3, 4 and 5 vertices, respectively), while k-NN
reclassifies 48 topologies as RNA-like (0, 3 and 45 with
3, 4, and 5 vertices, respectively) (Table 2) based on

existing RNAs with 3 and 4 vertices (25 existing topolo-
gies). Of the RNA-like topologies, 37 PAM classifica-
tions remain unchanged. Figure 6 also shows two
examples of RNA-like graphs (C4-1 and C4-2, blue dots
in both Figures 6b and 6d) that have similar structures
to a confirmed candidate (C4, Tombusvirus 3’ UTR
region IV, RF00176, See Figures 5 and 9 for topologies).
Eight of the 45 RNA-like topologies classified by k-NN
were predicted to be non-RNA-like by PAM (P1-P8 in
Figure 6d). Some of these eight topologies are similar to
newly-confirmed topologies. Three new candidate pseu-
doknots (P1-P3) correspond to a substructure of Viral 3’
UTR (Pseudobase++:PKB169) with an added stem. All
of the newly classified RNA-like and non-RNA-like
topologies are provided on our web resource http://
www.biomath.nyu.edu/rna.

Reclustering of RNA topologies and comparison of 2004
and current predictions
Our analyses above suggest that the supervised cluster-
ing algorithm can better take advantage of newly-con-
firmed topologies to lower the error rate and increase
the accuracy in suggesting candidate RNA-like topolo-
gies. Our classification using the supervised k-NN algo-
rithm applied to all existing RNA data is shown in
Tables 1 and 2. When compared to predictions in 2004,
the number of RNA-like graphs increases slightly for
tree graphs (from 111 to 126, the last row in Table 1)
and decreases more significantly for dual graphs (from
36,571 to 16,658, the last row in Table 2).

The Updated RAG Database
The RAG update incorporates newly-confirmed topolo-
gies and new predictions. Figure 7 depicts updated
information of tree topologies up to 6 vertices, as well
as a partial sampling of existing, RNA-like, and non-
RNA-like topologies for 7 vertices and up. RNAs corre-
sponding to the full tree graph library up to 6 vertices

Table 4 Prediction accuracy when partial sets consist of
2004 existing dual graphs and an additional 50% of
2010 data

Training Set Testing Set Method Accuracy
(%)

2004 Existing RNAs 50% of newly
found

1-NN 95

Plus 50% of New RNAs RNAs since 2004 2-NN 90

(29 existing in 2004, 21 new
RNAs,

(21 new
existing)

3-NN 90

and 50 missing dual graphs) 4-NN 90

5-NN 81

No Training Set (all 71 existing and 53,739
missing graphs)

PAM 62
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Figure 6 Clustering plots of PAM and k-NN clustering for 38 RNA dual graphs with 3 and 4 vertices (a versus c) and for 146 RNA dual
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corresponding to structures of tmRNA (PKB234) and a candidate topology similar to the Box H/ACA snoRNA (RF00233). In (a), C1, C2, C3, C4, and
C7 are existing topologies which were classified as RNA-like topologies in 2004 using PAM [32] (see Figure 5) and B is a confirmed bridge
structure corresponding to U5 spliceosomal RNA (RF00020, see the second row in Figure 2). In (b) and (d), two candidate topologies (C4-1 and
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the newly-confirmed existing topology Viral 3’ UTR (Pseudobase++: PKB169).
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(13 topologies) have been discovered in nature. Struc-
tures representing these newly confirmed topologies
have functional roles as riboswitches, cis-regulatory ele-
ments, and tRNA, among many others. The full tree

graph library can be viewed on our RAG website. Figure
7 also provides insights into the organization of RAG;
each of the graphs within a certain vertex number is
listed in order of increasing complexity, as determined

2= 2.0000
2= 1.0000 2= 0.5858 2= 1.0000

2= 0.3820 2= 0.5188
2= 1.0000 
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Figure 7 The library of topologies for tree graphs between 2 and 10 vertices, with the second smallest Laplacian eigenvalue (l2)
listed. RNA families with sequences belonging to select topologies are listed below their corresponding tree graph. Existing topologies, RNA-
like, and non-RNA-like topologies based on the 2010 clustering are represented by red, blue or black (dashed) colors, respectively. For tree
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by their second eigenvalues. As expected, multiple
sequence and structure families map onto the same
graphs. Also, there is a many-to-one relationship
between sequence and motif. As an example, in Figure
7, for the existing topology with 6 vertices and a second
eigenvalue (l2) of 0.3249, we originally found, in addi-
tion to a signal recognition complex, more than 20
other regulatory non-coding RNAs corresponding
including OxyS (Rfam:RF00035), SraG (Rfam:RF00082),
GadY (Rfam: RF00122), t44 (Rfam: RF00127), and SL2
(Rfam: 00199). Note that because some of the structures
available in 2004 were not readily classified in databases
of the time, our updated search reports more overall
topologies from the years leading up to 2004 than were
reported in the original RAG paper.
All 11 dual graph topologies for up to 3 vertices have

now been discovered. The complete repertoire of newly-
confirmed topologies can be seen in Figure 8. Interest-
ingly, several of these confirmed topologies consist of
submotifs that were confirmed in 2004, linked by single
stranded bridge regions. For example, the topology cor-
responding to the dual graph (6,78) is a combination of
the (2,2) graph and the (4,15) graph via a single
stranded region. This observation, along with our dis-
covery of designed sequences from 2004, lends support
to our modular design of candidate sequences. Figure 9,
which contains the full dual graph library up to 4 ver-
tices, shows some of these reclustered topologies, as
indicated by blue (RNA-like) and black (non-RNA-like)
coloring, along with their structural classifications (tree,
bridge, or pseudoknot).

Searching for functionality and its implications for RNA
design
We have applied our RNA graph classification and pre-
diction to RNA structure analysis and design in multiple
ways. For example, we have applied our graph classifica-
tions to reveal modular RNA architectures by computa-
tional analysis of existing pseudoknots and ribosomal
RNAs using dual graph isomorphism [40] and discov-
ered motifs corresponding to antibiotics-binding apta-
mers in genomes by searching our graphs [41]. We have
also assessed topological distributions of random pools
for in vitro selection based on RAG [42]. Such combina-
tions can be applied to in vitro selection in conjunction
with our RAGPOOLS web server http://rubin2.biomath.
nyu.edu/ to design new RNA pools with desired topolo-
gies [43-45].
Other groups have extended RAG to labeled dual

graphs and directed tree graphs, including graph appli-
cations to non-coding RNA classification [18-22]. For
example, the Brenner group has added labels to our
dual graphs, enabling them to construct more detailed
models of RNA structures that classify non-coding RNA

families [18]. The Asai group has modified our tree
graphs to include direction, which has allowed them to
predict non-coding RNAs [19]. Heitsch and coworkers
used tree graphical representation to analyze the
branching degree of entire RNA viral genomes like
Hepatitis C (9,400 bases) and, in turn, proposed a new
pattern of random tree degrees in graph theory [46,47].
Knisley and coworkers extended our graph classification
by developing more parameters for tree descriptors and
providing a quantitative analysis of secondary structure
of RNAs [48,49].
Our RAG update includes various features such as

expanded search tools, directed/labeled graph graphs, a
subgraph search program, and newly suggested RNA-
like topologies. We hope that these improved features
will allow users to perform complex queries and apply
our resource to RNA design and related problems. In
particular, users can use our updated RAG in four sig-
nificant ways. First, researchers can translate RNA sec-
ondary structure into tree and dual graphs without
length limitations on our web server http://www.bio-
math.nyu.edu/rna/analysis/rna_matrix.php. For example,
a set of long viral RNAs (~1000 nt) can be translated
into tree and dual graphs. Second, neighboring topolo-
gies are related to existing ones by size, topology or
function and can be explored, which will help to search
a family of topologies. Third, new candidate RNA-like
topologies can be used for searching genomes. Fourth,
RNA graphs can help design new classes of structural
RNAs by combining multiple graphs.

Software features
The updated version of RAG includes a program that
converts a given secondary structure (in either ‘ct’ or
‘bpseq’ format) into a dual graph. Like the version of
RNA Matrix for tree graphs released in 2004, users
can submit a single secondary structure file for analy-
sis. Using this file, we compute the necessary Lapla-
cian eigenvalues and provide the corresponding dual
graph topology, along with labeled vertices and direc-
tional information. The adjacency, degree, and Lapla-
cian matrices for the structure are displayed and the
common subgraphs between two structures can be
evaluated. In addition, a set of secondary structures
(up to 1000 ct files) can be submitted to the updated
RNA Matrix program for batch processing and the
resulting adjacency matrices and graph IDs can be
downloaded.
We have changed our back-end database from plain

text files into a MYSQL relational database implementa-
tion; the relational database tables in RAG have been
“normalized” to minimize the redundancy and define
relationships between them. By requiring the existence
of a related row in another table, we improve the
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database integrity and make sure that the data entered
into the database are valid and consistent. The updated
database using a relational database thus allows us to
provide different views and more advanced queries for

users (e.g., sequence searches by Rfam ID). We plan to
update RAG by adding new structures reported from
publications or structural databases regularly, so that
new information will become accessible on each
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Figure 8 The library of 71 existing topologies for dual graphs between 2 and 9 vertices: from these 71 topologies, 29, 24, and 18 were
classified as existing, RNA-like and non-RNA-like, respectively, in 2004. The vertex number and ID are in parentheses above each graph.
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topology’s sub-page. We also invite users to submit their
structures to us directly for inclusion in RAG.
We have also modified the front-end code to produce

a better user interface; we have changed the format
from static pages written in HTML and PHP server-side
scripting languages into a rich-Internet compatible
interface utilizing Web 2.0 features such as Asynchro-
nous JavaScript and XML (AJAX) techniques.

Conclusions
An improved and updated RAG database has been
designed to allow experimentalists and theoreticians to
explore currently existing motifs and help suggest novel
RNA motifs. The number of available structures has
increased, the searching capabilities have been improved,
and the web server has a more user-friendly interface
and dynamic content.

Because of the translation to a combined PHP and
MYSQL interface, future updates of RAG will be acces-
sible via the web resource in real time; each tree and
dual graph topology has its own sub-page on the web
resource that accesses the database and displays all
structures corresponding to that particular topology.
Thus, each addition to RAG will be displayed instanta-
neously on its respective online topology page.
The hypothetical ‘RNA-like’ topologies predicted by

clustering techniques may serve as possible candidates
for RNA design. Here we improved the clustering pre-
dictions made in 2004 [1,32] by using a k-NN clustering
approach (Tables 1 and 2).

Availability and Requirements
The RAG database, documentation, and software can be
accessed on our web server http://www.biomath.nyu.
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edu/rna. We invite users to experiment and report to us
their experiences.

Additional material

Additional file 1: Supplementary Tables S1-S4. This additional file
include the list of Rfam ID whose comparative structure is confirmed by
mutagenesis or structure probing (Table S1), correction of the 2004
existing data (Table S2), cross-validation results for tree graphs (Table S3),
and tree graphs classified by partial sets (Table S4).
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